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Abstract

Restoring sharp high frame-rate videos from low frame-
rate blurry videos is a challenging problem. Existing
blurry frame interpolation methods assume a predefined
and known exposure time, which suffer from severe perfor-
mance drop when applied to videos captured in the wild. In
this paper, we study the problem of blurry frame interpola-
tion under blind exposure with the assistance of an event
camera. The high temporal resolution of the event camera
is beneficial to obtain the exposure prior that is lost during
the imaging process. Besides, sharp frames can be restored
using event streams and blurry frames relying on the mu-
tual constraint among them. Therefore, we first propose an
exposure estimation strategy guided by event streams to es-
timate the lost exposure prior, transforming the blind expo-
sure problem well-posed. Second, we propose to model the
mutual constraint with a temporal-exposure control strat-
egy through iterative residual learning. Our blurry frame
interpolation method achieves a distinct performance boost
over existing methods on both synthetic and self-collected
real-world datasets under blind exposure.

1. Introduction
Blurry frame interpolation (BFI) [23, 46, 73] aims to re-

store sharp high frame-rate videos from blurry low frame-
rate videos, which is highly desirable for a wide range of
applications, such as novel view interpolation synthesis [7],
frame rate conversion [32], slow motion [21] and inter-
frame video compression [64]. Compared with the cascade
scheme, i.e., combining frame deblurring [20,25,33,39,40,
51, 53, 59] with frame interpolation [2, 21, 31, 32, 35, 37, 38,
68], the joint method [46,73] is more effective, which over-
comes the error accumulation problem and ambiguity of the
temporal scope [46].

Despite remarkable improvement, prior works [23, 46]
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Figure 1. (a) Non-blind exposure setting and blind exposure set-
ting. (b) Illustrative flow of our solution to blurry frame interpola-
tion under blind exposure.

assume that the exposure time is predefined or known as
the shutter period, which we call non-blind exposure as
shown in the left part of Fig. 1 (a). However, the com-
plicated video capturing in the wild gives rise to variable
and unknown exposure time, which we call blind exposure.
The right part of Fig. 1 (a) presents that the shutter period
is the summation of exposure time and data readout time.
For better imaging, the exposure time is variable to fit the
changing light conditions in the real imaging environments,
especially when the auto-exposure function turns on [73].

Challenges and Motivation. In this paper, we focus on
the problem of BFI under blind exposure, which is prac-
tical yet has barely been investigated explicitly. The first
challenge of this problem can be attributed to the intrinsic
imaging mechanism of frame-based cameras. As can be
seen from Fig. 1 (a), the accumulation operation of frame-
based cameras inevitably results in the loss of motion infor-
mation during the exposure time. Particularly, the variable
exposure time further leads to the temporal jittering, which
degrades the performance of the video enhancement algo-
rithms with constant/predefined exposure time assumption.
Another challenge is that there misses a decent model as the
effective guidance. Conventional frame-based methods for
BFI are vulnerable to the artifacts introduced by flow-based
warping or straight forward prediction.

To overcome the above challenges, we attempt to pro-
vide a new perspective, by resorting to a novel sensor.
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Event cameras [8, 69], also known as neuromorphic sen-
sors, are bio-inspired visual sensors that output events by
detecting spatiotemporal brightness changes. We demon-
strate that event cameras are suitable for BFI under blind
exposure from two points as shown in Fig. 1 (b). First,
the high temporal resolution property of event cameras is
able to compensate for the exposure prior that is lost dur-
ing the imaging process of frame-based cameras. To this
end, we propose an exposure estimation strategy guided by
event streams to estimate the lost exposure prior. In such a
way, the blind exposure problem can be made well-posed,
which eases the difficulty of video restoration. Second, the
event stream is a natural constraint between blurry frames
and sharp frames, providing a physical model for video
restoration. To effectively model this physical correlation,
we propose a temporal-exposure control strategy that takes
timestamps and exposure priors as inputs for interpolation
through iterative residual learning. By exploiting the pro-
posed strategies of exposure estimation and time-exposure
control, we are able to perform arbitrary-time interpolation
from blurry frames under blind exposure. To evaluate our
method in real-world scenarios, we collect a real blurry
video dataset using a DAVIS-346 color event camera, which
includes multiple exposure assumptions. Experimental re-
sults on synthetic and self-collected real datasets demon-
strate our superior performance over existing methods.

The contributions of this paper can be summarized as
follows: 1) we provide a decent solution for BFI under blind
exposure by using event cameras, for the first time; 2) we
propose an exposure estimation strategy guided by event
streams, which makes the blind exposure problem well-
posed; 3) we propose a temporal-exposure control strategy,
which enables BFI at an arbitrary timestamp under blind
exposure; 4) we achieve superior performance over existing
state-of-the-art methods on both synthetic and self-collected
real-world datasets.

2. Related Work
Non-blind Exposure Based Video Restoration. Tempo-
ral information (e.g., frame rate, exposure time) and spa-
tial visual effects (e.g., blurry or sharp) measure the over-
all quality of video data. For acquiring high quality and
high frame-rate video, early works exploited hand-crafted
information such as optical flow [19, 44] and dark channel
priors [40] for interpolation and motion deblurring. Re-
cently, deep learning has dominated the video restoration,
presenting flow-based techniques [26, 29, 36, 68], kernel-
based techniques [35, 37, 38] and phased-based techniques
[31, 32] for interpolating, and recurrent or spatio-temporal
filter adaptive architecture [20, 34, 53, 74, 75] for deblur-
ring. More recently, event cameras have shown potential for
video restoration. These works [13,18,22,27,45,50,52,54–
56,62,63,66,67,70,76] demonstrated impressive results by

designing an effective aggregation module of event streams
and frames. However, previous methods usually ignore the
exposure time setting using the predefined and known expo-
sure time instead, which leads to a severe performance drop
when applied to real-world scenarios.
Blind Exposure Based Video Restoration. In general,
blind exposure is a real-world setting that describes the
complex light conditions in the wild. Intuitively, blind
exposure challenges video restoration in threefold: 1)
sequence-to-sequence (or scene-to-scene) exposure vari-
ance, which means that different video sequences or scenes
have diverse exposure time for adapting to the light-specific
photography; 2) frame-to-frame exposure variance, which
is a more general case especially when the auto-exposure
function of cameras turns on; 3) for most scenes, it is dif-
ficult to obtain the accurate exposure time due to the ex-
istence of data readout time and the open of auto-exposure
function, which means that the unknown exposure is a com-
mon case in real-world capturing. To the best of our knowl-
edge, there are only a few works on this problem. Zhang
et al. [73] proposed a state estimation network to estimate
the start and end key-state frames of a blurry frame. Kim et
al. [52] attempted to correlate frames and event streams for
selecting the events within the exposure time. Despite the
corresponding merits, these methods suffer from respective
compromises: 1) difficulty in estimating the accurate key-
state frames solely from frames due to exposure ambiguity
that will be discussed in Sec. 4.1, 2) loss of a decent physi-
cal model as the effective guidance. In this work, we realize
an event-based unified model in an effective and efficient
way, leveraging the high temporal resolution property and
mutual constraint provided by event cameras.

3. BFI under Non-blind Exposure
Starting with an easy case, we first present the solution

of non-blind exposure problem, where the accurate expo-
sure time is provided. We specifically study the event-based
BFI. As shown in Fig. 1, the shutter period T consists of
exposure time Tex = [ts, te] (ts, te denote the start and end
timestamp of exposure time) and data readout time Tre. Ac-
cording to the EDI model [41], given blurry frame B av-
eraged within the exposure time and corresponding event
stream E[ts,te] triggered during the exposure time, we can
obtain the sharp latent frame L(f) at timestamp f ∈ Tex

L(f) =
B

E(f, Tex)
, (1)

where E(·) is the event double integral

E(f, Tex) =
1

te − ts

∫ te

ts

exp

(
c

∫ t

f

e(s)ds

)
dt, (2)

in which e(t) ≜ p · δ(t− τ) represents the continuous rep-
resentation of events with the Dirac function δ(·), and c de-
notes the contrast threshold. Obviously, we need to com-
pute the event double integral for interpolation. However,

1589



Feature 
Extract Reconstruction

Feature 
Extract

Blurry Feature

Event Feature

Controlled 
Event Feature

Sharp FeatureTimestamp

Exposure 
Prior

𝐸𝐸𝐸𝐸. (4) Exposure 
Estimation
𝐸𝐸𝐸𝐸. (5)

Temporal-exposure 
Control
𝐸𝐸𝐸𝐸. (6)

Modulation
𝐸𝐸𝐸𝐸. (1)

+

Detail 
Restore

Figure 2. The proposed pipeline for BFI under blind exposure. The blurry frame and events are first used to estimate the lost exposure
prior, which is then combined with timestamp for temporal-exposure aware controlling. Eventually, the sharp frame is reconstructed by
event-based modulation followed by a reconstruction decoder and a detail restoration network. Note that if we lower the step of timestamp,
we can obtain extreme interpolation videos (up to 640 FPS from 5 FPS), which is exhibited in the supplement video.

Eq. (2) only holds when timestamp f is within the expo-
sure time. Sometimes the latent sharp frames within the
data readout time are also desirable for the fluent motion.
To overcome this drawback, EVDI [72] is proposed and re-
vises EDI to achieve arbitrary-time interpolation. Specifi-
cally, the event double integral E(f, Tex) at arbitrary times-
tamp f is reformulated as

E(f, Tex) ≈ w1 LDI
(
P
(
E[f,ts]

))
+ w2 LDI

(
P
(
E[f,te]

))
,

(3)
where LDI(·) is a learnable network approximating
E(0, [0, te − ts]), w1 = (f − ts) /(te − ts), w2 =
(te − f) /(te − ts) are weights, and P(·) defines the pre-
processing event operator for time shift/flip and polarity
reversal [72]. Based on Eq. (1) and Eq. (3), EVDI [72]
demonstrates that the sharp frame at an arbitrary times-
tamp can be restored from a blurry frame and corresponding
event streams.

So far, it is possible to interpolate sharp frames from
blurry frames under non-blind exposure using Eq. (1) and
Eq. (3). However, a key factor to guarantee the excellent
performance of EVDI is that the exposure time Tex must be
known exactly. Otherwise, the poor results will be gener-
ated, which can be validated in Sec. 5. In short, EVDI can
not address the blind exposure problem.

4. BFI under Blind Exposure
Recalling the solution to the easy case of non-blind expo-

sure, it suggests that accurate exposure time has a dominant
influence on BFI. However, for the blind exposure prob-
lem, it is difficult to obtain the accurate exposure time. To
make this problem well-posed, a possible solution for rem-
edy is to estimate the lost exposure prior, which is the main
idea of this paper. For blind exposure based BFI, we show
that event cameras play an important role in estimating the

lost exposure prior and modeling the physical correlation of
Eq. (3). Fig. 2 illustrates the overall pipeline, which consists
of three main components: 1) exposure estimation for esti-
mating the lost exposure prior, 2) temporal-exposure con-
trol that takes timestamp and exposure prior as inputs for
temporal-exposure aware controlling, and 3) sharp frame
reconstruction by event-based modulation followed by a re-
construction decoder and a detail restoration network.

4.1. Exposure Estimation Guided by Event Streams

Considering the unavailability of exposure information
in the blind exposure problem, we choose to explicitly esti-
mate it. Analogously, blind SR [3,11,47,49,57,71] faces the
challenge of unknown degradation kernels in the real-world
scenarios. To tackle this, given the input low resolution im-
age, the kernel prior can be approached by explicit estima-
tion [11], internal learning [3,47] or implicit estimation [57]
via contrastive learning [4, 6, 12, 16]. Similar to kernel es-
timation, for estimating the exposure prior, we choose to
estimate exposure duty instead of estimating the absolute
exposure time. The exposure prior equals Tex/(Tex + Tre)
and ranges from 0 to 1. In practice, it is difficult to compute
the exposure prior from the blurry frames directly. Because
the blurry effect of an image is determined by the motion
speed and duration of exposure time, which we call expo-
sure ambiguity. It typically happens that blur due to fast
motion within short time equals to blur due to slow motion
within long time. This reveals that a blurry frame alone is
not enough for estimating exposure prior due to the loss of
motion prior. As a remedy, event cameras are capable of
recording motion prior in microseconds and faster motion
triggers a large number of events, which helps clear expo-
sure ambiguity. In other words, the fact that high (or low)
count number of events suggests fast (or slow) motion reg-
ularizes the exposure estimation.
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Figure 3. Illustration of exposure estimation component.

By exploiting the frame and corresponding events, we
are able to bypass the exposure ambiguity for accurate ex-
posure estimation. However, for some challenging scenar-
ios, such as non-uniform motions, the blurry frame will
present an unbalanced blurry effect, which will degrade the
exposure estimation. In addition, the color information is
trivial for the exposure estimation to some extent. In order
to further improve the estimation process, we opt to provide
an additional blurry prior called the blurry level using dark
channel [17, 40] or Laplacian [1], which can be considered
as a measurement of the degree of blurriness in a frame. The
blurry level can be described as

BlurryLevel = T (Frame), (4)
where T (·) denotes the dark channel function [17] or the
Laplacian function [1].

Fig. 3 illustrates the proposed exposure estimation mod-
ule. We first concatenate the blurry frame and the blurry
level, which are then fed into a frame feature extractor to
output a frame feature. The event stream is accumulated
as an event count map (ECM ) [10] with dimensions of
B × 2×H ×W , where B means the number of time bins
that is fixed as 16 for all the experiments, and 2 denotes
positive and negative polarities. The ECM is then fed to
another feature extractor, generating an event feature. To al-
leviate the modality diversity of frames and events, the two
features are first regularized by group normalization [65],
which are then multiplied together and activated by the Sig-
moid function to produce the event mask for further rectify-
ing the event feature. Finally, we use a convolutional block
followed by average pooling to compress the concatenated
frame and event features to acquire the exposure prior. We
formulate the exposure estimation as

EP = P ([Frame,BlurryLevel], ECM), (5)

where P (·) denotes the whole operation of exposure esti-
mation in Fig. 3, [·] and EP are the concatenation operator
and the exposure prior, respectively.

4.2. Temporal-exposure Control

Through exposure estimation, we are able to estimate
the lost exposure prior, which can transfer blind exposure
well-posed. Now, the remaining question is how to inter-
polate the sharp frames from blurry frames given arbitrary
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Figure 4. Illustration of temporal-exposure control component.

timestamp and the estimated exposure prior. Fortunately,
the Eq. (1) and Eq. (3) provide a physical model for this pur-
pose. However, it is inevitably disturbed by the complicated
noise distribution of real-world events due to the event pre-
processing operation and weighted summation, even though
the learnable network LDI(·) is adopted. In contrast, we
propose a temporal-exposure control framework, which is
an end-to-end fully learnable network without any hand-
crafted operation.

For simplicity, we reformulate the event double integral
in Eq. (3) as

E(t, Tex) = F (t, EP,EventFeat), (6)

where t is the normalized timestamp ranging from 0 to 1,
EP is the exposure prior, and EventFeat denotes the event
feature. Particularly, for acquiring EventFeat, we convert
the event stream to an ECM with dimensions of B × 2 ×
H ×W , which is further embedded in the event feature by
a feature extractor. As can be clearly seen from Eq. (6),
the function F (·) is temporal-exposure aware, which is an
important property for the BFI under blind exposure.

In specific, we attempt to implement Eq. (6) by regard-
ing timestamp and exposure prior as two controlling coeffi-
cients. Recently, a few works [14, 15, 48, 58, 60] have pre-
sented learnable controlling frameworks for image restora-
tion and image synthesis. They demonstrated that the un-
balanced learning in a multiple degradation problem can be
modulated in an interactive manner. Following this way, the
restoration results become controllable. Inspired by these
works, we embrace the success of the control framework
and design our temporal-exposure control strategy, which
is illustrated in Fig. 4. Generally, timestamps and expo-
sure priors are fundamentally different. In contrast to the
single path framework [15] that combines the multiple con-
trolling coefficients as a whole block, we specifically de-
sign a framework consisting of dual paths, each of which
is responsible for controlling one coefficient. The learning
process is unfolded in multiple steps, which enables an it-
erative residual fashion. At the end of each step, the con-
trolled results from the dual paths are fused using a simple
convolutional block. In such a way, we eventually acquire
a controlled event feature that represents the event double
integral in Eq. (6).
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4.3. Sharp Frame Reconstruction

With the event double integral controlled by timestamp
and the estimated exposure prior, we are able to reconstruct
the sharp frame using the event-based modulation in Eq. (1).
In particular, we make some modifications to the physical
model in Eq. (1). To avoid divide-by-zero, we use the mul-
tiplication between event and frame features instead of the
division in Eq. (1). We embrace the kernel prediction net-
work (KPN) [75] to learn a per-pixel kernel for alleviating
the spatially variant noise disturbances. More precisely, as
shown in Fig. 5, the blurry frame feature and controlled
event double integral are jointly utilized to predict a learn-
able kernel. After rectification by the dynamic network, we
proceed to deblur the blurry frame feature by multiplication
with the event double integral in Eq. (6), to acquire the sharp
frame feature added with a learnable bias.

In order to acquire the sharp frame, we choose a two-step
reconstruction process as shown in Fig. 2. The initial sharp
frame Iinit is generated by a reconstruction decoder. Then,
we adopt a U-Net based detail restoration network [5] to
produce the final sharp frame Ifinal. The underlined reason
for our two-step process is that, for some non-event regions
that mean a slight blurriness, the modulation in Eq. (1) will
jumble the sharp feature, which leads to texture loss. To
complement this, the aforementioned detail restoration net-
work is exploited.

4.4. Training Implementation

Loss Functions. Two loss functions are used to reduce
the difference between the estimated sharp frame I and the
ground-truth frame Igt. The first is the Laplacian pyramid
loss [29, 35, 36], which is defined as

Llap (I, Igt) =

S∑
s=1

2s−1 ∥Ls (I)− Ls (Igt)∥1 , (7)

where Ls (I) represents the sth level of the Laplacian pyra-
mid of an image I , and S is set as 5 in our implementation.
We also adopt the census loss Lcen [24, 30] to alleviate the
over-tighten constraint of the L1 loss, which can be formu-
lated as

Lcen(I, Igt) = Dis(Cen(I), Cen(Igt)), (8)
where Dis(·) and Cen(·) denote the soft Hamming distance
and census transform [43], respectively. Then the final loss
can be computed as L = Llap + Lcen.

Stage-wise Training. We adopt a stage-wise training strat-
egy for optimizing our network. In specific, we first train
the exposure estimation module by using the ground-truth
exposure prior. We then train the remaining network (which
means dropping exposure estimation module) by using the
ground-truth exposure prior as the controlling coefficient.
Eventually, we finetune the whole network. To optimize
the exposure estimation module, we use the L2 loss to
measure the difference between the estimated and ground-
truth exposure priors. For constraining the initial and fi-
nal sharp frames, we use loss Lnet = λL(Iinit, Igt) +
µL(Ifinal, Igt), where λ, µ are the weighting factors.

5. Experiments
Dataset Preparation. We comprehensively evaluate our
method on both synthetic and real-world datasets, in both
quantitative and qualitative ways. We make our synthetic
datasets using GoPro [33] and RealSharp-DAVIS [52]. For
GoPro, the events are synthesized from the high frame-rate
video using an event simulator [9]. In contrast, RealSharp-
DAVIS provides real events captured by a DAVIS-346 color
event camera. To mimic the real-world video frame acqui-
sition in Fig. 1, we average consecutive frames within the
exposure time to generate a blurry frame and discard several
frames to simulate the data readout time. We use the pattern
“m-n” for the exposure assumption, meaning that the frame
number of exposure time and that of data readout time are
m and n, respectively. Experimentally, we define that the
exposure time of the training dataset ranges from 9 to 15
with a shutter period of 16, termed TRAIN-MulEX. For the
testing datasets, we define two types: TEST-I, whose expo-
sure time ranges from 9 to 15 with a shutter period of 16 and
is consistent with TRAIN-MulEX; and TEST-II, whose ex-
posure time ranges from 7 to 11 with a shutter period of 12
and is inconsistent with TRAIN-MulEX. We follow the offi-
cial data split for training and testing. Additionally, we also
collect a real blurry video dataset called RealBlur-DAVIS,
which contains real blurry frames and events captured by a
DAVIS-346 color event camera. We set the exposure time
as {30, 60, 90, 120, 150, 180} ms, with a shutter period of
200 ms for generating low frame-rate blurry videos.
Training Details and Evaluation Metrics. We implement
our method using PyTorch [42]. The Adam solver is used
for optimization. To pretrain our exposure estimation mod-
ule and the remaining network, we set the learning rate as
10−4, which is decayed by a factor of 0.5 every 200K it-
erations. For joint finetuning, we set the learning rate as
10−5. Before 10K iterations, the weighting factors are set
as λ = 0.1 and µ = 1, which are then changed to λ = 1 and
µ = 0.1. The batch size is set as 8. For quantitative evalua-
tion, we adopt distortion metrics PSNR (dB) and SSIM [61]
to compute the difference of all interpolated sharp frames
(i.e., m + n) and ground-truth latent sharp frames.
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Figure 6. Visual comparisons of interpolated frames on semi-synthetic dataset RealSharp-DAVIS [52]. The events are captured by a
DAVIS-346 color event camera, and the blurry frame is generated by averaging the consecutive sharp frames. Case 1 is with train-test
consistency and case 2 is with train-test inconsistency. Zoom in for a better visual experience. More results are in the supplement video.

Table 1. Quantitative comparisons with train-test consistency. All interpolated frames (i.e., m + n) are used for evaluation. The four
exposure assumptions are choosen from the training datasets. PSNR (the higher, the better) and SSIM (the higher, the better) are adopted
for the evaluation of reconstruction accuracy. The best results are shown in bold font.

Methods Inputs
GoPro [33] RealSharp-DAVIS [52]

9-7 11-5 13-3 15-1 9-7 11-5 13-3 15-1
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDVR [59]+SloMo [21] RGB 19.73 0.683 20.01 0.693 20.24 0.702 20.53 0.713 20.69 0.777 21.02 0.787 21.32 0.796 21.62 0.805
EDVR [59]+QVI [68] RGB 19.80 0.683 20.10 0.694 20.35 0.703 20.65 0.714 20.94 0.786 21.28 0.797 21.56 0.805 21.81 0.813
EFNet [27]+TLens [55] RGB+Events 22.80 0.820 22.84 0.821 22.87 0.822 22.84 0.822 23.66 0.879 23.77 0.880 23.86 0.881 23.88 0.881
UEVD [52]+TLens [55] RGB+Events 22.78 0.818 22.85 0.820 22.91 0.822 22.92 0.822 23.65 0.879 23.77 0.881 23.85 0.882 23.83 0.882
TNTT [23] RGB 19.44 0.661 19.90 0.679 20.30 0.695 20.69 0.710 20.76 0.780 21.21 0.790 21.59 0.798 21.97 0.808
BIN [46] RGB 16.42 0.562 16.73 0.571 17.05 0.580 17.60 0.589 17.77 0.702 18.12 0.712 18.45 0.722 18.80 0.732
UTI [73] RGB 19.61 0.660 19.63 0.660 19.60 0.659 19.57 0.659 20.05 0.756 20.14 0.760 20.20 0.763 20.25 0.767
EDI [41] Mono+Events 19.29 0.690 19.28 0.695 19.22 0.697 19.13 0.694 19.13 0.722 19.17 0.729 19.17 0.734 19.11 0.736
LEDVDI [28] RGB+Events 27.60 0.903 27.82 0.907 27.83 0.907 27.57 0.904 30.12 0.949 30.82 0.953 31.04 0.954 30.41 0.953
EVDI [72] RGB+Events 25.87 0.871 25.86 0.872 25.62 0.869 25.21 0.862 27.51 0.912 27.37 0.912 26.99 0.909 26.49 0.906
Ours RGB+Events 28.46 0.918 28.55 0.920 28.52 0.920 28.41 0.919 31.89 0.965 32.05 0.966 32.06 0.966 31.65 0.965

Comparison Baselines. For comparison, we employ two
types of baselines. The first is the cascade solution, which
stacks a deblurring model and a sharp frame interpola-
tion model. For frame-based methods, we choose a rep-
resentative deblurring model EDVR [59] with two inter-
polation models SloMo [21] and QVI [68]. For event-
based methods, we choose two state-of-the-art deblurring
models EFNet [27] and UEVD [52] with an interpolation
model TimeLens (TLens) [55]. The other baselines are
the joint solutions, which aim to directly interpolate sharp
frames from blurry frames. The frame-based methods in-
clude TNTT [23], BIN [46] and UTI [73]. The event-based
methods include EDI [41], LEDVDI [28] and EVDI [72].

Results with Train-test Consistency. Instead of specify-
ing the fixed and known exposure time, we assume that
the exposure time is variable and unknown. In specific, the
training and testing datasets contain more than one exposure
time assumption. For fair comparisons, we retrain EFNet,
UEVD, TLens, LEDVDI and EVDI on TRAIN-MulEX. For
frame-based methods, we directly use the pretrained mod-
els provided by the projects. We first demonstrate the results
on TEST-I, which show train-test consistency and are pre-
sented in Tab. 1. According to these results, some important
conclusions can be made.

First, event streams are able to compensate for the lost
motion information, boosting the video restoration by a
large margin. Tab. 1 suggests that for the cascade models,
event-based methods consistently outperform frame-based
methods, achieving a near 3 dB gain in terms of PSNR on
both GoPro and RealSharp-DAVIS. For the joint models,
event-based methods reach the second best performance ex-
cept EDI. Note that EDI is an optimization method, which
shows the limited ability of restoration.

Second, the joint models show more promising results
than the cascade models. This is supported by the fact that
event-based joint models significantly surpass the event-
based cascade models, yielding over a 5 dB average PSNR
boost on both GoPro and RealSharp-DAVIS. Generally, cas-
cade models are sub-optimal due to the error accumulation
of two separated deblurring and interpolation models, re-
sulting in inferior performance. For frame-based methods,
the joint models and cascade models show similar results,
which indicates that the blind exposure setting degenerates
the effectiveness of these methods. Obviously, our method
consistently outperform existing methods whether the cas-
cade or joint models, on both GoPro and RealSharp-DAVIS.
The visual results in the Case 1 of Fig. 6 can also support
the above conclusions.
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Figure 7. Visual comparisons of interpolated frames on the self-collected real-world blurry video dataset RealBlur-DAVIS. In particular,
the blurry frame and events are captured by a DAVIS-346 color event camera. We show two cases here, which are more challenging and
are all train-test inconsistency. Please zoom in for a better visual experience. More results are in the supplement video.

Table 2. Quantitative comparisons with train-test inconsistency.
Compared with Tab. 1, the exposure assumptions here are dif-
ferent from the training datasets. Complexity analysis is also
reported in terms of FLOPs (G) and runtime (ms) that are mea-
sured using an RTX 3090 GPU. The best results are shown in bold
font. The results on GoPro [33] are in the supplement.

Methods
RealSharp-DAVIS [52] FLOPs(G)

/Time(ms)7-5 9-3 11-1
PSNR SSIM PSNR SSIM PSNR SSIM

EDVR [59]+SloMo [21] 21.74 0.799 22.18 0.812 22.60 0.824 119.19/144
EDVR [59]+QVI [68] 21.84 0.805 22.27 0.819 22.64 0.830 134.09/208
EFNet [27]+TLens [55] 24.48 0.888 24.61 0.889 24.66 0.890 117.18/54
UEVD [52]+TLens [55] 24.45 0.888 24.59 0.890 24.63 0.890 216.20/96
TNTT [23] 21.63 0.791 22.22 0.804 22.78 0.816 88.75/34
BIN [46] 18.46 0.713 18.92 0.726 19.41 0.738 467.00/204
UTI [73] 20.53 0.777 20.62 0.779 20.67 0.781 231.66/199
EDI [41] 19.85 0.739 19.92 0.749 19.88 0.754 -/-
LEDVDI [28] 25.48 0.862 25.97 0.870 26.10 0.875 200.25/44
EVDI [72] 28.51 0.925 28.23 0.923 27.59 0.919 29.04/66
Ours 31.27 0.958 31.34 0.959 31.28 0.959 39.10/29

Results with Train-test Inconsistency. We then present
the results on TEST-II in Tab. 2 using the models trained
on TRAIN-MulEX, which are more challenging due to the
severe exposure inconsistency of the training and testing
datasets. In particular, we focus more on the results of LED-
VDI, EVDI and ours, which are the top three most com-
petent methods. Recalling the results of train-test consis-
tency in Tab. 1, LEDVDI presents better results than EVDI,
yielding a near 2 dB PSNR gain on GoPro and a near 3
dB PSNR gain on RealSharp-DAVIS. However, from the
results of train-test inconsistency as shown in Tab. 2, we
can observe a reversed conclusion that EVDI performs fa-
vorably than LEDVDI especially for the case of “7-5” that
shows a large train-test gap. This can be attributed to the
fact that LEDVDI is specifically designed based on the as-
sumption of a known and fixed exposure time. When trans-
ferred to the blind exposure, the problem formulation of
LEDVDI can no longer hold, leading to severe degradation
in reconstruction quality. While EVDI builds a physical
model that supports diverse light conditions, which guar-
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Figure 8. Exposure estimation results on the self-collected
RealBlur-DAVIS dataset using the model trained on synthetic data.
The color solid and color dash denote the estimated and ground-
truth exposure duty, respectively. The pattern “Ams-Bms” in the
legend denotes that the exposure time is A ms with a shutter period
of B ms. The exposure duty can be calculated as A/B × 100% .

antees better results compared with LEDVDI. In contrast,
thanks to the exposure estimation, our method is able to
adaptively estimate the lost exposure prior, thus maintaining
superior performance, which is also validated by the Case 2
of Fig. 6. Being a blind exposure based deblurring method,
UEVD [52] lacks a decent physical model as an effective
guidance, leading to under-performant results. Addition-
ally, our method is efficient with fewer FLOPs and runtime
compared with other competitors as shown in Tab. 2.

Results on Real Blurry Video. We make real-world eval-
uations on the self-collected dataset RealBlur-DAVIS that
contains 20 scenes with diverse light conditions and mo-
tion speeds. Due to the difficulty of capturing ground-truth
sharp frames, we only present the qualitative results. As
shown in Fig. 7, our method achieves the best visual re-
sults in comparison with the competitors. Specifically, more
sharper edges and details are reconstructed by our method.
In contrast, frame-based methods fail to reconstruct a sat-
isfactory sharp frame due to the variable and unknown ex-
posure time in the blind exposure problem. Event-based
methods such as LEDVDI and EVDI, present remarkable
improvements over frame-based methods. However, unde-
sired visually blurry effects also exist, which are introduced
by the inaccurate problem definition.
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Figure 9. Investigation results of exposure estimation (a) and un-
folding step (b) on RealSharp-DAVIS [52].

Exposure Estimation Results on Real Blurry Video.
Furthermore, we conduct exposure estimation experiments
on the self-collected real blurry video dataset RealBlur-
DAVIS. In specific, for each blurry frame, we estimate the
corresponding exposure duty using our exposure estimation
module. Subsequently, we count the distribution of the es-
timated exposure duty. The ground-truth exposure duty is
also illustrated for better comparison. As shown in Fig. 8,
the estimated exposure duty peak is near the ground-truth
exposure duty without any temporal prior provided. Such
results validate the adaptation ability of our method, even
though our model is trained solely on the synthetic datasets.

6. Methodology Analysis

Effectiveness of Exposure Estimation. We propose to es-
timate the exposure prior to make the blind exposure prob-
lem well-posed. To validate the effectiveness of our ex-
posure estimation, we drop this module and manually fix
the value of exposure prior, which is then provided to the
temporal-exposure control. As shown in Fig. 9 (a), when
disabling the exposure estimation, the performance drops
significantly for all the exposure assumptions. We also
present the results using the ground-truth exposure prior,
which is the upper bound. These results concretely demon-
strate the effectiveness of the proposed exposure estimation.
Investigation on Unfolding Step. As mentioned in
Sec. 4.2, in order to learn the temporal-exposure aware
property of event double integral, we unfold our temporal-
exposure control module in multiple steps. For investigat-
ing the influence of the unfolding step, we conduct some
experiments. We illustrate the results in Fig. 9 (b). As can
be observed, the PSNR intensifies as the unfolding step in-
creases. However, SSIM shows a weak drop when the un-
folding step exceeds 8. Moreover, the larger unfolding steps
lead to the larger complexity. Therefore, we choose 8 as our
final unfolding step.
Ablation on Inputs of Exposure Estimation. In order to
estimate a more accurate exposure prior, we make an elab-
orate design by utilizing the mutual correlation of a blurry
frame, corresponding events and the blurry level. To val-
idate the necessity of our design, we conduct an ablation

Table 3. Ablation results of each component on RealSharp-DAVIS
[52]. Abbreviation for some components: “Ev.” (events), “Lap.”
(Laplacian), “DCH.” (dark channel), “mod.” (modulation) and
“rest.” (restoration). The best results are shown in bold font.

exposure estimation dual
path

revised
mod.

detail
rest.

stage-wise
training

metrics
RGB Ev. Lap. DCH. PSNR SSIM

✓ 28.420 0.931
✓ ✓ 29.529 0.943
✓ ✓ ✓ 29.944 0.948
✓ ✓ ✓ 30.185 0.952
✓ ✓ ✓ ✓ 30.675 0.958
✓ ✓ ✓ ✓ ✓ 30.759 0.962
✓ ✓ ✓ ✓ ✓ ✓ 31.378 0.965
✓ ✓ ✓ ✓ ✓ ✓ ✓ 31.913 0.966

study on these inputs. As shown in Tab. 3, given events as
a complement, we can achieve a remarkable performance
boost and a more stable training in comparison to the model
with only RGB. This indicates that the exposure ambigu-
ity can be well regularized by the events, benefiting the
estimation process. Furthermore, the performance can be
boosted when the blurry level is provided. We experimen-
tally choose the Laplacian function [1] for calculating the
blurry level due to its clear performance advantage.
Ablation on Model Architecture. In addition to the ex-
posure estimation, our model is constructed with the pro-
posed temporal-exposure control, revised modulation and
detail restoration. To investigate the influence of these de-
signs, we make additional ablations. For ablating temporal-
exposure control, we replace our dual path design with the
single path [15]. We ablate the KPN based modulation in
Fig. 5 using a simple convolutional network or directly drop
the detail restoration network for the remaining ablations.
Tab. 3 reflects that all these designs further elevate the per-
formance, revealing the potential to facilitate the BFI.
Effectiveness of Stage-wise Training. For training our net-
work, we devise a stage-wise training strategy as demon-
strated in Sec. 4.4. Instead of using the warm-up pretraining
followed by the joint finetuning, we directly adopt an end-
to-end training manner for comparison. As shown in Tab. 3,
our stage-wise training brings a PSNR gain of about 0.5 dB,
which validates its effectiveness.

7. Conclusion
In this paper, we reveal a new challenge of blurry frame

interpolation under blind exposure. To conquer this chal-
lenge, we provide a new perspective, by using an event
camera. We implement an event-based unified model in an
effective and efficient way, by proposing the exposure esti-
mation strategy guided by event streams and the temporal-
exposure control strategy achieved with iterative residual
learning. As validated by comprehensive experiments, we
demonstrate the superior performance in dealing with blind
exposure based blurry frame interpolation in practice.
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