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Figure 1. Given a photo collection of a subject (e.g., Roger Federer) (a), our method PersonNeRF builds a space of the subject spanned
by camera view, body pose, and appearance (b). PersonNeRF enables traversing this space and exploring unobserved combinations of
these attributes (c). Here we render novel views (top row), various body poses (middle row), and different appearances (bottom row) by
traversing the corresponding axes. Among all of the renderings shown here, only the central images of rows correspond to a photo actually
observed in the training data (corresponding input photo marked with a red square). Photo credits to Getty Images.

Abstract

We present PersonNeRF, a method that takes a collec-
tion of photos of a subject (e.g. Roger Federer) captured
across multiple years with arbitrary body poses and ap-
pearances, and enables rendering the subject with arbitrary
novel combinations of viewpoint, body pose, and appear-
ance. PersonNeRF builds a customized neural volumetric
3D model of the subject that is able to render an entire space
spanned by camera viewpoint, body pose, and appearance.
A central challenge in this task is dealing with sparse ob-
servations; a given body pose is likely only observed by
a single viewpoint with a single appearance, and a given

appearance is only observed under a handful of different
body poses. We address this issue by recovering a canon-
ical T-pose neural volumetric representation of the subject
that allows for changing appearance across different ob-
servations, but uses a shared pose-dependent motion field
across all observations. We demonstrate that this approach,
along with regularization of the recovered volumetric ge-
ometry to encourage smoothness, is able to recover a model
that renders compelling images from novel combinations of
viewpoint, pose, and appearance from these challenging un-
structured photo collections, outperforming prior work for
free-viewpoint human rendering.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

We present a method for transforming an unstructured
personal photo collection, containing images spanning mul-
tiple years with different outfits, appearances, and body
poses, into a 3D representation of the subject. Our system,
which we call PersonNeRF, enables us to render the subject
under novel unobserved combinations of camera viewpoint,
body pose, and appearance.

Free-viewpoint rendering from unstructured photos is a
particularly challenging task because a photo collection can
contain images at different times where the subject has dif-
ferent clothing and appearance. Furthermore, we only have
access to a handful of images for each appearance, so it is
unlikely that all regions of the body would be well-observed
for any given appearance. In addition, any given body pose
is likely observed from just a single or very few camera
viewpoints.

We address this challenging scenario of sparse viewpoint
and pose observations with changing appearance by mod-
eling a single canonical-pose neural volumetric represen-
tation that uses a shared motion weight field to describe
how the canonical volume deforms with changes in body
pose, all conditioned on appearance-dependent latent vec-
tors. Our key insight is that although the observed body
poses have different appearances across the photo collec-
tion, they should all be explained by a common motion
model since they all come from the same person. Further-
more, although the appearances of a subject can vary across
the photo collection, they all share common properties such
as symmetry so embedding appearance in a shared latent
space can help the model learn useful priors.

To this end, we build our work on top of Human-
NeRF [46], which is a state-of-the-art free-viewpoint hu-
man rendering approach that requires hundreds of images
of a subject without clothing or appearance changes. Along
with regularization, we extend HumanNeRF to account for
sparse observations as well as enable modeling diverse ap-
pearances. Finally, we build an entire personalized space
spanned by camera view, body pose, and appearance that
allows intuitive exploration of arbitrary novel combinations
of these attributes (as shown in Fig. 1).

2. Related Work

3D reconstruction from unstructured photos Recon-
structing static scenes from unstructured photo collections
is a longstanding research problem in the fields of com-
puter vision and graphics. The seminal Photo Tourism sys-
tem [39] applies large-scale structure-from-motion [36] to
tourist photos of famous sites, enabling interactive naviga-
tion of the 3D scene. Subsequent works leveraged multi-
view stereo [10, 37] to increase the 3D reconstruction qual-
ity [1, 38]. Recently, this problem has been revisited with

neural rendering [19, 30, 40, 43, 44]. In particular, Neu-
ral Radiance Fields (NeRFs) [32] have enabled photoreal-
istic view synthesis results of challenging scenes, including
tourist sites [27] and even city-scale scenes [42]. In addition
to static scenes, unstructured photo collections have been
also used to model human faces [15, 20] or even visualize
scene changes through time [24, 25, 29].

Our method builds on top of NeRF’s neural volumetric
representation of static scenes, and extends it to model dy-
namic human bodies from unstructured photo collections.

3D reconstruction of humans Many early works in
image-based rendering [41] have addressed the task of ren-
dering novel views of human bodies. These techniques
are largely based on view-dependent texture mapping [7],
which reprojects observed images into each novel view-
point using a proxy geometry. The image-based render-
ing community has explored many geometry proxies for
rendering humans, including depth maps [14, 49], visual
hulls [28], and parametric human models [3]. An alterna-
tive technique for 3D reconstruction and rendering of hu-
mans is to use 3D scanning techniques to recover a signed
distance field representation [6,9], and then extract and tex-
ture a polygon mesh [5, 11, 26]. Recently, neural field rep-
resentations [47], have become popular for modeling hu-
mans since they are suited for representing surfaces with
arbitrary topology. Methods have reconstructed neural field
representations of humans from a variety of different inputs,
including 3D scans [4, 23, 31, 35, 45], multi-view RGB ob-
servations [18, 21, 34], RGB-D sequences [8], or monoc-
ular videos [13, 46]. Our work is most closely related to
HumanNeRF [46], which reconstructs a volumetric neural
field from a monocular video of a moving human. We build
upon this representation and extend it to enable reconstruct-
ing a neural volumetric model from unstructured photo col-
lections with diverse poses and appearances.

3. Method

In this section, we first review HumanNeRF [46] (Sec.
3.1), explain how we regularize it to improve reconstruc-
tion from sparse inputs (Sec. 3.2), and then describe how
we model diverse appearances (Sec. 3.3 and 3.4). Finally,
we describe how we build a personalized space to support
intuitive exploration (Sec. 3.5).

3.1. Background

HumanNeRF The recently-introduced HumanNeRF
method represents a moving person as a canonical volume
Fc warped to a body pose p to produce a volume Fo in
observed space:

Fo(x,p) = Fc(T (x,p)), (1)
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Figure 2. Given an input personal photo collection, our method optimizes for a canonical volume that can render diverse appearances.
We represent the canonical volume with an MLP conditioned on an appearance embedding, and use a shared pose-dependent motion field
that maps from observation to canonical space. Additionally, we use a pose correction MLP that takes the estimated body pose and a
pose embedding and outputs appearance-dependent pose residuals. Finally, to improve rendering quality from sparse observations, we
regularize the volumetric representation to have smooth and opaque geometry with Lgeom and Lopacity, which we apply to renderings
from uniformly-sampled unobserved camera viewpoints. Photo credits to Getty Images.

where T : (xo,p) → xc defines a motion field mapping
points from observed space back to canonical space, and
Fc : x → (c, σ) maps position x to color c and density
σ, represented by MLPθc(γ(x)) taking γ(x), a sinusoidal
positional encoding of x, as input, with parameters θc.

The motion field T is further decomposed into skeletal
motion Tskel and non-rigid motion TNR:

T (x,p) = Tskel(x, Ppose(p)) + TNR(xskel,p), (2)

where xskel = Tskel(x, Ppose(p)), TNR represented by
MLPθNR

predicts a non-rigid offset ∆x, and Ppose(p) cor-
rects the body pose p = (J,Ω) with the residual of joint
angles ∆Ω predicted by MLPθpose(Ω) taking joint angles Ω
as input.

The skeletal motion Tskel maps an observed position to
the canonical space, computed as a weighted sum of K mo-
tion bases (Ri, ti):

Tskel(x,p) =

K∑
i=1

wi
o(x)(Rix+ ti), (3)

where (Ri, ti), explicitly computed from p, indicates the
rotation and translation that maps i-th bone from observa-
tion to canonical space and wi

o is the corresponding weight
in observed space.

Each wi
o is approximated using weights wi

c defined in
canonical space:

wi
o(x) =

wi
c(Rix+ ti)∑K

k=1 w
k
c (Rkx+ tk)

. (4)

HumanNeRF stores the set of {wi
c(x)} and a background

class into a single volume grid Wc(x) with K+1 channels,

generated by a convolution network CNNθskel that takes as
input a random (constant) latent code z.

Volume Rendering The observed volume Fo that pro-
duces color c and density σ is rendered using the volume
rendering equation [32]. The expected color C(r) of a ray
r(t) = o+ td with G samples is computed as:

C(r) =

G∑
i=1

(

i−1∏
j=1

(1− αj))αic(xi),

αi = f(xi)(1− exp(−σ(xi)∆ti)),

(5)

where ∆ti = ti+1 − ti is sample interval, and f(x) =∑K
k=1 w

k
c (Rkx+ tk) is foreground likelihood. Finally,

HumanNeRF optimizes for network parameters Θ =
{θc, θskel, θNR, θpose} through MSE loss, LMSE, and LPIPS
[48] loss, LLPIPS, by comparing renderings with inputs.

3.2. Unseen view regularization

Although HumanNeRF [46] works well given monocu-
lar videos, we observe it produces poor results on unstruc-
tured photo collections due to insufficient observations: we
usually only have a handful of photos of a subject’s outfit (<
25 images in our case) while HumanNeRF relies on videos
with a large number of video frames (> 300 frames).

We find HumanNeRF’s struggles in our setting for two
reasons: (1) its non-rigid motion does not generalize well to
novel viewpoints since there are too few pose observations
to sufficiently constrain this pose-dependent effect; (2) the
reconstructed canonical-pose human body geometry is in-
correct due to insufficient viewpoint observations, resulting
in inconsistent appearance in rendered novel viewpoints.
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We address the first limitation by simply removing the
non-rigid component and only use skeletal motion:

T (x,p) = Tskel(x, Ppose(p)) (6)

We address the second limitation by regularizing the
body geometry as rendered in novel views. Specifically, in-
spired by RegNeRF [33], we encourage the geometry to be
smooth by enforcing a depth smoothness loss on rendered
depth maps. We generate novel camera poses by first sam-
pling an angle ϕ from a uniform distribution, ϕ ∼ U(0, 2π),
and rotate the input camera with ϕ around the up vector with
respect to the body center.

We render a pixel’s depth value by calculating the ex-
pected ray termination position, using the same volume ren-
dering weights used to compute the pixel’s color (Eq. 5):

D(r) =

G∑
i=1

(

i−1∏
j=1

(1− αj))αiti. (7)

Likewise, we compute a pixel’s alpha value as:

A(r) =

G∑
i=1

(

i−1∏
j=1

(1− αj))αi. (8)

Our proposed depth smoothness loss is formulated as:

Lgeom =

H−1∑
i,j=1

(A(ri,j)A(ri,j+1)(D(ri,j)−D(ri,j+1)))
2

+(A(ri,j)A(ri+1,j)(D(ri,j)−D(ri+1,j)))
2
.

(9)
where the loss is evaluated over patches of size H , as we use
patch-based ray sampling similar to HumanNeRF. Note that
this loss only penalizes depth discontinuities when the al-
phas of neighboring points are high, which effectively con-
strains the loss to points on the surface.

In practice, we find the depth smoothness term im-
proves geometry and rendering but introduces “haze” arti-
facts around the subject. This problem arises because the
loss encourages small alphas – all zero alpha would in fact
minimize this term – biasing toward transparent geometry.

To address this problem, we use an opacity loss inspired
by Neural Volumes [22] that encourages binary alphas:

Lopacity =
∑
i,j

log(A(ri,j) + ϵ)+

log(1−A(ri,j) + ϵ)− C,

(10)

where C = log(ϵ) + log(1 + ϵ) to ensure non-negativity.

3.3. Appearance modeling

We take as input photos of a subject taken at different
times; these photos are subdivided into appearance sets cor-
responding to photos taken around the same time, i.e., with
the same clothing, etc.

When modeling diverse appearances of a subject, we
want to achieve two goals: (1) appearance consistency:
synthesizing consistent texture in unobserved regions in one
appearance set with the help of the others; (2) pose consis-
tency: a motion model that keeps the rendered pose consis-
tent when switching the subject’s appearance.

A naive approach is to train a separate network on each
appearance set. This approach does not perform well: (1)
the canonical MLP sees very few images in the training,
resulting in artifacts in unobserved regions, thus degrading
appearance consistency (Fig. 3-(a)); (2) the learned motion
weight volume overfits body poses in each (small) appear-
ance set and does not generalize well to the other sets, lead-
ing to poor pose consistency (Fig. 3-(b)).

Instead, we propose to train all photos with differ-
ent appearances into a single network. Specifically, we
enforce the shared canonical appearance MLPθc to be
appearance-dependent but optimize for a single, universal
motion weight volume Wc across all images. The shared,
appearance-conditioned canonical MLP synthesizes consis-
tent textures by generalizing over the full set of images seen
in training, while the universal motion weight volume sig-
nificantly improves pose consistency, as it is trained on the
full set of body poses.

To condition the canonical MLP, inspired by Martin-
Brualla et al. [27], we adopt the approach of Generative
Latent Optimization [2], where each appearance set (with
index i) is bound to a single real-valued appearance embed-
ding vector ℓapp(i) . This vector is concatenated with γ(x) as
input to the canonical MLPθc . As a result, the canonical
volume Fc is appearance-dependent:

Fc(x, ℓ
app
(i) ) = MLPθc(γ(x), ℓ

app
(i) ). (11)

Similarly, we introduce pose embedding vector ℓpose(i) to
condition the pose correction module on each appearance
set and concatenate this vector with Ω as input to MLPθpose .
By doing so, we can differentiate between instances where
two bodies have an identical pose but different clothing.

The appearance embeddings Lapp = {ℓapp(i) }Si=1 as well
as pose embeddings Lpose = {ℓpose(i) }Si=1 are optimized
alongside other network parameters, where S is the num-
ber of appearance sets.

3.4. Optimization

Loss function Our total loss is a combination of the
previously-discussed losses:

L = LLPIPS + λ1LMSE + λ2Lgeom + λ3Lopacity. (12)

Objective Given input images {I1, I2, ..., IN}, ap-
pearance set indices {s1, s2, ..., sN}, body poses
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2009 2012 2013 2014 2015 2016 2017 2018 2019 2020

HumanNeRF [46] 70.64 80.62 75.09 73.00 93.89 83.35 82.19 69.40 67.47 73.01

Our method 59.28 63.92 68.92 63.39 77.36 71.99 71.98 58.38 58.21 61.77

Table 1. Comparison to related work: FID is computed per dataset (per year). Lower FID score is better.

{p1,p2, ...,pN}, and cameras {e1, e2, ..., eN}, we
optimize the objective:

min
Θ

N∑
i=1

L(Γ[Fc(T (x,pi, ℓ
pose
(si)

), ℓapp(si)
), ei], Ii), (13)

where L(·) is the loss function and Γ[·] is a volume
renderer, and we minimize the loss with respect to
all network parameters and embedding vectors Θ =
{θc, θskel, θpose, L

app, Lpose}.
We shoot rays toward both seen and unseen cameras.

LLPIPS and LMSE are computed from the output of seen
cameras, while Lgeom and Lopacity are applied to render-
ings of unseen ones. We use λ1 = 0.2, λ2 = 1.0, and
λ3 = 10.0. Additionally, we stop the gradient flow through
the pose MLP when backpropagating Lgeom, as we found it
can lead to degenerate pose correction.

3.5. Building a personalized space

Once the optimization converges, we use its result to
build a personalized space of the subject spanned by cam-
era view, body pose, and appearance. We allow continuous
variation in viewpoint, but restrict body pose and appear-
ance to those that were observed in the set. Every point in
the space has a corresponding rendering.

In practice, the space is defined as a cube with size 1
where the coordinate value ranges from 0 to 1. Our goal is
to map a point in that cube to the inputs of the network from
which we render the subject.

Specifically, assuming the subject has N body poses and
S appearances, we need to perform mapping on coordinates
(a, b, c) corresponding to position along the axes of appear-
ance, body pose, and camera view, respectively:

(1) Appearances: we map the value a to the index of S
appearances: idxa = ⌊aS⌋, which was used to retrieve the
appearance embedding ℓapp(idxa)

for canonical MLPθc .
(2) Body pose: we map the value b to the index of N

body poses: idxb = ⌊bN⌋. We get the idxb -th body pose
p, corresponding to appearance index sidxb

. We then take
pose embedding ℓpose(sidxb

) as input for pose MLPθpose
.

(3) Camera view: we rotate the camera eidxb
by ϕ =

2πc around up vector with respect to the body center to get
a viewing camera ev.

Finally, we generate a subject rendering corresponding
to the position (a, b, c) by feeding the appearance embed-
ding ℓapp(idxa)

, pose embedding ℓpose(sidxb
), and body pose p to

the network and producing a volume in observation space
rendered by the viewing camera ev.

4. Results
4.1. Dataset

In the main paper, we include results on experiments
using a photo collection of Roger Federer (more subjects
in suppl. material). The Roger Federer dataset contains
10 appearance sets spanning 12 years. We collect photos
by searching for a specific game in a particular year (e.g.,
“2019 Australian Open Final”). We collected 19 to 24 pho-
tos for each game, one per year, and label each set according
to the year (2009, 2012, ..., 2020).

Following [46], we run SPIN [17] to estimate body pose
and camera pose, automatically segment the subject, and
manually correct segmentation errors and 3D body poses
with obvious errors. Additionally, for images where the
subject is occluded by balls or rackets, we label the regions
of occluded objects and omit them during optimization.

4.2. Implementation details

We optimize Eq. 13 using the Adam optimizer [16] with
hyperparameters β1 = 0.9 and β2 = 0.99. We set the learn-
ing rate to 5× 10−4 for θc (the canonical MLP), Lapp, and
Lpose (embedding vectors), and 5× 10−5 for all the others.
We sample 128 points along each ray for rendering. The
size of embedding vectors of ℓapp and ℓpose are 256 and
16. We use patch-based ray sampling with 6 patches with
size 32x32 for seen cameras and 16 patches with size 8x8
for unseen ones. The optimization takes 200K iterations
to converge when training each game with individual net-
works and takes 600K iterations for all games into a single
network. Additionally, we delay pose refinement, geome-
try regularization, and opacity constraint until after 1K, 1K,
and 50K iterations for separate-networks training, and 1K,
10K, and 200K iterations for single-network optimization.

4.3. Comparison

Baseline We compare our method with HumanNeRF
[46], the state-of-the-art free-viewpoint method on monoc-
ular videos. We run experiments on individual datasets
(2009, 2012, ..., 2020). We use the official HumanNeRF im-
plementation with hyperparameters Ts = 2.5K and Te =
5K to accommodate the much smaller input dataset size.
Because HumanNeRF only can optimize for a single ap-
pearance, we do the same in our method. Finally, we train
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Figure 3. (a) Appearance consistency: training all appearance sets with a single network synthesizes higher quality texture for unobserved
regions while training with separate networks produces incompatible colors (green arrow). (b) Pose consistency: In comparison to the
source pose reconstruction (i.e., the combination of pose and appearance is observed in training), separate-networks training produces
unsatisfied results when combining the pose with unseen appearances; the head orientations are different from the input (red arrow) and
the bodies are unnaturally distorted (blue arrow). In contrast, single-network optimization enables consistent output.

HumanNeRF with 200K iterations, the same number used
in our method.

Evaluation protocol As we lack ground truth when
evaluating results rendered from unseen views, we adopt
Frechet inception distance (FID) [12] for quantitative com-
parison. For each input image, we rotate the camera in
10-degree increments around the “up” vector w.r.t the body
center and use these renderings for evaluation.

Results Quantitatively, as shown in Table 1, our method
outperforms HumanNeRF on all datasets by comfortable
margins. The performance gain is particularly significant
when visualizing the results, as shown in Fig. 5. Our
method is able to create consistent geometry, sharp details,
and nice renderings, while HumanNeRF tends to produce
irregular shapes, distorted textures, and noisy images, due
to insufficient inputs.

Figure 4. Ablation study. Removing the non-rigid motion com-
ponent from HumanNeRF significantly improves reconstruction
quality. Adding our geometry loss further refines the shape (green
arrow) but introduces “haze” artifacts (red arrow), which we ad-
dress with the opacity loss.

Ablation studies Fig. 4 shows visually how we outper-
form HumanNeRF by modifying the model and introducing
new losses. By removing non-rigid motion, we get a signifi-
cant quality boost. We further enhance the shape and texture
reconstruction with the geometry and opacity losses. Table
2 quantifies the importance of each element. We get the best
performance when including all the refinements.

FID ↓
HumanNeRF [46] 76.87
Ours − non-rigid 71.75
Ours − non-rigid

+ geometry 76.84

Ours − non-rigid
+ opacity 67.01

Ours + geometry, opacity 65.91
Ours − non-rigid

+ geometry, opacity 65.52

Table 2. Ablation: average FID (lower is better) over 10 datasets.

Appearance and pose consistence Fig. 3 illustrates
the benefit of training all images with a single network. In
contrast to individually trained networks, Fig. 3-(a) illus-
trates it can synthesize compatible textures for unobserved
regions as a result of better generalization, thus maintaining
appearance consistency; Fig. 3-(b) demonstrates the unified
network is able to keep the rendered body pose persistent
across different appearances, thanks to the shared motion
weight volume, hence guaranteeing pose consistency.

Visualization of Federer space In Fig. 6, we visualize
the rebuilt Federer space by keeping the body pose fixed and
rendering dense samples in the camera-appearance plane
starting from one photo. In this case, only a single image
(the one with a red square) is directly observed, showing
how sparse observations we have to rebuild the space. The
renderings are sharp and with few artifacts, and the appear-
ance and pose consistency are well-maintained.

5. Discussion
Limitations Our work builds upon HumanNeRF to ac-

count for sparse inputs and diverse appearance. While it
is effective in this challenging scenario, it inherits some of
HumanNeRF’s limitations such as its reliance on the ini-
tialized poses, its assumption of relatively diffuse lighting,
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Figure 5. Our method produces more convincing renderings with fewer artifacts than those from HumanNeRF [46]. Note how HumanNeRF
produces errors in regions occluded from the input view, while our method produces plausible geometry. Photo credits to Getty Images.

and its requirement for manual human segmentation. Ad-
ditionally, since human body pose estimators typically fail
on images with heavily-occluded bodies, we can only use
input photos that view the full body.

Societal impact In this work, we aim to faithfully pro-
duce images of a person with the capability of just rendering
unseen views and switching appearance within their own set
of appearances. The work does not intend to create motions
and animations that didn’t happen. While we focus in the
paper only on one person and show more examples in the
supplementary material, it is important to validate in future

work that the method scales to a wide range of subjects.
Conclusion We have presented PersonNeRF, allowing

rendering a human subject with arbitrary novel combina-
tions of body pose, camera view, and appearance from an
unstructured photo collection. Our method enables explor-
ing these combinations by traversing a reconstructed space
spanned by these attributes and demonstrates high-quality
and consistent results across novel views and unobserved
appearances.

Acknowledgment This work was funded by the UW
Reality Lab, Meta, Google, OPPO, Amazon, and Cisco.
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Figure 6. The visualization of the (appearance, camera view) plane of the reconstructed Federer space. Note that only the image in the red
square was directly observed in the input data.
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