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Single Input Image Density Field
Self-Supervised Loss based on

Multiple Views

Training Inference

Figure 1. Predicting a Density Field from a Single Image. Through a novel “density field” formulation, which decouples geometry
from color, architectural improvements, and a novel self-supervised training scheme, our method learns to predict a volumetric scene
representation from a single image in challenging conditions. The voxel occupancy view shows that our method predicts accurate density
even in occluded regions, which is not possible in traditional depth prediction. Please check out our project page at fwmb.github.io/bts/.

Abstract

Inferring a meaningful geometric scene representation
from a single image is a fundamental problem in computer
vision. Approaches based on traditional depth map predic-
tion can only reason about areas that are visible in the im-
age. Currently, neural radiance fields (NeRFs) can capture
true 3D including color, but are too complex to be gener-
ated from a single image. As an alternative, we propose to
predict an implicit density field from a single image. It maps
every location in the frustum of the image to volumetric den-
sity. By directly sampling color from the available views
instead of storing color in the density field, our scene rep-
resentation becomes significantly less complex compared to
NeRFs, and a neural network can predict it in a single for-
ward pass. The network is trained through self-supervision
from only video data. Our formulation allows volume ren-
dering to perform both depth prediction and novel view syn-
thesis. Through experiments, we show that our method is
able to predict meaningful geometry for regions that are oc-
cluded in the input image. Additionally, we demonstrate the
potential of our approach on three datasets for depth pre-
diction and novel-view synthesis.

1. Introduction
The ability to infer information about the geometric

structure of a scene from a single image is of high impor-
tance for a wide range of applications from robotics to aug-

mented reality. While traditional computer vision mainly
focused on reconstruction from multiple images, in the deep
learning age the challenge of inferring a 3D scene from
merely a single image has received renewed attention.

Traditionally, this problem has been formulated as the
task of predicting per-pixel depth values (i.e. depth maps).
One of the most influential lines of work showed that it is
possible to train neural networks for accurate single-image
depth prediction in a self-supervised way only from video
sequences. [14–16, 29, 44, 51, 58, 59, 61] Despite these ad-
vances, depth prediction methods are not modeling the true
3D of the scene: they model only a single depth value per
pixel. As a result, it is not directly possible to obtain depth
values from views other than the input view without con-
sidering interpolation and occlusion. Further, the predicted
geometric representation of the scenes does not allow rea-
soning about areas that lie behind another object in the im-
age (e.g. a house behind a tree), inhibiting the applicability
of monocular depth estimation to 3D understanding.

Due to the recent advance of 3D neural fields, the related
task of novel view synthesis has also seen a lot of progress.
Instead of directly reasoning about the scene geometry, the
goal here is to infer a representation that allows rendering
views of the scene from novel viewpoints. While geomet-
ric properties can often be inferred from the representation,
they are usually only a side product and lack visual quality.

Even though neural radiance field [32] based methods
achieve impressive results, they require many training im-
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ages per scene and do not generalize to new scenes. To en-
able generalization, efforts have been made to condition the
neural network on global or local scene features. However,
this has only been shown to work well on simple scenes,
for example, scenes containing an object from a single cat-
egory [43, 57]. Nevertheless, obtaining a neural radiance
field from a single image has not been achieved before.

In this work, we tackle the problem of inferring a ge-
ometric representation from a single image by generaliz-
ing the depth prediction formulation to a continuous den-
sity field. Concretely, our architecture contains an encoder-
decoder network that predicts a dense feature map from the
input image. This feature map locally conditions a density
field inside the camera frustum, which can be evaluated at
any spatial point through a multi-layer perceptron (MLP).
The MLP is fed with the coordinates of the point and the
feature sampled from the predicted feature map by repro-
jecting points into the camera view. To train our method,
we rely on simple image reconstruction losses.

Our method achieves robust generalization and accu-
rate geometry prediction even in very challenging outdoor
scenes through three key novelties:

1. Color sampling. When performing volume render-
ing, we sample color values directly from the input frames
through reprojection instead of using the MLP to predict
color values. We find that only predicting density drasti-
cally reduces the complexity of the function the network
has to learn. Further, it forces the model to adhere to the
multi-view consistency assumption during training, leading
to more accurate geometry predictions.

2. Shifting capacity to the feature extractor. In many
previous works, an encoder extracts image features to con-
dition local appearance, while a high-capacity MLP is ex-
pected to generalize to multiple scenes. However, on com-
plex and diverse datasets, the training signal is too noisy for
the MLP to learn meaningful priors. To enable robust train-
ing, we significantly reduce the capacity of the MLP and
use a more powerful encoder-decoder that can capture the
entire scene in the extracted features. The MLP then only
evaluates those features locally.

3. Behind the Scenes loss formulation. The continuous
nature of density fields and color sampling allow us to re-
construct a novel view from the colors of any frame, not just
the input frame. By applying a reconstruction loss between
two frames that both observe areas occluded in the input
frame, we train our model to predict meaningful geometry
everywhere in the camera frustum, not just the visible areas.

We demonstrate the potential of our new approach in
a number of experiments on different datasets regarding
the aspects of capturing true 3D, depth estimation, and
novel view synthesis. On KITTI [12] and KITTI-360
[26], we show both qualitatively and quantitatively that
our model can indeed capture true 3D, and that our model

achieves state-of-the-art depth estimation accuracy. On
RealEstate10K [45] and KITTI, we achieve competitive
novel view synthesis results, even though our method is
purely geometry-based. Further, we perform thorough ab-
lation studies to highlight the impact of our design choices.

2. Related Work
In the following, we review the most relevant works that

are related to our proposed method.

2.1. Single-Image Depth Prediction

One of the predominant formulations to capture the ge-
ometric structure of a scene from a single image is predict-
ing a per-pixel depth map. Learning-based methods have
proven able to overcome the inherent ambiguities of this
task by correlating contextual cues extracted from the im-
age with certain depth values. One of the most common
ways to train a method for single-image depth prediction
is to immediately regress the per-pixel ground-truth depth
values [10, 27]. Later approaches supplemented the fully-
supervised training with reconstruction losses [21, 56], or
specialise the architecture and loss formulation [1, 11, 22,
24, 25, 54]. To overcome the need for ground-truth depth
annotations, several papers focused on relying exclusively
on reconstruction losses to train prediction networks. Both
temporal video frames [61] and stereo frames [13], as well
as combinations of both [14, 59] can be used as the recon-
struction target. Different follow-up works refine the archi-
tecture and loss [15, 16, 29, 44, 51, 58]. [60] first predicts a
discrete density volume as an intermediate step, from which
depth maps can be rendered from different views. While
they use this density volume for regularization, their focus
is on improving depth prediction and their method does not
demonstrate the ability to learn true 3D.

2.2. Neural Radiance Fields

Many works have investigated alternative approaches to
representing scenes captured from a single or multiple im-
ages, oftentimes with the goal of novel view synthesis. Re-
cently, [32] proposed to represent scenes as neural radiance
fields (NeRFs). In NeRFs, a multi-layer perceptron (MLP)
is optimized per scene to map spatial coordinates to color
(appearance) and density (geometry) values. By evaluat-
ing the optimized MLP along rays and then integrating the
color over the densities, novel views can be rendered un-
der the volume rendering formulation [30]. Training data
consists of a large number of images of the same scene
from different viewpoints with poses computed from tra-
ditional SFM and SLAM methods [4, 40, 41]. The training
goal is to reconstruct these images as accurately as possi-
ble. NeRF’s impressive performance inspired many follow-
up works, which improve different parts of the architec-
ture [2, 3, 7, 18, 20, 35, 38].
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In the traditional NeRF formulation, an entire scene is
captured in a single, large MLP. Thus, the trained net-
work cannot be adapted to different settings or used for
other scenes. Further, the MLP has to have a high ca-
pacity, resulting in slow inference. Several methods pro-
pose to condition such MLPs on feature grids or voxels
[6, 28, 31, 34, 37, 43, 47, 57]. Through this, the MLP needs
to store less information and can be simplified, speeding up
inference [6, 28, 34, 47]. Additionally, this allows for some
generalization to new scenes [33,43,57]. However, general-
ization is mostly limited to a single object category, or sim-
ple synthetic data, where the scenes differ in local details.
In contrast, our proposed method can generalize to highly
complex outdoor scenes. [5] also improves generalization
through depth supervision and improved ray sampling.

2.3. Single Image Novel View Synthesis

While traditional NeRF-based methods achieve impres-
sive performance when provided with enough images per
scene, they do not work with only a single image of a scene
available. In recent years, a number of methods for novel-
view synthesis (NVS) from a single image emerged.

Several methods [8, 9, 49] predict layered depth images
(LDI) [42] for rendering. Later approaches [46,48] directly
produce a multiplane image (MPI) [62]. [23] predicts a gen-
eralized multiplane image. Instead of directly outputting the
discrete layers, the architecture’s decoder receives a vari-
able depth value, for which it outputs the layer. In [52],
a network predicts both a per-pixel depth and feature map,
which are then used in a neural rendering framework. Other
works [53, 55] perform image decomposition, followed by
classical rendering. While these methods achieve impres-
sive NVS results, the quality of predicted geometry usually
falls short. Some methods even predict novel views without
any geometric representation [39, 63].

3. Method
In the following, we describe a neural network architec-

ture that predicts the geometric structure of a scene from a
single image II, as shown in Fig. 2. We first cover how we
represent a scene as a continuous density field, and then pro-
pose a training scheme that allows our architecture to learn
geometry even in occluded areas.

3.1. Notation

Let II ∈ [0, 1]3×H×W = (R3)Ω be the input im-
age, defined on a lattice Ω = {1, . . . ,H} × {1, . . . ,W}.
TI ∈ R4×4 and KI ∈ R3×4 are the corresponding world-
to-camera pose matrix and projection matrix, respectively.
During training, we have available an additional set of N =
{1, 2, . . . , n} frames Ik, k ∈ N with corresponding world-
to-camera pose and projection matrices Tk,Kk, k ∈ N .
When assuming homogeneous coordinates, a point x ∈ R3

in world coordinates can be projected onto the image plane
of frame k with the following operation: πk(x) = KkTkx

3.2. Predicting a Density Field

We represent the geometric structure of a scene as a func-
tion, which maps scene coordinates x to volume density σ.
We term this function ”density field”. Inference happens in
two steps. From the input image II, an encoder-decoder net-
work first predicts a pixel-aligned feature map F ∈ (RC)Ω.
The idea behind this is that every feature fu = F(u) at pixel
location u ∈ Ω captures the distribution of local geometry
along the ray from the camera origin through the pixel at u.
It also means that the density field is designed to lie inside
the camera frustum. For points outside of this frustum, we
extrapolate features from within the frustum.

To obtain a density value at a 3D coordinate x, we first
project x onto the input image u′

I = πI(x) and bilinearly
sample the feature fu′ = F(u′) at that position. This feature
fu′ , along with the positional encoding [32] γ(d) of the dis-
tance d between x and the camera origin, and the positional
encoding γ(u′

I) of the pixel, is then passed to a multi-layer
perceptron (MLP) ϕ. During training, ϕ and F learn to de-
scribe the density of the scene given the input view. We can
interpret the feature representation fu′ as a descriptor of the
density along a ray through the camera center and pixel u′.
In turn, ϕ acts as a decoder, that given fu′ and a distance to
the camera, predicts the density at the 3D location x.

σx = ϕ(fu′
I
, γ(d), γ(u′

I)) (1)

Unlike most current works on neural fields, we do not use ϕ
to also predict color. This drastically reduces the complex-
ity of the distribution along a ray as density distributions
tend to be simple, while color often contains complex high-
frequency components. In our experiments, this makes cap-
turing such a distribution in a single feature, so that it can
be evaluated by an MLP, much more tractable.

3.3. Volume Rendering with Color Sampling

When rendering the scene from a novel viewpoint, we
do not retrieve color from our scene representation directly.
Instead, we sample the color for a point in 3D space from
the available images. Concretely, we first project a point x
into a frame k and then bilinearly sample the color cx,k =
Ik(πk(x)).

By combining σx and cx,k, we can perform volume ren-
dering [19,30] to synthesize novel views. We follow the dis-
cretization strategy of other radiance field-based methods,
e.g. [32]. To obtain the color ĉk for a pixel in a novel view,
we emit a ray from the camera and integrate the color along
the ray over the probability of the ray ending at a certain
distance. To approximate this integral, density and color are
evaluated at S discrete steps xi along the ray. Let δi be the
distance between xi and xi+1, and αi be the probability of
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Figure 2. Overview. a) Our method first predicts a pixel-aligned feature map F, which describes a density field, from the input image II.
For every pixel u′, the feature fu′ implicitly describes the density distribution along the ray from the camera origin through u′. Crucially,
this distribution can model density even in occluded regions (e.g. the house). b) To render novel views, we perform volume rendering. For
any point x, we project x into F and sample fu′ . This feature is combined with positional encoding and fed into an MLP to obtain density
σ. We obtain the color c by projecting x into one of the views, in this case, I1, and directly sampling the image.

a ray ending between xi and xi+1. From the previous αjs,
we can compute the probability Ti that the ray does not ter-
minate before xi, i.e. the probability that xi is not occluded.

αi = exp(1− σxiδi) Ti =

i−1∏
j=1

(1− αj) (2)

ĉk =

S∑
i=1

Tiαicxi,k (3)

Similarly, we can also retrieve the expected ray termination
depth, which corresponds to the depth in a depth map. Let
di be the distance between xi and the ray origin.

d̂ =

S∑
i=1

Tiαidi (4)

This rendering formulation is very flexible. We can sam-
ple the color values from any frame, and, crucially, it can be
a different frame from the input frame. It is even possible
to obtain multiple colors from multiple different frames for
a single ray, which enables reasoning about occluded areas
during training. Note that even though different frames can
be used, the density is always based on features from the
input image and does not change. During inference, color
sampling from different frames is not necessary, everything
can be done based on a single input image.

3.4. Behind the Scenes Loss Formulation

Our training goal is to optimize both the encoder-decoder
network and ϕ to predict a density field only from the input
image, such that it allows the reconstruction of other views.

Similar to radiance fields and self-supervised depth pre-
diction methods, we rely on an image reconstruction loss.
For a single sample, we first compute the feature map F
from II and randomly partition all frames N̂ = {II} ∪ N
into two sets Nloss, Nrender. Note that the input image can
end up in any of the two sets. We reconstruct the frames
in Nloss by sampling colors from Nrender using the camera
poses and the predicted densities. The photometric consis-
tency between the reconstructed frames and the frames in
Nloss serves as supervision for the density field. In practice,
we randomly sample p patches Pi to use patch-wise photo-
metric measurement. For every patch Pi in Nloss, we obtain
a reconstructed patch P̂i,k from every frame k ∈ Nrender.
We aggregate the costs between Pi and every P̂i,k by taking
the per-pixel minimum across the different frames k, simi-
lar to [14]. The intuition behind this is that for every patch,
there is a frame in Nrender, which “sees” the same surface.
Therefore, if the predicted density is correct, then it results
in a very good reconstruction and a low error.

For the final loss formula, we use a combination of L1
and SSIM [50] to compute the photometric discrepancy, as
well as an edge-aware smoothness term. Let d⋆i denote the
inverse, mean-normalized expected ray termination depth
of patch Pi. Both Lph and Leas are computed per (x, y)
element of the patch, thus resulting in 2D loss maps. They
are then aggregated when computing L.

Lph = min
k∈Nrender

(
λL1L1(Pi, P̂i,k) + λSSIMSSIM(Pi, P̂i,k)

)
(5)

Leas = |δxd⋆i | e−|δxPi| + |δyd⋆i | e−|δyPi| (6)
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Figure 3. Loss in Occluded Regions. Patch P on Object 2 is
occluded by Object 1 in the input frame II and I1. In order to
correctly reconstruct P in I2 from I3, the network needs to predict
density for Object 2 behind Object 1.

L =

p∑
i=1

∑
x,y∈P

(Lph + λeasLeas) (x, y) (7)

Learning true 3D. Our loss formula Eq. (7) is the same as
for self-supervised depth prediction methods, like [14]. The
key difference, however, is that depth prediction methods
can only densely reconstruct the input image, for which the
per-pixel depth was predicted.

In contrast, our density field formulation allows us to re-
construct any frame from any other frame. Consider an area
of the scene, which is occluded in the input II, but visible
in two other frames Ik, Ik+1, as depicted in Fig. 3: During
training, we aim to reconstruct this area in Ik. The recon-
struction based on colors sampled from Ik+1 will give a clear
training signal to correctly predict the geometric structure of
this area, even though it is occluded in II. Note, that in order
to learn geometry about occluded areas, we require at least
two additional views besides the input during training, i.e.
to look behind the scenes.

Handling invalid samples. While the frustums of the dif-
ferent views overlap for the most part, there is still a chance
of a ray leaving the frustums, thus sampling invalid features,
or sampling invalid colors. Such invalid rays lead to noise
and instability in the training process. Therefore, we pro-
pose a policy to detect and remove invalid rays. Our in-
tuition is that when the amount of contribution to the fi-
nal aggregated color, that comes from invalidly sampled
colors or features, exceeds a certain threshold τ , the ray
should be discarded. Consider a ray that is evaluated at po-
sitions xi, i ∈ [1, 2, . . . , S] and reconstructed from frames
K: Oi,k, k ∈ {I} ∪ K denotes the indicator function that
xi is outside the camera frustum of frame k. Note that we
always sample features from the input frame. We define
IV(k) to be the function indicating that the rendered color
based on frame k is invalid as:

IV(k) =

S∑
i=1

Tiαi (Oi,I ∨Oi,k) > τ (8)

Only if IV(k) is true for all frames the ray was reconstructed
from, we ignore the ray when computing the loss value. The
reasoning behind this is that non-invalid rays will still lead
to the lowest error. Therefore, the min operation in Eq. (5)
will ignore the invalid rays.

3.5. Implementation Details

We implement our model in PyTorch [36] on a single
Nvidia RTX A40 GPU with 48GB memory. The encoder-
decoder network follows [14] using a ResNet encoder [17]
and predicts feature maps with 64 channels. The MLP ϕ is
made lightweight with only 2 fully connected layers and 64
hidden nodes each. We use a batch size of 16 and sample
32 patches of size 8× 8 from the images for which we want
to compute the reconstruction loss. Every ray is sampled at
64 locations, based on linear spacing in inverse depth. For
more details, e.g. exact network architecture and further hy-
perparameters, please refer to the supplementary material.

4. Experiments

To demonstrate the abilities and advantages of our pro-
posed method, we conduct a wide range of experiments.
First, we demonstrate that our method is uniquely able to
capture a holistic geometry representation of the scene, even
in areas that are occluded in the input image. Additionally,
we also show the effect of different data setups on the pre-
diction quality. Second, we show that our method, even
though depth maps are only a side product of our scene
representation, achieves depth accuracy on par with other
state-of-the-art self-supervised methods, that are specifi-
cally designed for depth prediction. Third, we demonstrate
that, even though our representation is geometry-only, our
method can be used to perform high-quality novel view syn-
thesis from a single image. Finally, we conduct thorough
ablation studies based on occupancy estimation and depth
prediction to justify our design choices.

4.1. Data

For our experiments, we use three different datasets:
KITTI [12], KITTI-360 [26] (autonomous driving), and
RealEstate10K [62] (indoor). RealEstate10K only has
monocular sequences, while KITTI and KITTI-360 pro-
vide stereo. KITTI-360 also contains fisheye camera frames
facing left and right. For monocular data, we use three
timesteps per sample, for stereo sequences (possibly with
fisheye frames), we use two timesteps. The fisheye frames
are offset by one second to increase the overlap of the differ-
ent camera frustums.1 Training is performed for 50 epochs
on KITTI (approx. 125k steps), 25 epochs on KITTI-360
(approx. 150k steps), and 360k iterations on RealEstate10K.

1More details on offsets, pose data, and data splits in the supp. mat.

9080



No S, F

Ours

FullNo F MonoDepth2 MINEInput & Predicted Depth PixelNeRF

Figure 4. Occupancy Estimation. Top-down visualization of predicted occupancy volumes. We show an area of x = [−9m, 9m], z =
[3m, 21m] and y = [0m, 1m] (just above the road). Our method produces an accurate volumetric reconstruction, even for occluded
regions. Training with more views improves the quality. Depth prediction methods like MonoDepth2 [14] do not predict a full 3D volume.
Thus, objects cast “occupancy shadows” behind them. Volumetric methods like PixelNeRF [57] and MINE [23] produce noisy predictions.
Inference is from a single image. Legend: S: Stereo, F: Fisheye, ⋆: official checkpoint, †: trained in same setup as our Full variant.

Method Oacc ↑ IEacc ↑ IErec ↑

Depth† [14] 0.94 n/a n/a
Depth† + 4m [14] 0.91 0.63 0.22
PixelNeRF† [57] 0.92 0.63 0.43

Ours (No S, F) 0.94 0.70 0.06
Ours (No F) 0.94 0.71 0.09
Ours 0.94 0.77 0.43

Table 1. 3D Scene Occupancy Accuracy on KITTI-360. We
evaluate the capability of the model to predict occupancy behind
objects in the image. Ground truth occupancy maps are computed
from 20 consecutive Lidar scans per frame. Depth prediction [14]
naturally has no ability to predict behind occlusions. PixelNeRF
[57] can predict free space in occluded regions, but produces poor
overall geometry. Our method improves when training with more
views. Inference from a single image. Samples are evenly spaced
in a cuboid w = [−4m, 4m], h = [−1m, 0m], d = [3m, 20m]
relative to the camera. Legend: ref. Fig. 4.

We use a resolution of 640 × 192 for KITTI and KITTI-
360, and follow [23] in using a resolution of 384× 256 for
RealEstate10K.

4.2. Capturing true 3D

Evaluation of fully geometric 3D representations like
density fields is difficult. Real-world datasets usually only
provide ground truth data captured from a single viewpoint,
e.g. RGB-D frames and Lidar measurements. Nevertheless,
we aim to evaluate and compare this key advantage of our
method both qualitatively and quantitatively. Through our
proposed training scheme, our networks are able to learn to
also predict meaningful geometry in occluded areas.

To overcome the lack of volumetric ground truth, we ac-

cumulate Lidar scans to build reference occupancy maps
for KITTI-360. Consider a single input frame for which
we want to evaluate an occupancy prediction: As KITTI-
360 is a driving dataset with a forward-moving camera, the
consecutive Lidar scans captured a short time later measure
different areas within the camera frustum. Note that these
Lidar measurements can reach areas that are occluded in the
input image. To determine whether a point is occupied, we
check whether it is in front of the measured surface for any
of the Lidar scans. Intuitively, every Lidar measurement
“carves out” unoccupied areas in 3D space. By accumu-
lating enough Lidar scans, we obtain a reliable occupancy
measurement of the entire camera frustum. Whether a point
is visible in the input frame can be checked using the Lidar
scan corresponding to the input frame.2

For every frame, we sample points in a cuboid area in
the camera frustum and compute the following metrics: 1.
Occupancy accuracy (OAcc), 2. Invisible and empty accu-
racy (IEAcc), and 3. Invisible and empty recall (IERec). OAcc
evaluates the occupancy predictions across the whole scene
volume. IEAcc and IERec specifically evaluate invisible re-
gions, evaluating performance beyond depth prediction.

We train a MonoDepth2 [14] model to serve as a base-
line representing ordinary depth prediction methods. Here,
we consider all points behind the predicted depth to be oc-
cupied. Additionally, we evaluate a version in which we
consider points only up to 4 meters (average car length) be-
hind the predicted depth as occupied. As a second baseline,
we train a PixelNeRF [57] model, one of the most promi-
nent NeRF variants that also has the ability to generalize.

To demonstrate that our loss formulation generates

2More details on the exact procedure and examples in the supp. mat.
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Model Volum. Split Abs Rel ↓ RMSE ↓ α < 1.25 ↑

PixelNeRF [57] ✓

Eigen [10]

0.130 5.134 0.845
EPC++ [29] ✗ 0.128 5.585 0.831
MonoDepth2 [14] ✗ 0.106 4.750 0.874
PackNet [16] ✗ 0.111 4.601 0.878
DepthHint [51] ✗ 0.105 4.627 0.875
FeatDepth [44] ✗ 0.099 4.427 0.889
DevNet [60] (✓) 0.095 4.365 0.895

Ours ✓ 0.102 4.407 0.882

MINE [23] ✓ Tuls. [49] 0.137 6.592 0.839
Ours ✓ 0.132 6.104 0.873

Table 2. Depth Prediction on KITTI. While our goal is full vol-
umetric scene understanding, we compare to state-of-the-art self-
supervised depth estimation method. Our approach achieves com-
petitive performance while clearly improving over other volumet-
ric approaches like PixelNeRF [57] and MINE [23]. DevNet [60]
performs better, but does not show any results of their volume.

strong training signals for occluded regions, given the right
data, we train our model in several different data configura-
tions. By removing the fisheye, respectively fisheye, and
stereo frames, the training signal for occluded areas be-
comes much weaker. Tab. 1 reports the obtained results.

The depth prediction baselines achieve a strong over-
all accuracy, but are, by design, not able to predict mean-
ingful free space in occluded areas. PixelNeRF can pre-
dict free space in occluded areas but produces poor over-
all geometry. Our model achieves strong overall accuracy,
while it is also able to recover the geometry of the occluded
parts of the scene. Importantly, our model becomes bet-
ter at predicting free space in occluded areas when train-
ing with more views, naturally providing a better training
signal for occluded areas. To qualitatively visualize these
results we sample the camera frustum in horizontal slices
from the center of the image downwards and aggregate the
density in Fig. 4. This shows the layout of the scene, sim-
ilar to the birds-eye perspective but for density. In the Full
variant, the strong signal lets our model learn sharp object
boundaries, as can be seen for several cars in the examples.
For depth prediction, all objects cast occupancy shadows
along the viewing direction. PixelNeRF predicts a volu-
metric representation with free space in occluded regions.
However, the results are noisy and the geometry is inaccu-
rate. MINE [23] also specializes in predicting a volumetric
representation from a single image. However, it does not
produce meaningful density prediction behind objects. In-
stead, similar to depth prediction, all objects cast occupancy
shadows along the viewing direction.

4.3. Depth Prediction

While our method does not predict depth maps directly,
they can be synthesized as a side product from our repre-
sentation through the expected ray termination depth d̂. To
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Figure 5. Depth Prediction on KITTI. Expected ray termination
depth compared with depth prediction results of other state-of-the-
art methods [14, 23, 44, 57, 60] on both the Eigen [10] and [49]
split. Our predictions are very detailed and sharp, and capture the
structure of the scene, even when trained on a smaller split such
as Tulsiani. Visualizations for DevNet and FeatDepth are taken
from [60]. Legend: ref. Fig. 4.

demonstrate that our predicted representation achieves high
accuracy, we train our model on KITTI sequences and com-
pare to both self-supervised depth prediction methods and
volume reconstruction methods.

As can be seen in Tab. 2 and Fig. 5, our method performs
on par with the current state-of-the-art methods for self-
supervised depth prediction. Our synthesized depth maps
capture finer details and contain fewer artifacts, as often
seen with depth maps obtained from neural radiance field-
based methods, like PixelNeRF [57] and MINE [23]. Over-
all, we achieve competitive performance, even though depth
prediction is not the main objective of our approach.

4.4. Novel View Synthesis from a Single Image

As we obtain a volumetric representation of a scene from
a single image, we are able to synthesize images from novel
viewpoints by sampling color from the input image. Thus,
we also evaluate novel view synthesis from a single image.
To demonstrate the variability of our approach, we train two
models, one on RealEstate10K [62], and one on the KITTI
(Tulsiani split [49]). As Tab. 4 shows, our method achieves
strong performance on both datasets, despite the fact, that
we only predict geometry and obtain color by sampling the
input image. Our results are comparable with many recent
methods, that were specifically designed for this task, and of
which some even use sparse depth supervision during train-
ing for RealEstate10K (MPI, MINE). MINE [23] achieves
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Configuration Occupancy Estimation Depth Prediction

Method Features MLP Predicts Oacc ↑ IEacc ↑ IErec ↑ Abs Rel ↓ RMSE ↓ α < 1.25 ↑

Baselines

Enc Big σ + c 0.92 0.63 0.41 0.130 5.134 0.845
E+D Big σ + c 0.93 0.62 0.43 0.149 5.441 0.800
Enc Small σ + c 0.92 0.69 0.31 0.112 4.897 0.860
E+D Small σ + c 0.93 0.69 0.15 0.109 4.758 0.864
Enc Small σ 0.94 0.77 0.39 0.105 4.590 0.872

Ours E+D Small σ 0.94 0.77 0.43 0.102 4.407 0.882

Ours Keep invalid rays 0.94 0.77 0.41 0.108 4.493 0.875

Table 3. Ablation Studies. Evaluation of variants with different contributions (predicting only density σ and sampling color, shifting
capacity from the MLP to the feature extractor, discarding invalid rays) turned on / off. Occupancy estimation results on KITTI-360
and depth prediction results on KITTI. The variant using only an encoder, big MLP, and color prediction corresponds exactly to the
PixelNeRF [57] architecture, but with our training scheme. Legend: Enc Encoder, E+D Encoder-Decoder, σ density, c color.

KITTI RealEstate10K

Model LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑

SynSin [52] n/a n/a n/a 1.180 0.740 22.3
Tulsiani [49] n/a 0.572 16.5 0.176 0.785 23.5
MPI [48] n/a 0.733 19.5 n/a n/a n/a
MINE [23] 0.112 0.828 21.9 0.156 0.822 24.5
PixelNeRF [57] 0.175 0.761 20.1 n/a n/a n/a

Ours 0.144 0.764 20.1 0.194 0.755 24.0

Table 4. Novel View Synthesis. We test the NVS ability on
KITTI (Tulsiani split [49]) and RealEstate10K (MINE split [23],
target frame randomly sampled within 30 frames). Even though
our method does not predict color, we still achieve strong results.

slightly better accuracy. This can be attributed to them be-
ing able to predict color and thereby circumventing issues
arising from imperfect geometry.

4.5. Ablation Studies

Our architectural design choices are critically important
for the strong performance of our method. To quantify the
impact of the different contributions, we conduct ablation
studies based on occupancy estimation on KITTI-360 and
depth prediction on KITTI. PixelNeRF [57] can be seen as a
basis, which we modify step-by-step to reach our proposed
model. Namely, we 1. shift capacity from the MLP to the
feature extractor and 2. introduce color sampling as an al-
ternative to predicting the color alongside density.

As Tab. 3 shows, reducing the MLP capacity and us-
ing a more powerful encoder-decoder rather than encoder
as a feature extractor allows the model to learn significantly
more precise overall geometry. We conjecture that a power-
ful feature extractor is more suited to generalize to unseen
scenes based on a single input image than a high-capacity
MLP. The feature extractor outputs a geometry representa-
tion (i.e. the feature map) of the full scene in a single for-
ward pass. During training, it receives gradient information
from all points sampled in the camera frustum, conditioned
on the input image. Thus, potential noise from small visual
details gets averaged out. On the other hand, the MLP out-

puts density based on the coordinates and is conditioned on
a local feature. The coordinates and feature are different for
every sampled point, rather than per scene. Consequently,
noise will affect the MLP training significantly more.

Introducing the sampling of color from the input frames
further boosts accuracy, especially for occupancy estima-
tion in occluded areas. We hypothesize that only predicting
density simplifies the training task significantly. Crucially,
the network does not have to hallucinate colors in occluded
regions. Additionally, color sampling enforces strict multi-
view consistency. The network cannot compensate for im-
perfect geometry by predicting the correct color.

Finally, the results show that our policy of discarding in-
valid rays during training improves accuracy by reducing
noise in the training signal. This mainly affects the border
regions of the frustum.

5. Conclusion
In this paper, we introduced a new approach to learn-

ing to estimate the 3D geometric structure of a scene from
a single image. Our method predicts a continuous density
field, which can be evaluated at any point in the camera
frustum. The key contributions in our paper are 1. color
sampling, 2. architecture improvements, and 3. a new self-
supervised loss formulation. This enables us to train a net-
work on large in-the-wild datasets with challenging scenes,
such as KITTI, KITTI-360, and RealEstate10K. We show
that our method is able to capture geometry in occluded ar-
eas. We evaluate depth maps synthesized from the predicted
representation achieving comparable results to state-of-the-
art methods. Despite only predicting geometry, our model
even achieves high accuracy for novel view synthesis from
a single image. Finally, we justify all of our design choices
through detailed ablation studies.
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