
Crowd3D: Towards Hundreds of People Reconstruction from a Single Image

Hao Wen1,†, Jing Huang1,†, Huili Cui1, Haozhe Lin2, Yu-Kun Lai3, Lu Fang2, Kun Li1,∗
1Tianjin University, China 2Tsinghua University, China 3Cardiff University, United Kingdom

{wenhao, hj00, huilicui 1, lik}@tju.edu.cn, {linhz, fanglu}@tsinghua.edu.cn,
LaiY4@cardiff.ac.uk

Input Results

Side View

Bird’s-eye View

Figure 1. Given a single large-scene image with hundreds of people, our method can reconstruct 3D poses, shapes and locations of these
people in a global camera space with coherency with the scene. Please zoom in for more details.

Abstract
Image-based multi-person reconstruction in wide-field

large scenes is critical for crowd analysis and security alert.
However, existing methods cannot deal with large scenes
containing hundreds of people, which encounter the chal-
lenges of large number of people, large variations in hu-
man scale, and complex spatial distribution. In this paper,
we propose Crowd3D, the first framework to reconstruct the
3D poses, shapes and locations of hundreds of people with
global consistency from a single large-scene image. The
core of our approach is to convert the problem of complex
crowd localization into pixel localization with the help of
our newly defined concept, Human-scene Virtual Interac-
tion Point (HVIP). To reconstruct the crowd with global
consistency, we propose a progressive reconstruction net-
work based on HVIP by pre-estimating a scene-level cam-
era and a ground plane. To deal with a large number of per-
sons and various human sizes, we also design an adaptive
human-centric cropping scheme. Besides, we contribute
a benchmark dataset, LargeCrowd, for crowd reconstruc-
tion in a large scene. Experimental results demonstrate the
effectiveness of the proposed method. The code and the

† Equal contribution.
* Corresponding author.

dataset are available at http://cic.tju.edu.cn/
faculty/likun/projects/Crowd3D.

1. Introduction
3D pose, shape and location reconstruction for hundreds

of people in a large scene will help with modeling crowd be-
havior for simulation and security monitoring. However, no
existing methods can achieve this with global consistency.
In this paper, we aim to reconstruct the 3D poses, shapes
and locations of hundreds of people in the global camera
space from a single large-scene image, as shown in Fig. 1.

Although monocular human pose and shape estimation
[15, 37, 43] has been extensively explored over the past
years, estimating global space locations together with hu-
man poses and shapes for multiple people from a single im-
age is still a difficult problem due to the depth ambiguity.
Existing methods [13,35] reconstruct 3D poses, shapes and
relative positions of the reconstructed human meshes by as-
suming a constant focal length. But the methods are limited
to small scenes with a common FoV (Field of View). These
methods cannot regress the people from a whole large-scene
image [41] due to the relatively small and varying human
scales in comparison to the image size. Even with an image
cropping strategy, these methods cannot obtain consistent
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reconstructions in the global camera space due to indepen-
dent inference from the cropped images. Besides, existing
methods hardly consider the coherence of the reconstructed
people with the outdoor scene, especially with the ground,
since the ground is a common and significant element of
outdoor scenes. Taking a usual urban scene as an example,
these methods may include wrong positions and rotations so
that the reconstructed people do not appear to be standing
or walking on the ground.

In general, there are three challenges in reconstructing
hundreds of people with global consistency from a single
large-scene image: 1) there are a large number of people
with relatively small and highly varying 2D scales; 2) due
to the depth ambiguity from a single view, it is difficult
to directly estimate absolute 3D positions and 3D poses of
people in the large scene; 3) there is no large-scene image
datasets with hundreds of people for supervising crowd re-
construction in large scenes.

In this paper, to address these challenges, we propose
Crowd3D, the first framework for crowd reconstruction
from a single large-scene image. To deal with the large
number of people and various human scales, we propose
an adaptive human-centric cropping scheme for a consistent
scale proportion of people among different cropped images
by leveraging the observation of pyramid-like changes in
the scales of people in large-scene images. To ensure the
globally consistent spatial locations and coherence with the
scene, we propose a progressive ground-guided reconstruc-
tion network Crowd3DNet to reconstruct globally consis-
tent human body meshes from the cropped images by pre-
estimating a global scene-level camera and a ground plane.
To alleviate the ambiguity brought in by directly estimat-
ing absolute 3D locations from a single image, we present a
novel concept called Human-scene Virtual Interaction Point
(HVIP) for effectively converting the 3D crowd spatial lo-
calization problem into a progressive 2D pixel localization
problem with intermediate supervisions. Benefiting from
HVIP, our model can reconstruct the people with various
poses including non-standing.

We also construct LargeCrowd, a benchmark dataset
with over 100K labeled humans (2D bounding boxes, 2D
keypoints, 3D ground plane and HVIPs) in 733 gigapixel
images (19200×6480) of 9 different scenes. To our best
knowledge, this is the first large-scene crowd dataset, which
enables the training and evaluation on large-scene images
with hundreds of people. Experimental results demonstrate
that our method achieves globally consistent crowd recon-
struction in a large scene. Fig. 1 gives an example.

To summarize, our main contributions include:

1) We propose Crowd3D, a multi-person 3D pose, shape
and location estimation framework for large-scale
scenes with hundreds of people. We design an adap-
tive human-centric cropping scheme and a joint local

and global strategy to achieve the globally consistent
reconstruction.

2) We propose a progressive reconstruction network with
the newly defined HVIP, to alleviate the depth ambigu-
ity and obtain global reconstructions in harmony with
the scene.

3) We contribute LargeCrowd, a benchmark dataset with
over 100K labeled crowded people in 733 gigapixel
large-scene images (19200×6480), which are valuable
for the training and evaluation of crowd reconstruction
and spatial reasoning in large scenes.

2. Related Work
Multi-person 3D Pose Estimation. These methods

can be divided into top-down [2, 29, 33, 40] or bottom-
up [4, 7, 20, 27, 28, 45] paradigms. The top-down meth-
ods first detect the people and then estimate the 3D pose
of each person separately. Moon et al. [29] estimate root lo-
cation and root-relative pose separately after detecting the
persons. They regard the area of 2D bounding box as a
prior and adopt a neural network to learn a correction factor.
HMOR [40] divides human relations into three levels and
formulates pair-wise ordinal relations in each level. Dif-
ferent from the top-down paradigm, the bottom-up methods
directly detect all the joints and group them. However, most
methods either optimize the translation in a post-processing
way [27] or ignore the root localization. Inspired by monoc-
ular depth estimation methods, SMAP [45] utilizes a deep
convolutional neural network (CNN) to estimate a normal-
ized root depth map and part relative-depth maps. The final
root map is recovered with the given focal length and hence
the camera parameters need to be known to obtain the ab-
solute positions.

All the above methods only estimate 3D poses in the
form of skeletons while missing shape information that
is important for many applications, such as interpene-
tration reasoning to avoid impossible poses, person re-
identification and crowd analysis.

Multi-person 3D Pose and Shape Estimation. Para-
metric human body models, e.g., SMPL [25], have been
widely adopted to represent the 3D pose and shape of a per-
son. Single-person 3D pose and shape estimation has been
achieved with tremendous progress [3,15,17–19,30,32,36,
42, 43], while multi-person 3D pose and shape estimation
still faces many challenges.

Some methods adopt a two-stage framework by utiliz-
ing a single-person reconstruction method for each detected
person. 3DCrowdNet [6] leverages 2D poses to distinguish
different people and uses a joint-based regressor to estimate
human model parameters. This kind of approaches focuses
more on the accuracy of pose and shape but ignores 3D spa-
tial locations of the people which are important for holis-
tic understanding of the scene. To get coherent reconstruc-
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Figure 2. Overview of Crowd3D framework. First, Crowd3D adopts an adaptive human-centric cropping scheme to crop the large-scene
image into patches with hierarchical sizes for more appropriate scales of people. Then, Crowd3D estimates the scene-camera intrinsics and
ground plane equation with human pose priors. Finally, Crowd3DNet takes the cropped image, the patch location, the estimated camera
and ground parameters as inputs and outputs the crowd reconstruction with consistent spatial locations in the global camera space.

tion results, Jiang et al. [13] propose CRMH, an R-CNN-
based architecture, to detect all the people in an image and
estimate their SMPL parameters by using an interpenetra-
tion loss and a depth ordering-aware loss in training. This
method calculates human depths based on the assumption
that people are consistent in height, which will estimate
excessive depths for short individuals like kids. To solve
the inherent body size and depth ambiguity problem, Ugri-
novic et al. [38] propose a multi-stage optimization-based
method to optimize the 3D translations and scales of body
meshes estimated by CRMH [13]. Different from multi-
stage methods with computation redundancy, BMP [44] is
a single-stage solution for multi-person mesh regression,
which correlates the depth of a person with the features of
different scales. In ROMP [34], the mesh and location in-
formation can be obtained in combination with the camera
map and SMPL map according to the center map. How-
ever, this method is based on the assumption of weak per-
spective projection and can only reason about the 2D loca-
tions of people in the image plane. It uses an approximation
method to obtain depth ordering. To address this, BEV [35]
uses Bird’s-Eye-View representation to simultaneously rea-
son about body centers in image and in depth. As mentioned
by itself [35], BEV is not trained or designed to deal with
large “crowds” (e.g., 100s of people) with a constant focal
length assumption. In general, all the above methods can
only get relative depths rather than absolute 3D positions,
and they cannot be applied directly to large scenes.

Multi-person Datasets. Multi-person datasets can be
collected in indoor controlled environments or in outdoor
scenes. Datasets such as Panoptic [14] build multi-view
capture systems to obtain relatively high accurate ground-
truths. For outdoor scenes, some datasets enable in-the-wild
3D capture from videos with IMUs [39] or from videos in

which humans have to stay still [21], while other datasets
[26] annotate in-the-wild images in 2D only. Besides,
datasets such as Agora [31] and MuCo-3DHP [28] gener-
ate synthetic images including 3D people and background
images or 3D background scenes. However, all the above
datasets only contain a few people in small scenes.

In this paper, We propose the first work to reconstruct
hundreds of people in a large scene with global consistency
from a single RGB image. We also contribute a bench-
mark dataset, LargeCrowd, for the training and evaluation
of crowd reconstruction in large scenes.

3. Method
Our work aims to recover a globally coherent recon-

struction of crowd from a single large-scene image with
hundreds of persons. Fig. 2 shows the framework of our
method. The highlight of our method is that we design pro-
gressive position transform with our newly defined concept
HVIP to establish a mapping between local image points
and global spatial positions. Our method consists of three
main steps: 1) we adopt an adaptive human-centric crop-
ping scheme (Sec. 3.1) to crop the large-scene image into
patches with hierarchical sizes which ensures that people in
different cropped images have appropriate scales; 2) we es-
timate the camera intrinsics and ground plane equation (Sec.
3.2) of the scene with human pose priors for subsequent in-
ference; 3) taking the cropped images, ground plane and
camera parameters as inputs, we design the Crowd3DNet
(Sec. 3.3) with the progressive position transform based on
HVIP (Sec. 3.3.1) to directly estimate the human meshes in
the large-scene camera coordinate system.

3.1. Adaptive Human-centric Cropping
Instead of using uniform cropping [10, 22] that cannot

deal with people of various image sizes, we propose an
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adaptive human-centric cropping strategy to ensure that the
height ratio between people and the corresponding cropped
image is as consistent as possible among different cropped
images. It is crucial for accurate and reasonable estima-
tion. Inspired by the observation that human heights hier-
archically vary like a pyramid in the vertical direction of
large-scene image, the sizes of the cropped images should
also conform to a similar hierarchical change. Heuristically,
we use a geometric sequence to simulate the hierarchical
change, which is simple but effective. Define the heights of
the persons at the top and the bottom of the large-scene im-
age as ht and hb, respectively. The upper and lower bounds
of the image area to be processed are defined as bu and bl.
Considering non-overlapping square blocks in the vertical
direction of image, we represent the sizes of blocks from top
to bottom as {ci}ni=1. When we set the height of people in a
block to be half of the block size and make {ci}ni=1 comply
with the rule of geometric sequence, we have c1 = 2 × ht,
ci = c1 × qi−1 and

∑n
i=1 ci = bl − bu, where q is the

proportionality coefficient. This cropping problem is for-
mulated as:

argmin
n,q

|cn − 2× hb|. (1)

To ensure each person can appear completely in some
blocks, we further add overlapping blocks between adjacent
rows of cropped images, with the size set to the average of
cropped images in these rows. For the horizontal direction,
we also add overlapping blocks with the same size as those
in the row. The cropping parameters ht, hb, bu, bl can be set
manually or automatically. Details are given in the supple-
mentary document.

3.2. Camera and Ground Plane Estimation

We use the ground plane as a guidance for three rea-
sons: 1) it is a common element in large scenes, especially
surveillance scenarios; 2) it is the main object interacting
with people in the large scenes, reflecting the harmony be-
tween people and the scene; 3) it provides the important
global information to the local cropped images.

To estimate the ground plane equation and the scene-
level camera parameters, the pose prior of people can be
used for calibration. Note that the estimation of ground
plane does not need too many people: more than ten people
are enough as shown in the experiment (Sec. 4.5). Besides,
our method can reconstruct people with various poses, but
at the current stage, we only consider the standing or walk-
ing people who can be regarded as vertical lines on the
ground plane. These people are automatically selected from
the 2D keypoints detection obtained from RMPE [8]. We
use a pinhole camera model with a focal length f (f =
fx = fy) where the principal point (cx, cy) of the camera
is the image center. We represent the ground equation as
NTPg + D = 0, where N = (xn, yn, zn) is the ground

normal with ∥N∥2 = 1, Pg ∈ R3 is the point on the ground
plane and D is a constant term. For these standing peo-
ple, we define the midpoints of their two ankle keypoints as
Pa ∈ R3 and the midpoints of two shoulder keypoints as
Ps ∈ R3 . The projections of Pa and Ps are pa = (ua, va)
and ps = (us, vs), respectively. Following perspective pro-
jection, we have za × p̄a = KPa, where p̄ = (u, v, 1)T

represents the homogeneous coordinates of p = (u, v), K
is the intrinsic matrix of the scene-level camera and za is
the depth of Pa. Similar to [9], we assume that Pa is on the
ground plane, and the line from Pa to Ps is parallel to the
ground normal. We also set a fixed height prior h. There-
fore, we have NTPa +D = 0 resulting in

za = − D

NTK−1p̄a
, (2)

and Ps can be approximated by P ′
s = Pa + h × N . Then,

the projection p̄′s is computed by

z′s × p̄′s = z′s ×

u′
s

v′s
1

 = K(za ×K−1p̄a + h×N). (3)

To solve the camera and ground plane parameters K, N , D,
we adopt the following optimization loss:

Lparam =λangleLcos(p
′
s − pa, ps − pa)

+ λmod
|∥p′s − pa∥2 − ∥ps − pa∥2|

∥ps − pa∥2
,

(4)

where Lcos is the cosine distance, and λangle and λmod are
the weights of the corresponding loss terms. Finally, we
translate 0.1 meters along the ground normal direction to
get the ground plane where people stand on.

3.3. Crowd3DNet

As shown in Fig. 2, Crowd3DNet is a one-stage multi-
head network based on the body-center-guided represen-
tation [34]. Different from previous methods [34, 35, 44],
we define a new concept, Human-scene Virtual Interaction
Point (HVIP), and a progressive position transform (Sec.
3.3.1) to better infer the global 3D positions of people.
Crowd3DNet outputs four maps including a body center
heatmap, a torso center offset map, a 2D HVIP map and
a SMPL parameters map. The body center heatmap pre-
dicts the probability that each location is the center of a
human body. If the body center heatmap gives positive
responses, the network samples relevant parameters from
other maps at the corresponding center locations to obtain
2D torso center offsets, 2D HVIPs and SMPL parameters
of people. With progressive position transform based on
HVIP, Crowd3DNet combines the sampled parameters, the
input of ground plane equation and scene-level camera pa-
rameters to infer accurate 3D positions of people, achieving
multi-person reconstruction in the large-scene camera sys-
tem from the cropped images.
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3.3.1 Progressive Position Transform Based on HVIP

We design the progressive position transform based on
Human-scene Virtual Interaction Point (HVIP) to help in-
fer the accurate 3D locations of persons in the large-scene
camera system. The core idea is to infer the global 3D
position from 2D image pixel points by HVIP and ground
transform to avoid the depth ambiguity of estimating from
a single view directly. We define the HVIP which repre-
sents the projection point of a person’s 3D torso center on
the ground plane in the global camera space, marked as
Pv = (xv, yv, zv). The torso center is a semantic point
on human body, i.e., the center of two shoulder and two hip
joints, represented as Pt = (xt, yt, zt). As show in Fig. 3,
HVIP is a point on the ground plane, which can participate
in ground transform directly to establish the mapping from
image pixels to 3D points on the ground plane. HVIP binds
a person body’s semantic point but it is not on the human
body itself. Therefore, different from previous method [38]
that forces people’s ankle joints to be on the ground, which
limits the posture of people, HVIP is determined by the 3D
space position of people and can deal with people in various
postures. Because the line from Pt to Pv is perpendicular
to the ground, we have Pt = Pv + d × N , where d repre-
sents the distance from Pt to the ground plane. We represent
the projection points of Pv and Pt with pv = (uv, vv) and
pt = (ut, vt), respectively. Refer to Eq. (2) and Eq. (3), we
deduce

Pv = − D

NTK−1p̄v
×K−1p̄v, (5)

d =
f × yv − (vt − cy)× zv
(vt − cy)× zn − f × yn

. (6)

Therefore, when the network predicts pv and pt, Pt can
be uniquely determined. Then, the predicted body mesh
Mcam in the global camera space follows Mcam = M −
Pt−smpl + Pt, where M ∈ R6890×3 and Pt−smpl ∈ R3

are the predicted vertices and torso center in SMPL [25]
space, respectively. Finally, considering the cropping, our
network takes the cropped image as input and predicts the
local pv−local and pt−local on the cropped image. We have
pv = pv−local + tcrop and pt = pt−local + tcrop, where
tcrop represents the pixel coordinates of the upper left cor-
ner of the cropped image. Our progressive position trans-

form with HVIP builds a mapping from some pixel points
on the cropped image to the global 3D location, which can
simply and effectively predict the precise crowd positions.

3.3.2 Representations
Input Parameters. The network cannot perceive the whole
scene information only from the cropped image, hence we
take the estimated ground and camera parameters as extra
inputs. We define the camera input as ( f

Ws
, ĉx−cx

c ,
ĉy−cy

c )
which includes the information of FOV of scene and the
principal point shift, where Ws, (ĉx, ĉy) and c are the width
of large-scene image, the image center of the cropped image
and the size of the cropped image, respectively.
Body Center Heatmap. The body center heatmap Cm

represents the body center likelihood by a Gaussian ker-
nel combining body scales, where Cm ∈ R1×H×W and
H = W = 64. We define the body center the same as [34].
Torso Center Offset Map. Although we can directly de-
fine the body center as the 2D torso center, in practice, the
body center heatmap tends to find a person’s body salient
point, especially when the person is occluded. Therefore,
it is necessary to predict the human torso center separately.
The torso center offset map Tm ∈ R2×H×W contains the
offset between 2D torso center pt−local and body center.
2D HVIP Map. The goal of 2D HVIP map Hm ∈
R1×H×W is to obtain the 2D HVIP projection pv−local on
the cropped image. The line from Pv to Pt is parallel to
the ground normal, following the perspective theory, we
have the projection points pv , pt and the vanishing point
of the ground normal pvp are collinear on image, where
pvp = KN . Therefore, we only need to estimate the 1D
length from pt to pv to obtain 2D HVIPs.
SMPL Map. The SMPL map Sm ∈ R145×H×W includes
the parameters of SMPL [25] of people and a small 3D off-
set δt. The SMPL parametric model can represent various
shape and pose with a small number of parameters. It takes
the pose parameters θ and the shape parameters β as in-
puts and outputs a body mesh M ∈ R6890×3. We adopt the
6D rotation representation [46] and drop the last two hand
joints. Considering the error of the dataset annotations, we
predict an offset δt to further refine the position of people
by Pt = Pv + d×N + δt.

3.3.3 Loss Function
Crowd3DNet is supervised by the weighted sum of multiple
loss terms as follows:

L =λcenterLcenter + λmeshLmesh + λhvipLhvip

+ λtcLtc + λrootLroot + λgnLgn + λoutLout,
(7)

Lmesh =λposeLpose + λshapeLshape + λj2DLj2D

+ λj3DLj3D + λpaj3DLpaj3D + λgmLgm,
(8)

where Lcenter is the 2D focal loss [23], and Lmesh is the
common SMPL related L2 loss including pose parameter
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loss Lpose, shape parameter loss Lshape, 2D joint projection
loss Lj2D, 3D joint loss Lj3D and 3D joint loss after Pro-
crustes alignment Lpaj3D. Lhvip, Ltc and Lroot are all L2

losses, which are used to supervise 2D HVIP projection,
2D torso center and absolute root position, respectively.
Lgn = Lcos(Ps − Pa, N) is a ground normal regularization
term to enhance the interaction consistency between people
and ground plane, where Ps−Pa is the approximated cran-
iocaudal direction of human. We also use an out-of-bound
loss to prevent people from penetrating the ground. More
concretely, we use L1 loss to punish the point with the most
serious penetration into the ground plane, and the out-of-
bound loss is defined as

Lout = |min({v̄i ·G | v̄i ·G < 0})| , (9)

where vi ∈ Mcam and G = [NT , D]T .

3.4. Scene-specific Optimization and Merging

To improve the harmony between reconstructed crowd
and scene, and the generalization to various camera and
ground plane parameters, we add a scene-specific optimiza-
tion for a new scene at test time. Please note that the scene-
specific optimization is performed only once for a camera-
fixed scene, i.e., only one image of the scene is needed.
Specifically, given a new scene at test time, we optimize a
small set of weights in the head layer of Crowd3DNet with
the ground normal and 2D poses estimated in the camera
and ground plane module. The optimization loss Lopt is

Lopt = λj2DLj2D + λgmLgm + λgnLgn + λoutLout. (10)

We finally remove duplicated persons in the overlapped
adjacent patches by merging. The merging operation re-
tains the people farther away from the boundary of the over-
lapped region, which tends to keep more complete people to
avoid truncation.

4. Experiments
4.1. Large-scene Crowd Dataset

To train and evaluate crowd reconstruction in a large
scene, we contribute LargeCrowd, which is a benchmark
dataset with over 100K labeled humans in 733 gigapixel
images (19200 × 6480) of 9 different scenes (5 scenes for
training and 4 scenes for testing). The images are extracted
at a minimum interval of 3s from gigapixel streams which
are captured by a ZoheTec JMC315 array camera. We anno-
tate the bounding boxes, 2D poses and 2D HVIPs of all the
visible people in the images, with the maximum error less
than 5 pixels for 95% labels. We measure 3D landmarks in
a world coordinate system and label the corresponding 2D
points to solve the camera extrinsic matrix for each scene.
Then, we compute the homography matrix for each ground
plane. The homography matrices with labeled ground seg-
mentations and HVIPs provide the true physical positions
of the persons.

Table 1. Comparison on LargeCrowd dataset.

Method PPDS↑ PA-PPDS↑ PCOD↑ OKS↑

SMAP [45]-Large 58.60 60.07 70.14 61.25
CRMH [13]-Large 59.16 64.79 80.25 67.24
BEV [35]-Large 74.21 75.05 87.31 66.15

Crowd3D w/o HVIP 80.45 88.95 92.42 64.17
Crowd3D 81.53 89.36 92.63 71.72

4.2. Implementation Details

We use HRNet-32 [5] as backbone, each head of which
is composed of two ResNet [11] blocks with batch normal-
ization. We resize input images to 512 × 512 with zero
padding to keep the same aspect ratio. We also use the
collision-aware representation of ROMP [34] to push apart
close body centers. Our training process has two stages:
1) start by training the body center heatmap, torso center
offset map and 2D HVIP map for 15 epochs to make sure
that the subsequent learning about body mesh has a suitable
initial position; 2) train the full model with all losses for
70 epochs. We implement Crowd3DNet with PyTorch and
adopt the Adam [16] as optimizer with 5e-5 learning rate.
We train our model on LargeCrowd, Agora [31], MuCo-
3DHP [28] and a single person dataset Human3.6M [12].

4.3. Evaluation Metrics

We use the torso center as the location of people and
evaluate the location distribution of crowd by the distances
between people. We define a metric called pair-wise per-
centual distance similarity (PPDS) as

PPDS =

∑n−1
k=1

∑n
i=k+1 1−min (dik, 1)

C2
n

, (11)

dik =

∣∣∣∣∥Ek − Ei∥ − ∥Gk −Gi∥
∥Gk −Gi∥

∣∣∣∣ , (12)

where n is the number of people in the image, and Ei

and Gi represent the estimated and ground-truth locations
of the i-th person, respectively. To evaluate the relative
crowd distribution, we also define the procrustes-aligned
pair-wise percentual distance similarity (PA-PPDS) which
aligns the reconstructed crowd and the ground truth by Pro-
crustes alignment to exclude the influence of scale and ro-
tation. Due to the lack of 3D pose annotations, we use the
object keypoint similarity (OKS) [24] to evaluate the 2D
poses. The percentage of correct ordinal depth (PCOD) [45]
is used to evaluate the ordinal depth relations between all
pairs of people in the image.

4.4. Comparison
Because no existing methods can directly handle large-

scene images with hundreds of people, we compare our
method with three baselines that are modified from the
state-of-the-art methods: SMAP [45], CRMH [13], and
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Figure 4. Qualitative results on LargeCrowd. The same color or number corresponds to the same person, and gray indicates that the person
is not matched.

BEV [35]. We denote these baselines as SMAP-Large,
CRMH-Large and BEV-Large. Specifically, we first use
our adaptive human-centric cropping to obtain the hierar-
chical cropped images as their inputs and infer the respec-
tive reconstructed results on the cropped images. To obtain

the global reconstruction results for these methods, we pro-
vide the scene-camera intrinsics estimated by our method
to them. For CRMH [13] which predicts human bodies in
bounding boxes by a weak perspective camera model, we
use its transform from bounding box position to depth of
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full image to infer the predicted locations in the global cam-
era space. Both SMAP [45] and BEV [35] infer the loca-
tions through perspective camera models. Following previ-
ous method [1], we scale the depths of their results accord-
ing to the focal length of the scene. Please refer to supple-
mentary material for more details. For fair comparison, we
fine-tune all the compared methods on LargeCrowd. Table
1 gives the quantitative results. Our method outperforms
other approaches in terms of all the metrics. Especially, the
obvious advantage in PPDS, PA-PPDS and PCOD shows
that our method can predict accurate crowd location distri-
bution, including physical distances and relative arrange-
ments. Fig. 4 shows qualitative comparison results. The
complete bird’s-eye view on the right shows that our pre-
dicted crowd distribution is consistent with the input image,
while the compared methods are not consistent. Taking the
persons labeled with numbers for example, only our method
recovers correct relative positions. The reconstructed peo-
ple by the existing methods independently inferred from the
cropped images are inconsistent in the global large-scene
camera space. Besides, although these methods show rea-
sonable projection results, the wrong global positions mean
that their predicted 3D human bodies have wrong scales.
We also provide comparison results on public small-scene
datasets in supplementary material.

4.5. Ablation Study

Impact of the Number of People on the Estimated
Ground and Camera. We explore the impact of the num-
ber of people on estimating ground and camera parame-
ters by controlling the number of people used in optimiza-
tion, and the newly added people are randomly selected.
The metrics include a cosine distance for ground normal
and a root mean square error for focal length. We cali-
brate the camera and obtain the ground-truth focal length
(about 27000). As shown in Fig. 5, more than ten people are
enough for estimating ground normal, which is common in
real-world large-scale scenes, especially surveillance sce-
narios with hundreds of people. The focal length is not sen-
sitive to the number of people.
Progressive Position Transform Based on HVIP. Our pro-
gressive position transform based on HVIP effectively helps
the network to predict accurate global 3D positions of peo-
ple. To verify this, we compare our full model with a vari-
ant of Crowd3DNet, Crowd3D w/o HVIP, which predicts
2D ankle joints and adopts the midpoint of ankle joints to
participate in ground transform without using HVIP. The
result is shown in Table 1. Benefiting from HVIP, which
makes use of the ground plane without restricting human
posture, Crowd3DNet has obvious advantages on OKS.
Adaptive Human-centric Cropping. To verify the adap-
tive human-centric cropping scheme, we denote a metric
called cropping score, which counts the ratio of people with

Figure 5. The impact of the number of people on the camera and
ground plane estimation.

the appropriate scale after cropping. For a person with ap-
propriate scale, we set the ratio of his height to the cor-
responding cropped image within [0.3, 0.8], and he is not
truncated. The comparison result on LargeCrowd between
adaptive human-centric cropping and uniform cropping is
0.923 vs. 0.806, which demonstrates the effectiveness of
our adaptive human-centric cropping scheme.

5. Conclusion and Discussion
Conclusion. We propose Crowd3D to reconstruct hundreds
of people with global consistency from a single RGB large-
scene image. Our method is a joint local and global in-
ference framework which converts the complex crowd lo-
calization into pixel localization by our defined HVIP con-
cept and the parameters of pre-estimated scene-level cam-
era and ground plane. Our adaptive human-centric cropping
scheme and progressive position transform based on HVIP
solve the challenges of large number of people, large vari-
ations in human scale and complex spatial distribution in
large scenes. We also contribute a large-scene dataset called
LargeCrowd to help train and evaluate crowd reconstruc-
tion in large scenes with hundreds of people. Experimental
results demonstrate that our method can achieve globally
consistent crowd reconstruction in large scenes.
Limitations and Future Work. We focus on outdoor
real-world large-scale scenes which contain one or sev-
eral ground planes. Our method may be easily extended
to multi-ground scenes by using the existing image-based
ground plane segmentation methods or manual segmenta-
tion, which is taken as our future work. Although our
Crowd3D shows effective crowd reconstruction in a global
camera space, there are still some cases that we cannot solve
well, e.g., the people in complex ground conditions and the
persons with complicated postures or severe occlusions. In
future work, we will focus on a wider range of large-scale
scenes with complex ground and crowd environments.
Acknowledgments. This work was supported in part by the
National Natural Science Foundation of China (62122058,
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