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Abstract

Point cloud sampling is crucial for efficient large-scale
point cloud analysis, where learning-to-sample methods
have recently received increasing attention from the com-
munity for jointly training with downstream tasks. However,
the above-mentioned task-specific sampling methods usu-
ally fail to explore the geometries of objects in an explicit
manner. In this paper, we introduce a new skeleton-aware
learning-to-sample method by learning object skeletons as
the prior knowledge to preserve the object geometry and
topology information during sampling. Specifically, with-
out labor-intensive annotations per object category, we first
learn category-agnostic object skeletons via the medial axis
transform definition in an unsupervised manner. With ob-
ject skeleton, we then evaluate the histogram of the local
feature size as the prior knowledge to formulate skeleton-
aware sampling from a probabilistic perspective. Addition-
ally, the proposed skeleton-aware sampling pipeline with
the task network is thus end-to-end trainable by explor-
ing the reparameterization trick. Extensive experiments on
three popular downstream tasks, point cloud classification,
retrieval, and reconstruction, demonstrate the effectiveness
of the proposed method for efficient point cloud analysis.

1. Introduction

With the development of 3D sensing technologies, ac-
quiring 3D data becomes more accessible than before, and
there are a growing number of data repositories available
online, such as ModelNet [62], ShapeNet [6], ScanNet [11],
and KITTI [18]. Among popular 3D shape representa-
tions such as point cloud [41], voxel [72], mesh [55], and
multi-view images [51], the point cloud is becoming in-
creasingly popular as the first-hand data captured by Li-
DAR or depth camera (e.g., Kinect), which has been widely
applied in various applications such as scene reconstruc-
tion [19, 26], autonomous driving navigation [35], and vir-
tual reality (VR) [59]. Though a high-resolution point cloud
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Figure 1. (a) Point cloud; (b) Object skeleton; (c) Random sam-
pling; (d) Skeleton-aware sampling. Compared with random sam-
pling, skeleton-aware sampling tends to preserve the object geom-
etry and topology information.

can accurately capture the geometry and topology details of
complex objects, it remains challenging for those devices
with limited computation and storage resources. Therefore,
point cloud sampling, aiming to find a small set of points to
represent the object shape and topology effectively, is usu-
ally indispensable for efficient large-scale point cloud anal-
ysis [24, 29, 32, 33, 41, 42, 57, 61, 71].

Traditional point cloud sampling methods such as ran-
dom sampling (RS) and farthest point sampling (FPS) [15,
42] usually select a subset of points directly using the raw
data information [7, 42, 43, 47, 68]. Specifically, RS is very
efficient but may miss sparse regions, while FPS has better
coverage on the entire point set but suffers from the latency
bottleneck in parallel computation. To improve the per-
formances on downstream tasks, learn-to-sample methods
have been recently proposed to jointly optimize the sam-
pling algorithm and each specific downstream task [10, 14,
20,27,56]. Though considerable progress has been achieved
in downstream tasks such as point cloud classification and
reconstruction, one critical issue remains poorly investi-
gated: as objects usually have complex topology structures
and irregular surface morphology, it is challenging to pre-
serve the object’s geometrical information during the point
cloud sampling process.

Skeleton is an efficient representation to capture the un-
derlying object shape structures, which has been widely
used as the structural abstraction in many visual understand-
ing tasks [31, 37, 53]. Inspired by this, we build our point
cloud sampling strategy on top of the object skeleton to
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preserve different objects’ intrinsic geometrical and topo-
logical natures. Here we illustrate a comparison between
random sampling and skeleton-aware sampling in Fig. 1.
However, the skeleton extraction is usually non-trivial due
to the following reasons [30, 52]: 1) given the diversity of
object topological structures, it is difficult to have a con-
sistent category-agnostic skeleton definition at the semantic
level, where existing datasets usually consider only single
or a few known object categories, such as human skele-
ton; 2) topological methods are usually category-agnostic
by emphasizing geometrical and topological properties of
the shape, such as its connectivity, topology, length, direc-
tion, and width. Nevertheless, they usually require a sub-
stantial amount of time for geometrical processing and are
also notoriously sensitive to surface noise. Therefore, we
resort to the medial axis transform (MAT) definition of ob-
ject skeleton and deep neural networks to learn effective
skeletal representations in an unsupervised manner.

With the learned object skeleton, we then formulate the
skeleton-aware point cloud sampling pipeline from a proba-
bilistic perspective. Specifically, we first calculate the local
feature size (LFS) [2] for each point to measure the object’s
size near a particular point. We then explore the LFS distri-
bution as the prior sampling probability on each point and
use the LFS histogram in practice since per-point LFS is
usually sensitive to point cloud noise. By learning object
skeletons with deep neural networks, we have the skeleton-
aware prior probability for sampling each point. To adapt
skeleton-aware sampling for downstream tasks, we jointly
optimize the posterior sampling probability on each point in
an end-to-end manner. Notably, by exploring the categori-
cal reparameterization with Gumbel-softmax [22], the cate-
gorical sampling based on LFS histogram is differentiable.
Therefore, both sampling and task networks are end-to-end
learnable for task-specific point cloud sampling. In this pa-
per, our main contributions can be summarized as follows:

1. We propose a new skeleton-aware point cloud sam-
pling method to preserve the object geometry and
topology information during sampling.

2. We introduce the category-agnostic skeleton learning
in an unsupervised manner to provide the prior knowl-
edge for skeleton-aware point cloud sampling.

3. We conduct extensive experiments on three important
downstream tasks, point cloud classification, retrieval,
and reconstruction, to evaluate the proposed approach.

2. Related Work
Deep Learning on Point Clouds. Deep neural networks
have been widely used in point cloud analysis, including
point cloud classification/segmentation [29, 33, 41, 42, 57,

63], object detection/tracking [9,48,49,72], point cloud au-
toencoders [1, 39, 65, 67], point cloud generation [1, 50, 58,
64], completion [5,8,21,69] and registration [17,38,45]. A
point cloud is usually not placed on a regular grid, and each
point is independent of others. Meanwhile, the distances
to neighboring points are not always fixed. Therefore, it
is non-trivial to apply deep learning techniques to 3D point
clouds. Specifically, PointNet [41] is the pioneering work in
applying deep neural networks to point sets, which embeds
the input into high dimensional space pointwisely and then
uses a symmetric function to aggregate all point features
in a permutation-invariant manner as the global features.
The MLP block used in PointNet has become a fundamental
component in many point cloud networks to learn pointwise
representations. Recently, convolutional architectures have
been further explored to aggregate local neighborhood hier-
archical information and achieved superior performance on
point cloud analysis [29, 54, 61].

Skeleton-Guided Learning. Object skeleton jointly de-
scribes an object’s geometry, topology, and symmetry prop-
erties in a compact and intuitive way [52], which has ben-
efited various tasks such as shape recognition [3], recon-
struction [23, 53], segmentation [31] and point cloud com-
pletion [37, 70]. For example, [53] proposes a skeleton-
aware deep learning approach to generate the mesh re-
construction of object surface a from single RGB image.
[37] presents a learning method for point cloud completion
via the shape skeleton. Existing methods directly use the
ground truth skeletons as the supervision, which can be cal-
culated by off-line algorithms like DPC [60], Q-MAT [28]
or Coverage Axis [13]. However, as mentioned before,
the skeleton computation is an ill-posed problem, mean-
ing the computation is not steady and unique. Therefore,
deep learning-based skeletal representations have been re-
cently proposed [30, 44]. For example, [30] proposes to
learn skeletal meshes from point clouds. Similarly, we also
learn the skeleton in an unsupervised manner to facilitate
our skeleton-aware sampling strategy.

Point Cloud Sampling. Point cloud sampling or simpli-
fication is essential, since it is always non-trivial to pro-
cess high-resolution dense point clouds. Therefore, vari-
ous methods have been explored to simplify dense point
clouds [4, 7, 25, 34, 40, 43, 47]. For example, [47] first
uses the K-means clustering to select representative points
and the remove redundant points. [4] combines clustering
and coarse-to-fine approaches for fast point cloud simpli-
fication. [34] presents an intrinsic point cloud simplifica-
tion algorithm with density guarantee, which supports effi-
cient uniform and feature-sensitive resampling. The above-
mentioned point cloud simplification algorithms aim to find
a subset of points in terms of geometry or topology, but fails
to consider the downstream tasks during sampling. Sev-
eral recent methods have proposed to learn to sample from
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Figure 2. The main skeleton-aware point cloud sampling framework. Specifically, the whole pipeline consists of two main stages: 1)
we first learn object skeleton in an unsupervised manner; 2) with the estimated skeleton, we evaluate the LFS distribution as the initial
sampling weight to formulate the sampling process from a probabilistic perspective.

dense points [10,14,20,27,36,56,66]. Specifically, [14] and
[27] have recently introduced learning-based task-oriented
sampling strategies for the downstream tasks such as point
cloud classification, retrieval, and reconstruction. [10] fur-
ther proposes a learnable sampling and joint-training strat-
egy to avoid overfitting on a specific task. [36] introduces a
critical point layer to pass on points with the most functional
features to the next layer and adaptively sample points. Dif-
ferently, we not only consider the downstream tasks but also
try to preserve the underlying geometrical and topological
information in point clouds.

3. Method
In this section, we first provide an overview of skeleton-

aware point cloud sampling. We then describe skeleton es-
timation and skeleton-aware probabilistic sampling.

3.1. Overview

The main skeleton-aware point cloud sampling frame-
work is shown in Fig. 2. Given a point cloud P , point cloud
sampling aims to find a subset of points Psub ⊂ P , where
a good sampling strategy is expected that: 1) the selection
is consistent regardless of any permutation of input points
and outliers; 2) the selected points preserve the geometri-
cal and topological information of the original point cloud;
3) the sampling process can be integrated and optimized
jointly with downstream tasks to avoid significant perfor-
mance degradation. Recently, learning-to-sample methods

M

medial axis

maximal ball

𝑝𝑝 𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)

Figure 3. An illustration of the object with its medial axis in 2D
space. Specifically, the medial axis is defined as the set of points
with more than one closest point on the boundary surface, i.e., the
centers of balls maximal inscribed in the object. LFS(p) indicates
the Euclidean distance from the point p to the medial axis.

have achieved remarkable success by selecting task-specific
points with end-to-end learning [10, 14, 20, 27, 36]. How-
ever, these methods neglect the complex object geometrical
and topological structures during learning to sample. There-
fore, we introduce object skeleton to explore the structure
and topology information for point cloud sampling.

Object skeleton can be defined as a thin-centered struc-
ture that jointly describes the geometry and topology. Fol-
lowing the popular medial axis transform (MAT) defini-
tion [52], the object skeleton is characterized by a set of
ball centers with the corresponding radii, where each ball
is maximal inscribed in the object as shown in Fig. 3.
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(a) Airplane (b) Lamp (c) Car (d) Chair

Figure 4. An illustration of the LFS distribution of different ob-
jects: airplane, lamp, car, and chair. Specifically, the object skele-
tons are computed using DPC [60] and the LFS values are normal-
ized for a better comparison across different object categories.

Specifically, the skeleton is a compact shape representa-
tion with geometrical clues such as thickness, angles and
branches aggregating. The structural and geometrical in-
formation significantly benefits complex 3D object anal-
ysis [31, 46]. To equip point cloud sampling with the
skeleton-aware structural prior, we introduce the local fea-
ture size or LFS [2] to measure the size of the object near
a particular point, e.g., the dashed line in Fig. 3. Notably,
given a smooth manifold M and the point p ∈ M, LFS(p)
is defined as the Euclidean distance between p and the me-
dial axis of M via the nearest point. Intuitively, LFS cap-
tures the surface property and how complicated M is lo-
cally distributed [12].

With the object skeleton, we then calculate the LFS his-
togram to form a robust skeleton-aware prior probability
for sampling. Notably, LFS tends to distinguish the object
parts with different geometrical structures, e.g., in Fig. 4,
each LFS bin is closely related to a specific part of the
object. Another important observation is that points with
small LFS values are usually located at the delicate parts
of the object, such as the areas of sharp edges or corners
and these parts are usually informative and critical for ge-
ometrical analysis. For example, given the 2D object in
Fig. 5, we sample points along the boundary with three dif-
ferent sampling strategies, random sampling, high sampling
probability at large LFS area and high sampling probabil-
ity at small LFS area. If we try to reconstruct the object
using sampled points, the last strategy will have the small-
est reconstruction error, i.e., points located on delicate parts
are more important and the small LFS thus indicates im-
portance. Consequently, we use this LFS histogram as the
prior sampling probability. In the following subsection, we
introduce the unsupervised skeleton estimation for efficient
skeleton-aware point cloud sampling.

3.2. Unsupervised Skeleton Estimation

With the medial axis transform or MAT definition, we
then have the category-agnostic object skeleton for point
cloud sampling. However, it is non-trivial to efficiently ap-

(a) (b) (c)

Figure 5. The cyan line is the object’s medial axis, and points
(red) are sampled on the boundary. (a) Random sampling; (b)
High sampling probability at large LFS area; and (c) High sam-
pling probability at small LFS area. Top: LFS histogram and sam-
pling weighting; Middle: 50 points; Bottom: 25 points.

ply the vanilla MAT algorithm due to its instability and al-
gebraic complexity. Therefore, we introduce an unsuper-
vised skeleton estimation method for point cloud sampling
as follows. Given the input point cloud, it then aims to pre-
dict a set of K skeletal spheres, where each skeletal sphere
is defined by the center (i.e., the skeleton point) ci ∈ R3

and the radius rci ∈ R. That is, the skeletal spheres consist
of two components, the coordinates of the sphere centers
C ∈ RK×3 and their radii R ∈ RK . Generally, the 3D
object skeleton contains both 1D curve segments and 2D
surface sheets, which can represent underlying structures of
various shapes. The rationale for representing the skele-
ton with sparse skeletal spheres lies in that the final goal
of skeleton estimation is to calculate the LFS of each point.
Additionally, as mentioned before, we will use the averaged
LFS value in each bin instead of each individual LFS value.
Therefore, dense LFS is not always necessary, which avoid
introducing extra computation and storage cost for predict-
ing dense skeletal points.

Following [30], we introduce our skeleton estimation al-
gorithm as follows. Specifically, [30] uses PointNet++ [42]
as the backbone, and the output of the last set abstraction
layer is a set of points P∗ and the corresponding contextual
features F∗. A skeletal point can always be considered the
local center of a set of surface points. Consequently, the
skeletal points can be generated by the convex combination
of P∗, i.e., C = W⊤

∗ P∗, where W∗ is the predicted weight
matrix. The closest distances from P∗ to the skeletal points
C can be calculated and denoted as D∗, and then the radii
of all skeletal spheres are derived by R = W⊤

∗ D∗. Similar
to [30], we use the same loss function, which consists of
three parts: a sampling loss Ls, a point-to-sphere loss Lp,
and a radius regularizer Lr, as follows:

Ls =
∑
p∈P∗

min
t∈T∗

∥p− t∥2 +
∑
t∈T∗

min
p∈P∗

∥t− p∥2, (1)
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(a) KNN neighbors (b) Delaunay neighbors

Figure 6. KNN neighbors and Delaunay neighbors. KNN always
find the nearest neighbors while the Delaunay neighbors are these
connected by Delaunay edges. Cyan line: object skeleton; Black
points: surface points; Blue points: centroids. Local neighboring
points are connected by blue line segments.

Lp =
∑
p∈P∗

[min
c∈C

∥p− c∥2 − rcmin
p

]

+
∑
c∈C

[min
p∈P∗

∥c− p∥2 − rc],
(2)

Lr = −
∑
c∈C

rc, (3)

where T∗ is a set of points sampled on the surface of each
skeletal sphere and cmin

p is the closest skeletal point to p.
Though the above-mentioned method can generate

skeleton, each skeletal point is weighted by all points in P∗.
However, the skeleton prediction is always based on the lo-
cal region, which means surface points far away from the
skeletal point have no contribution to skeleton estimation.
What’s more, the convex combination requirement in [30]
also poses a challenge to neural network learning since
the network has to predict a large weight matrix. There-
fore, we further propose a local weighting scheme concen-
trating on neighboring points to predict the skeleton. As
shown in Fig. 2, our skeleton estimation network adopts
the DGCNN [57] as the backbone to obtain the point-wise
contextual features. Then we select K points as the cen-
troids to group local points Plocal ∈ RK×L×3 and features
Flocal ∈ RK×L×D, where L is the number of neighbors
of each centroid and D is the dimension of the features.
Based on the grouped features, we will predict the weight
matrix Wlocal ∈ RK×L×1 to derive the skeletal points, that
is C = W⊤

localPlocal. Here, matrix transposition and multi-
plication are conducted on the last two dimensions.

A critical insight here is how to select neighboring points
of each centroid. As presented in [12], the skeletal points
can be estimated by Delaunay edge filtering. Inspired by
this, we use the Delaunay neighbors instead of the KNN
ones to predict the skeletal points. We illustrate the differ-
ence between KNN and Delaunay neighbors in Fig. 6. As
shown, KNN always finds the nearest L neighbors in Eu-
clidean space. However, if we aim to predict the skeletal
points that are always centrally located in the object, it is
beneficial to consider the antipodal surface points. That is

the intuition to use the Delaunay neighbors. To select the
Delaunay neighbors, we first apply the Delaunay triangula-
tion and pick out these local points connected by Delaunay
edges. With the estimated skeleton, we can calculate the
LFS of each point. As LFS is sensitive to point cloud noise,
the best practice in our work is to use the “smoothed” LFS,
i.e., the LFS histogram. Given the LSF histogram, we can
then have the midpoint of each bin h̄1, h̄2, ..., h̄n, where n
is the number of bins. If the LFS of one point is in i-th bin,
the initial sampling weight for the point is e−h̄i/

∑
i e

−h̄i .

3.3. Skeleton-Aware Probabilistic Sampling

As mentioned before, we aim to find a subset of points
that not only take care of the downstream tasks but also en-
code the geometrical structure information of 3D objects.
To derive the sampling formulation, we treat the point sam-
pling operation as drawing samples from the probability
distribution with replacement. Specifically, given the in-
put point cloud P = {p1, p2, ..., pN}, we already have the
prior per-point sampling weight from the first stage, and this
initial weight encapsulates the structural information that
should be considered. After the point cloud goes through
the neural network, we get the point-wise features. There-
fore, the posterior sampling probability over point-wise fea-
tures can be formulated as:

Pθ(p1, ..., pN ) =

N∏
i=1

∑
j

Pθ(pi|bij)PLFS(bij), (4)

where bij denotes the event that pi locates in the j-th bin
of the LFS histogram and the corresponding probability is
PLFS(bij). The subscript θ indicates trainable parameters
of the neural network. During training, we maximize the
posterior over all training point clouds with respect to the
individual point cloud feature and the network parameters.

Consequently, with the input point cloud P , it is
straightforward to consider points as different categories,
and the task that samples a representative subset Psub ⊂ P
then becomes to learn to draw samples from a discrete
distribution, e.g. the categorical distribution. However,
the sampling operation is usually non-differentiable.
Though [14] and [27] are trainable, the sampled point
is less interpretable from the probabilistic perspective,
especially when sampling multiple points.

Categorical Reparameterization. Fortunately, Jang et
al. [22] introduce an elegant reparameterization trick called
Gumbel-softmax to enable discrete stochastic variables
to back-propagate in neural network computation graphs.
Therefore, we utilize the Gumbel-softmax trick to facili-
tate our sampling process. For a categorical distribution
Cat(c1, ..., ck) where k denotes the number of categories
and ci means the probability of category i, the Gumbel-
softmax is designed as a discrete reparameterization trick
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to estimate smooth gradient with a continuous relaxation
for the categorical variable. Given the Gumbel noise g =
(g1, ..., gk) where gi ∼ Gumbel(0, 1) is independent iden-
tically distributed, a soft categorical sample can be drawn
by

y = softmax((log(c) + g)/τ), (5)

where c = (c1, ..., ck) and τ > 0 is the annealing temper-
ature. The equation above is referred as Gumbel-softmax,
and as τ → 0 , y will degenerate into the Gumbel-max form
gradually,

y = onehot(argmax((log(c) + g))), (6)

which is an unbiased sample from Cat(c1, . . . , ck). In this
way, we are able to draw differentiable samples from the
distribution Cat(c1, . . . , ck) in the training phase. In prac-
tice, τ starts at a high value (e.g., 1.0) and anneals to a small
value (e.g., 0.1). In the testing phase, discrete samples can
be drawn with the Gumbel-max trick.

Therefore, we use a hard and discrete selection
by exploring the trainable categorical reparameterization
Gumbel-softmax as follows:

Psub = [Gsτ (Lp(WLFS ⊙Wθ)]
⊤P, (7)

where P ∈ RN×3 is the input point cloud, Psub ∈ RM×3

is the sampled point cloud, and Gsτ (·) operation is the
Gumbel-softmax trick with the annealing temperature τ .
Additionally, WLFS ∈ RN×1 is calculated from the first
stage and Wθ ∈ RN×Dsp is feature matrix from the sam-
pling network, where Dsp indicates the dimension of the
features. Lp(·) : RN×Dsp → RN×M is the linear map-
ping layer. ⊙ indicates the element-wise Hadamard prod-
uct operation. In practice, we start with a large τ such as
τ = 1.0 and gradually decrease it. In the training phase,
it provides smooth gradients using the discrete reparame-
terization trick. With annealing, it degenerates to a hard
selection in the testing phase.

4. Experiments
In this section, we evaluate the proposed skeleton-aware

sampling method by applying it to three downstream tasks:
point cloud classification, retrieval, and reconstruction. All
experiments are conducted on the widely used Model-
Net40 [62] dataset, and we use the official split of 9,843
training and 2,468 testing samples.

4.1. Implementation Details

We implement the proposed method using PyTorch, and
we will give the detailed network architecture in our sup-
plementary materials. Our network training consists of two
stages. We train the skeleton estimation network in the first
stage to get the point cloud skeleton. The number of pre-
dicted skeletal spheres is 128, and the number of bins for

Sampling Ratio Classification Acc(%)

FPS [42] S-NET [14] SN [27] MS [10] Ours

8 70.4 77.5 83.7 88.0 89.1
16 46.3 70.4 82.2 85.5 88.8
32 26.3 60.6 80.1 81.5 87.4
64 13.5 36.1 54.1 61.6 82.9

Table 1. Point cloud classification results on ModelNet40. The
task network is trained on complete data with 1024 points.

the LFS histogram is 6. In the second stage, we train the
sampling network using task losses. In both stages, we use
the Adam optimizer with a learning rate of 0.001.

4.2. Point Cloud Classification

To evaluate the proposed method for point cloud clas-
sification, we employ the full version of PointNet [41] as
the task network. The classification accuracy of PointNet
is trained on the complete data (1024 points per point
cloud without normals) and tested on sampled points of
different sizes. The evaluation metric is overall accuracy
(OA), and for a fair comparison, the upper bound accuracy
trained on 1024 points is 89.5% (the same as MetaSam-
pler [10]). We compare with four methods, FPS [42],
S-NET [14], SampleNet [27] and MetaSampler [10]. We
report the classification results of four different sampling
ratios in Table 1, where the proposed method outperforms
recent state-of-the-art methods. Specifically, the clas-
sification accuracy achieved by the proposed approach
at the sampling ratio of 8 is very close to the upper
bound accuracy (89.1% vs. 89.5%), which shows the
effectiveness of our skeleton-aware strategy. We also
notice that the performance gap between the proposed
method and others is becoming large when increasing the
sampling rate (e.g., at the sampling ratio of 64 with 16
points left). This further demonstrates the superiority of
the proposed method in preserving task-significant features.

Ablation Study on Skeleton-Aware Prior. We show how
the prior sampling weight operates by comparing with two
other commonly used non-learned sampling methods, ran-
dom sampling (RS) and farthest point sampling (FPS). In
Fig. 7, for visualization purposes, we use 10,000 points as
input, and the number of sampled points is 1,024. Gen-
erally, RS randomly picks 1024 points from the original
data, and FPS selects a subset of points far from each other.
Since both two methods do not consider any geometrical
information, these two sampling methods do not change
the LFS distribution. Differently, we propose the skeleton-
aware sampling in this work, which is able to use the LFS
histogram as the initial sampling weight and also learn to
sample for downstream tasks. That is, we will pay more
attention to those points with small LFS values. As shown
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Figure 7. Visualization of different sampling strategies. RS and
FPS do not encode geometrical information to change the LFS
distribution after sampling, while the proposed considers the LFS
histogram to obtain informative skeleton-aware sampling.

in Fig. 7, the RS and FPS keep nearly the same LFS dis-
tribution with the original point cloud after sampling, but
our method encodes the geometrical information and gives
out the different LFS distribution. The final results can also
prove this by our sampled points concentrated on small LFS
areas. In addition, we report the classification results with-
out the LFS weight in Table 2. Here, “GT” means we use
the ground truth skeletons computed by DPC [60] instead of
the estimated ones from the first stage. As shown, using the
skeleton-aware strategy as the initial sampling weight can
always benefit the following learning task. Moreover, our
method achieves comparable results with that using ground
truth skeletons.

Sampling Ratio Classification Acc(%)

GT Ours(w/o) Ours

8 89.1 88.2 89.1
16 88.8 87.4 88.8
32 87.5 85.9 87.4
64 82.8 80.3 82.9

Table 2. Point cloud classification results without the initial LFS
weight. GT indicates using the ground truth skeletons generated
by DPC [60].

Ablation Study on LFS Histogram. The number of bins
reveals the LFS distribution at different levels. Using wider
bins reduces the LFS noise, while using narrower bins
gives better precision to the LFS density estimation. Thus,
varying the bin number within the LFS histogram can be

Sampling Ratio Bins

1 3 6 12 18

8 88.2 88.4 89.1 89.1 89.0
16 87.4 88.0 88.8 88.5 88.8
32 85.9 86.6 87.4 87.2 87.4
64 80.3 81.2 82.9 82.8 82.7

Table 3. Point cloud classification results with different bins. Gen-
erally, we find that six bins already work well in most cases.

beneficial. We report the classification results with different
bins in Table 3. The aggressive setting is to use only one
bin, and this case is equivalent to no initial LSF weight
applied. Generally, we find that six bins are suitable for
most cases.

Ablation Study on Skeletal Spheres. As mentioned be-
fore, the object’s skeleton is represented with a set of skele-
tal spheres. Generally, increasing the number of predicted
skeletal spheres will lead to detailed structures. Thus, it is
beneficial to disclose how this hyper-parameter influences
the following tasks. We show the classification results in Ta-
ble 4 with different numbers of skeletal spheres predicted.
As shown, our method is not sensitive to the parameter and
achieves steady performance.

Sampling Ratio Skeletal Spheres

32 64 128 256

8 87.2 88.4 89.1 89.1
16 85.8 87.1 88.8 88.5
32 84.0 85.1 87.4 87.2
64 79.3 80.5 82.9 82.8

Table 4. Point cloud classification results when using different
numbers of skeletal spheres.

Ablation Study on Annealing Strategy. As we apply the
Gumbel-softmax operation in our method, we gradually an-
neal the temperature τ to facilitate our network training in
the second stage. Thus, it is beneficial to evaluate the clas-
sification performance when adopting different annealing
strategies. During training, we let τ = 1.0 to allow gradi-
ents past the samples and then gradually anneal the temper-
ature until τ = 0.5 (but not completely to 0, as the gradients
would blow up). In the test phase, as τ → 0.0, the softmax
becomes an argmax and the Gumbel-softmax distribution
becomes the categorical distribution. We report the clas-
sification results in Table. 5 with four different annealing
strategies, including constant, step, linear and exponential.
Here, the “constant” means τ keeps being 1.0 without an-
nealing during training.
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Temperature (τ ) Sampling Ratio

8 16 32 64

Constant 87.7 86.4 85.1 81.1
Step 88.8 87.2 86.6 82.1

Linear rectified 89.0 87.9 87.6 82.3
Exponential 89.1 88.8 87.4 82.9

Table 5. Point cloud classification results for using different an-
nealing strategies. Here, the “Constant” row means we do not an-
neal the τ and keep τ = 1.0 during training.

Model Complexity. In Table 6, we report the model com-
plexity of the proposed method. Specifically, the FLOPs
increase with a large number of predicted skeletal spheres.
The number of parameters for the probabilistic sampling
network is 1.24M, and the number of FLOPs is 2.93G at
the sampling ratio of 8.

Model Complexity Params (M) FLOPs (G)

32 1.54 3.43
64 1.54 3.86

128 1.54 4.71
Skeletal
Spheres

256 1.54 6.41

8 1.24 2.93
16 1.23 2.90
32 1.22 2.88

Sampling
Ratio

64 1.21 2.86

Table 6. The model complexity of the proposed skeleton estima-
tion network.

4.3. Point Cloud Retrieval

In this subsection, we perform point cloud retrieval ex-
periments to further demonstrate the effectiveness of the
proposed method for downstream tasks. We follow the
same evaluation setting in [10, 14, 27] to report the perfor-
mance on the point cloud retrieval. Specifically, we take our
method trained with PointNet [41] for classification as the
task network without re-training it. We sample points of dif-
ferent sizes fed into PointNet and use its penultimate layer
as the shape descriptor. Retrieval is done based on the L2
distance on the shape descriptor, and the evaluation metric
is the mean Average Precision (mAP). In Table. 7, we sum-
marize the performances of different methods and observe
that our method consistently outperforms others by a large
margin at different sampling ratios.

4.4. Point Cloud Reconstruction

In this subsection, we perform point cloud reconstruction
experiments to further demonstrate the effectiveness of the

Sampling Ratio Retrieval Performance (mAP)

FPS [42] S-NET [14] SN [27] Ours

8 58.3 60.4 68.8 72.2
16 49.4 59.0 65.2 70.9
32 37.7 59.0 62.5 67.1
64 27.4 54.5 59.5 62.6

Table 7. Point cloud retrieval results on the ModelNet40 dataset.
Specifically, the proposed method achieves superior performance
across different sampling ratios.

proposed method for downstream tasks. We use an autoen-
coder as the task network on the ModelNet40 [62] dataset.
Following [10], we employ the Point Completion Network
(PCN) [69] to minimize the Chamfer distance (CD) [16] be-
tween the input and output points. As demonstrated in Ta-
ble 8, our method outperforms others and the improvement
is consistent across all sampling ratios, further exhibiting
the effectiveness of our method.

Sampling Ratio Reconstruction Performance (CD)

FPS [42] SN [27] MS [10] Ours

8 3.78 3.29 3.05 2.97
16 4.03 3.32 3.15 3.01
32 4.25 3.61 3.37 3.24
64 4.78 4.43 4.31 3.78

Table 8. Point cloud reconstruction results on the ModelNet40
dataset. Specifically, the original size of data is 1024 points.

5. Conclusion

In this paper, we propose a skeleton-aware learning-to-
sample method for point cloud sampling. The skeletal rep-
resentation of the point cloud is learned in an unsuper-
vised manner to avoid label-intensive annotations. Given
the learned skeleton, the skeleton-aware point cloud sam-
pling process is conducted in a probabilistic way according
to the LFS distribution. The proposed skeleton-aware sam-
pling method is end-to-end trainable. To evaluate the pro-
posed method, we perform experiments on several down-
stream point cloud analysis tasks such as classification, re-
trieval, and reconstruction, and the proposed method consis-
tently outperforms traditional and recent learning-to-sample
methods by a large margin.
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