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Abstract

In this paper, we examine gradients of logits of image
classification CNNs by input pixel values. We observe that
these fluctuate considerably with training randomness, such
as the random initialization of the networks. We extend
our study to gradients of intermediate layers, obtained via
GradCAM, as well as popular network saliency estimators
such as DeepLIFT, SHAP, LIME, Integrated Gradients, and
SmoothGrad. While empirical noise levels vary, qualita-
tively different attributions to image features are still pos-
sible with all of these, which comes with implications for
interpreting such attributions, in particular when seeking
data-driven explanations of the phenomenon generating the
data. Finally, we demonstrate that the observed artefacts
can be removed by marginalization over the initialization
distribution by simple stochastic integration.

1. Introduction
Deep neural networks have revolutionized pattern recogni-
tion, detecting complex structures at accuracies unheard of
just a few years back. Unsurprisingly, the newly gained
ability to model complex phenomena comes at costs in
terms of interpretability — it is usually not obvious how
nonlinear, multi-layer networks reach their conclusions.
Correspondingly, a lot of research has focused on devel-
oping interpretation methods for explaining how deep net-
works make decisions [11], and this often takes the form
of attributing decisions to subsets of the data. In the case
of image classification, this usually leads to saliency maps
highlighting the image area containing decisive informa-
tion [25, 26, 29, 30, 32, 35].

Strong classifiers trained from example data combined
with suitable attribution methods have opened up a new ap-
proach to empirical research: understanding phenomena by
interpreting learned models [9]. We often know of poste-
rior outcomes (for example, tumor growth rates or treata-
bility with certain medication) but do not understand how
these are related to prior data (say, findings from histolog-

Figure 1. Logit-by-image gradients (ResNet18 on ”ImageNette”
[12]). First column: reference image; second column: mean over
50 models, column 3-4: single models with random initialization.

ical tissue samples). If we are able to train a strong classi-
fier that can predict posterior outcomes from prior data, an
attribution method could potentially explain which aspects
of the data predict this outcome (for example, which visual
features in the histology indicate a negative or positive ther-
apeutic prognosis [38]), thereby providing new insight into
the phenomenon at hand.

For these kinds of research approaches, the classifier
might only be an auxiliary tool: In terms of attribution, we
are not primarily interested in explaining how the classifier
reaches its decision (which, of course, would be highly rel-
evant when studying potential data leakage or the fairness
of decisions [4, 27]), but our actual goal is to accurately
characterize which features in the data are related to the
phenomenon to be explained. Ultimately, it is of course im-
possible to be sure whether an ad-hoc classifier (even with

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1766



great statistical performance and hypothetical perfect attri-
bution) actually does exploit all relevant information (and
only this), but we would of course in such cases make an
effort to avoid wrong or incomplete information or misattri-
butions that we are already aware of.

The main insight and contribution of this paper is to point
out one such source of fluctuations in attributions, the im-
pact of which, to the best of our knowledge, has not yet been
documented in literature so far: In nonlinear CNNs, image
gradients of network outputs can contain significant train-
ing noise, i.e., noise from (in particular) random weight ini-
tialization and stochastic batch selection (Fig. 1). The level
of such noise, i.e., information unrelated to the data itself,
often exceeds the level of the attribution signal, and vari-
ability includes coarse-scale variations that could suggest
qualitatively varying attributions. Surprisingly, this still
holds (and can even be worse) for more sophisticated at-
tribution techniques, including popular approaches such as
SHAP [20], LIME [25], DeepLIFT [29], or Integrated Gra-
dients [35]. Even class activation maps (including top- and
intermediate-level GradCAMs [26], the former to a lesser
degree) can be affected by noise to an extent that could plau-
sibly alter coarse-scale attribution.

Exploring the phenomenon further, we observe that gra-
dient noise grows with depth, is rather weak in simple con-
vex architectures (linear softmax regression), and damp-
ened stochastically for wide networks (as suggested by the
known convexity in the infinite-width limit [7, 19]). This
indicates that nonlinearity and nonconvexity might play an
important role in causing the problem by either amplifying
numerical noise or convergence to different local minima.

We further show that training noise artifacts can be re-
moved by marginalization [37], which in practice can be im-
plemented with simple stochastic integration: By averaging
the results of tens of independently initialized and trained
networks, signal-to-noise-levels can be brought to accept-
able levels. We also demonstrate that the same stochastic
ensembling technique also improves the visual quality of
feature visualization by optimization [23]. While marginal-
ization incurs non-trivial additional computational efforts,
it can remove a significant source of uncertainty when ex-
plaining how data features are related to outcomes in previ-
ously unknown ways.

2. Related Work
In this section, we discuss related work on attribution meth-
ods as well as findings on shortcomings and methods for
quality improvements.

Gradient-based interpretation: Taking the gradient of
the output of a deep neural network w.r.t. input data con-
verts a complex nonlinear model into a local linear approx-
imation, which can be interpreted as a saliency map [30].
Closely related representations are obtained by deconvolu-

tion [40] and “guided” gradients [34], which both only dif-
fer in the masking of negative intermediate values during
backpropagation.

Noise artifacts: Image gradients are typically very
noisy. SmoothGrad [24, 32], performs local stochastic in-
tegration in image space to denoise saliency maps. While
very effective in reducing apparent noise, our experiments
show that SmoothGrad results can still suffer from train-
ing variability. Suppressing negative [34] or small activa-
tions [14] also leads to denoising. However, even just sup-
pressing negative contributions in “guided” gradient meth-
ods appears to already decouple results from training [1].
Computing gradients only at higher level network layers
(via GradCAM [26]) also improves the quality of saliency
maps (typically at lower resolutions due to pooling layers)
but our experiments show that training noise still causes
fluctuations.

Non-local perturbation: A fundamental problem of
gradients is that they only reflect local changes and thus
plausibly overlook relevant features that are already present
in full saturation. This can be addressed by non-local com-
parisons against baselines, for example by integration [35]
or feature selection [29]. High-level GradCAM also appears
to avoid the issue by examining how complex composite
features are classified by the final layer(s) [13]. Linear
models can still suffer from complexity issues [18]. Care-
ful feature selection (by fitting regularized surrogate mod-
els in “LIME” [25] or selecting the most informative sets
in “SHAP” [20]) can also improve results substantially —
LIME and SHAP are currently the most popular attribution
packages on GitHub [2].

Alternative attribution methods: Model interpretation
techniques include withholding data, for example by blank
overlays [40], blurring [8], or maximizing contributions
from a suitable background distribution [13]. Self-attention
can also be used as an information source [3, 6]. Our paper
focuses on gradient and perturbation methods. An initial
experiment following the method of [13] indicates less sus-
ceptibility to training noise, but a comprehensive study of
alternative approaches is left for future work.

Limitations of attribution: Explaining phenomena by
data-driven learning remains challenging [9, 22]. Aside
from the central conceptual problem of linking classifica-
tion and attribution to the structure of data, the statistical
nature of available classifiers has been identified as a prob-
lem, too: Recent work [21, 22] cautions the reader to treat
statistically initialized and trained models as random vari-
ables and to subject them to marginalization, as we do in
this paper. While these papers describe general strategies
for error analysis, we specifically study variability in pop-
ular gradient and perturbation-based methods and find evi-
dence of significant issues with initialization noise that were
not previously reported (and which one might not intuitively
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expect to encounter in approaches such as SmoothGrad,
GradCAM, integrated gradients, or SHAP/LIME that visu-
ally clean up saliency maps).

Further limitations of saliency maps have also been dis-
covered by Adebayo et al. [1], who show that many pop-
ular methods can become independent of higher layer pa-
rameters and invariant under random relabeling of data. As
a result, they primarily yield information on prior knowl-
edge encoded in the architecture, rather than offering data-
specific insights. In their study, simple gradients and Grad-
CAM show the best behavior. Our findings are orthogonal:
training noise affects all of the tested methods. Saliency
maps are also sensitive to adversarial perturbations, where
only minimal augmentations are required to create arbitrary
results [5].

3. Method
3.1. Saliency Maps

We begin by giving some formal definitions. We denote
the input of the network as vector x ∈ Rd. A neural net-
work computes a map fθ : Rd → RC , where C is the
dimension of the output; in our experiments we consider
only classification, so C also denotes the number of classes.
θ ∈ Rdp describes the parameters of the network. In practi-
cal settings, the values for θ are the result of a training pro-
cess. Formally, the result is dependent on the initialization
weights θ0, the data set D, and training hyperparameters,
such as optimizer, batchsize, learning rate, as well as the
random choices such as the ordering of batches. We use T
to denote the function that transforms initial into final pa-
rameters using data D, θ = T (θ0, D). In this view, both
θ0 and T are random variables, drawn from distributions
θ0 ∼ p(θ0), T ∼ p(T ).

We now define a saliency method as a deterministic map

Sfθ : Rd → Rd, (1)

that takes an input vector x and returns an output of the
same shape, with the goal of “explaining” the behavior of
fθ by highlighting salient entries in x [1]. Taking the influ-
ence of training and initialization into account, the salience
mapping becomes

Sfθ (x) = SfT (θ0,D)
(x), (2)

i.e., fθ is completely determined given training randomness
T ∼ p(T ), initialization θ0 ∼ p(θ0), and dataset D.

In this formulation, the result of the saliency map de-
pends not only on the input x, but on the training scheme,
initialization, dataset and architecture encoded in f (Fig. 2).

Most of these values describe unwanted influences on
the saliency map if we are looking for patterns belonging to
the problem that is modeled. In other words, the choice of
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Figure 2. Typical Influences on Saliency Methods. When such
methods are used to explain phenomena, the influence of factors
extrinsic to the problem (here in blue) should be minimized. While
biases in a dataset can be seen as extrinsic factors, the underlying
true distribution is intrinsic to the phenomenon.

architecture or initialization does not influence the underly-
ing patterns of the phenomenon of interest, but it still has
an influence on the saliency map. In the following, we will
call factors that can influence the saliency map but are in-
dependent of the phenomenon extrinsic, while factors that
belong solely to the phenomenon are intrinsic. Depending
on the specific problem, even the dataset and its sampling
can contain extrinsic information we might want to remove;
however, in this paper, we treat D as fixed, non-random in-
formation.

Note that saliency methods that are implementation ag-
nostic – or even treat the model as a blackbox – can
still be influenced by such extrinsic factors, as architecture
and initialization fundamentally influence which function is
learned by the model. In general, we want to minimize the
effect of these extrinsic factors in order to produce a clear
signal of the phenomenon of interest.

3.2. Bayesian Marginalization

In a Bayesian view, irrelevant random factors can be re-
moved by marginalization [9, 37], i.e., integrating the joint
distribution over all variants. For noise introduced from ini-
tialization and random training choices, this is simple. We
just estimate the mean saliency map as

µ = Eθ0∼p(θ0),T∼p(T )

[
S(fT (θ0), x)

]
(3)

Note that µ ∈ Rd is again vector in input shape (i.e., in our
experiments, an image). In order to quantify the level of
noise, we also compute the pixel-wise variance σ ∈ Rd of
the saliency maps:

σ2 = Eθ0∼p(θ0),T∼p(T )

[
S(fT (θ0), x)− µ

]2
(4)

Remark: An ideal approach should also remove the ex-
trinsic influence of the choice of architecture. However,
marginalization over architecture is difficult conceptually
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(what would be an appropriate general set of architectures?)
and computationally. For this reason, we restrict ourselves
to removing initialization noise (and gain the insight that
this already has substantial influence). Our computation
does, however, capture training randomness due to stochas-
tic batch gradient descent. In our discussion, we will sim-
ply subsume this under the notion of “initialization noise”
for simplicity. Hyperparameters are also still treated as non-
random constants.

3.3. Stochastic Integration

The integrals in Eq. (3) and Eq. (4) are extremely high-
dimensional; thus we resort to stochastic integration. As
most saliency methods provide bounded results (either im-
plicitly or explicitly) the per-pixel variance is also bounded
[28]. Thus, the central limit theorem applies and we obtain
stochastic convergence of the mean (Eq. (3)) at a rate of
O(1/

√
n) when averaging over n independently initialized

and trained models, as visually confirmed by experiments
(Fig. 3). More efficient integration methods [37] exist, but
we restrict our experiments to simple averaging to demon-
strate the effect while minimizing potential error sources.

3.4. Signal to Noise Ratio

In order to quantify variability due to initialization noise,
we compute a signal to noise ratio (SNR), given by.

SNR =
||µ||2
||σ||2

, (5)

where ||x||2 :=
√∑

i x
2
i denotes the standard ℓ2-norm for

vectors, i.e., we divide the norm of µ by the total standard
deviation over all pixels, respectively.

The SNR does not reveal the structure of the noise; a
high SNR could hypothetically also be caused by high-
frequency fluctuations that do not lead to qualitatively dif-
ferent judgments. Therefore, we verifying our results using
a second metric, the established Structural Similarity Index
(SSI) [36], which yields qualitatively similar results. Since
there is (still) no generic metric to capture human percep-
tion comprehensively [41], we also perform a visual exam-
ination to confirm the potential for variability in structure.

4. Experiments

We now assess the influence of training randomness on
saliency maps experimentally. All experiments have been
conducted on a single commodity PC equipped with an
AMD Ryzen 9 5900X CPU, 128GB of RAM and an Nvidia
GeForce RTX 3090 GPU. Deep networks have been imple-
mented using PyTorch.

As data sets, we consider CIFAR10 [16], FashionMNIST
[39] and “Imagenette” [12] at a resolution of 128 × 128.

Figure 3. Examples for experimentally calculated approximations
for µ and σ (gradient maps from Fig. 1). Increasing the number of
models quickly leads to a stable estimate for both.

The latter is a subset of 10 distinct classes from the Ima-
genet dataset. As our experiments require a large number
of models to be trained, we chose Imagenette as a compro-
mise between complexity and computational cost.

In terms of networks, we restrict ourselves to VGG19
[31], ResNet18 and ResNet101 [10] as popular feed-forward
CNN architectures, as well as a simple custom CNN-design
for testing the influence of width and depth. In all three
cases, we use the standard implementation from torchvi-
sion; for VGG19 on Imagenette we replace ReLUs with
softplus to examine the effect of alternative activation func-
tions.

4.1. Analysis of Input Gradients

First, we investigate the behavior of input gradients, i.e.,

Sfθ (x) := ∇xfθ(x) (6)

As function f , we consider the full network up to the logits;
we omit the final softmax-layer, as it can be easily seen that
the input gradients vanish at class-label output probabili-
ties of zero or one, which renders the probability gradients
even less suitable for saliency detection. To prove this, let
σ(z)i = ezi/

∑
j ezj be the softmax-output with zi := fθ(x)i

denoting the i-th logit. Following the chain rule, the input
gradient for the class-label output is then given by

∇xσ(z)i = ∇x

[
ezi∑
j e

zj

]
(7)

= σ(z)i

[
∇xzi −

∑
j

σ(z)j∇xzj

]
. (8)
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Figure 4. SNR of Imagenette classes. The values are produced
using ResNet18. Each colored dot corresponds to a single sample.
The dotted line describes the overall average SNR.

As the class-label output probability approaches zero or
one, Eq. (8) converges towards zero. We compute the logit-
gradient analytically using the built-in automatic differenti-
ation of pytorch.

Gradients are not only an early saliency method but are
also often used for empirical studies of deep networks as
well as as a basis for more elaborate methods [2]. There-
fore, their behavior is of particular interest.

We train 30 ResNet18 models with random He initial-
ization up to a validation accuracy of 87.4 - 89.1 %. For
training, we use ADAM-Optimizer [15] and One-Cycle-
LR-Scheduler [33] with a maximum learning rate of 0.01.
We chose this combination for its fast convergence and good
generalization performance, exceeding for example simple
step-decay+SGD by a substantial margin at roughly one-
tenth of the cost.

Signal-to-noise ratios: Tab. 1 provides mean SNR-
values over the validation part of the datasets based on 30
models. We consistently obtain values below one (in the
range of 0.44...0.59), i.e., the noise is more prominent than
the actual saliency signal, roughly a factor of two.

Fig. 3 displays the norm of the mean (||µ||2, red/lower
curve) and standard deviation (||σ||2, blue/upper curve)
over an increasing number of models. The four plots corre-
spond to the samples in Fig. 1. Both the norms of mean and
standard deviation appear to converge already after averag-
ing a small number of models. The typic drop in the norm
of the mean indicates the presence of uncorrelated noise.

Fig. 4 illustrates the SNR for all images of the validation
set of Imagenette over 30 ResNet18-models. The 10 differ-
ent classes are plotted in different colors. The mean SNR
over all images is approximately 0.59, with noise being 70%
larger than the signal (indicated by the black dashed line).
The SNR varies for different classes; however, an analysis
of the softmax predictions shows that there is no correlation

Figure 5. SSI values show a qualitatively similar behavior to SNR,
with LIME deviating a bit to the worse (computed for the four
example images from Fig. 1.)

between the quality of the prediction and the SNR. Repeat-
ing this experiment with VGG19 and ResNet101 shows a
similar pattern of the SNR for different classes but at an
even worse (lower) level, which might already suggest that
deeper architectures tend to be noisier.

Qualitative comparison: Fig. 1 shows input gradients
for four random images. The first column displays the input
image, the second column shows the mean gradient, and the
last two columns show the gradients of two single models,
picked manually for variability. As one can see, the specific
input gradients for different models differ significantly from
each other and from the mean; in some cases (e.g., golf ball
in row three), the attributed area has almost no overlap and
differs drastically from the mean.

Fig. 5 compare SSI and SNR for different saliency meth-
ods calculated on the four examples of Fig. 1. The ranking
by SNR and SSI are qualitatively similar (with a deviation
to the worse for LIME) so we confine ourselves to SNR in
following experiments.

Discussion: Marginalization removes the variability, but
it is important to stress that the value of input gradient as a
saliency method is still limited due to its well-known con-
ceptual issue of often not detecting key features of a class
[2, 35]). Our results, however, caution against the treatment
of raw gradients as properties of the data examined. A sub-
stantial amount of the information depicted originates from
the initialization, not the data.

Training protocol: Having trained the networks with
“superconvergent” one-cycle might raise the concern that
gradient noise might be an artifact of accelerated training.
To eliminate the concern of the results being caused by nu-
merical issues of the chosen training scheme, we repeat the
experiment, training additional 30 instances of a ResNet18
on Imagenette with stochastic gradient descent with a learn-
ing rate of 0.01 for 30 epochs and a step decay of 0.5 after
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Figure 6. SNR for different architectures. Increasing the width
tends to increase the SNR, while adding depth and sources of non-
linearity tend to decrease SNR.

epochs 15 and 25. The resulting networks perform a lit-
tle worse than networks trained with “superconvergence”
but we obtain a similar SNR value (0.79), so it is unlikely
that the seen results are due to numerical issues specific to
ADAM or one-cycle.

Optimization vs. initialization: Training noise origi-
nates from random initialization and random choices (batch
selection) during optimization. In order to measure their
contribution, we train an ensemble of ResNet18 models
with fixed initialization for each instance. This results in an
improved SNR compared to varying initialization (average
SNR varying: 0.694 vs. average SNR fixed: 0.830). How-
ever, a visual examination of the saliency maps reveals that
even with fixed initialization, there are variations in feature
localization. This suggest that both noise in initialization
and optimization contributes to the variability we observe.

4.2. Influence of Architectural Parameters

Next, we study the influence of depth, width and amount of
nonlinearity on the noise level. Previous experiments have
already suggested that depth increases initialization noise.
For a systematic study, we run experiments on the Fash-
ionMNIST dataset as its low complexity allows compar-
ing many architectures at an acceptable computational cost.
The dataset contains 48.000 training images and 12.000 val-
idation images divided into 10 different classes of cloth.

We vary width and depth, and toggle sources of nonlin-
earity: Starting from a baseline model of a single 3×3 con-
volution layer followed by a linear classifier, we add more
layers and/or increase the number of feature channels in the
convolutional filters. We also compare networks with and
without max-pooling, and with and without ReLU layers.

Width is varied from 4 to 128 filters, while depth varies
from a single to 4 convolutional layers. For every combina-
tion of these parameters, we train 20 networks with random

VGG19 ResNet18 ResNet101
Input Gradient 0.436 0.555 0.435
Integrated Gradient* 0.612 0.742 0.744
Smoothgrad** 0.627 0.789 0.878
GradCAM (top) 0.816 1.593 1.373
GradCAM (interm.) 0.612 1.112 0.680
SHAP 0.252 0.365 0.308
DeepLIFT 0.453 0.628 0.554
LIME** 0.609 0.772 0.826

(a) CIFAR10

VGG19 ResNet18 ResNet101
Input Gradient 0.585 0.589 0.444
Integrated Gradient* 0.725 0.695 0.577
Smoothgrad** 0.724 0.681 0.470
GradCAM (top) 1.370 2.363 3.171
GradCAM (interm.) 0.748 1.171 1.253
SHAP 0.418 0.386 0.327
DeepLIFT 0.978 0.650 0.587
LIME** 0.919 0.997 0.982

(b) Imagenette

Table 1. Mean SNR over validation set for different saliency meth-
ods and model architectures. Due to increased computational costs
we use only a subset for methods marked with “*” (10% of the val-
idation set) and “**” (50 random samples of validation set).

initialization and calculate the mean SNR over the complete
validation set. Results are shown in Fig. 6. The number
of channels (width) used in the first layer is plotted on the
x-axis, while the y-axis indicates the mean SNR over all
validation samples. The solid lines refer to linear networks
without ReLU activation, while the dashed lines correspond
to networks with ReLU activation.

Width and depth: In each architecture, increasing the
width w improves SNR, visually consistent with a

√
w-

increase due to the averaging of multiple computation paths.
Depth decreases SNR consistently, as already expected
from the previous experiments.

Linear vs. nonlinear: The most prominent result is
the significant drop in SNR once nonlinearities are intro-
duced (with max-pooling and ReLUs both showing sim-
ilar effects). The convex 1-layer and 2-layer with aver-
aged pooling without non-linearity show the best SNR by
a large margin. Interestingly, improvements are also vis-
ible for the convex networks, indicating that some initial-
ization noise due to imperfect optimization might still be
present, although at a much lower level than in nonlinear
architectures. Our observations show that both noncon-
vexity and nonlinearity increase training noise (including
non-convex [17] linear multi-layer networks, solid-yellow-
triangle curve). The results are in principle consistent with
both an amplification of numerical noise as well as conver-
gence to different local minima as the main source of noise.

1771



(a) Input Gradients (b) DeepLIFT (c) SHAP

(d) LIME (e) GradCAM (top)

(f) GradCAM (intermediate) (g) Integrated Gradients (h) SmoothGrad

Figure 7. Comparison of Saliency Maps for multiple Saliency Methods on differently initialized models. All methods show variability in
the produced results. First column: mean over 30 models, column 2-3: single model with random initialization.

Activation functions: One might conjecture that non-
smooth activations might be a source of noise. For this
reason, we employ softmax in the VGG19-results on Im-
agenette in Tab. 1, with results not differing qualitatively
from ReLU, indicating that results hold for alternative, suf-
ficiently nonlinear activation functions.

Normalization methods: Normalization layers are cru-
cial for stabilizing generalization performance in deep
learning. To assess their impact on noise levels, we con-
duct experiments using two ensembles of ResNet18 mod-
els: one with batch normalization (BN) and the other with
instance normalization (IN). The results show that the alter-
native normalization method have only minimal differences
in performance (average SNR of BN: 0.694 vs. IN: 0.702).

4.3. Further Saliency Methods

So far, we have only studied plain image gradients of log-
its. While conceptually important, gradients are not very
suitable for attributing network decisions. We thus extend
our experiments to several popular saliency approaches that
operate by perturbations that resemble augmented gradi-
ent or finite difference computations. Specifically, we run
DeepLIFT, SHAP, LIME, Integrated Gradients, GradCAM
and SmoothGrad on top of Integrated Gradients. For this
experiment, we use ensembles of 30 models for estimating
mean and variance.

Signal-to-noise ratios: Tab. 1 shows the resulting SNR
values on Imagenette and CIFAR10 for different architec-
tures. Strikingly, only GradCAM was able to achieve an
SNR above 1. Lower layer GradCAMs (tested on 2nd low-
est ResBlock-layer of four) fare, expectedly, worse than
top-level visualizations.

On CIFAR10, Residual Networks seem to consistently

generate better SNR values than VGG19, but this pattern
does not hold on Imagenette. Notably SHAP, which has
a strong theoretical justification, performs the worst. This
might not be surprising, as our results do not imply that any
of these methods is a bad saliency method, but that saliency
methods in general tend to capture information about the
model, and not the phenomenon modelled. A high speci-
ficity to the most relevant features exploited by the model
might therefore plausibly increase the visibility of the influ-
ence of initialization.

Qualitative comparison: Again, in order to understand
the practical implications, we search through example im-
ages manually for particularly large variations (as these
might lead to misinterpretations). Fig. 7 shows examples
of varying saliency maps for different methods and initial-
ization, applied to the dog (“English Springer”) image in
the center. The first column of every subfigure shows the
mean saliency map over 30 models, while the second and
third columns display the saliency map of two manually
chosen networks (an exhaustive account is provided in the
supplementary material). The reduced variability of top-
level GradCAM is clearly visible, but even here, different
initializations might lead to attributions distinct enough that
they might conduct to inconsistent interpretations (in par-
ticular, taking into account the low resolution of the out-
put). Intermediate-level GradCAM and the popular SHAP
and LIME show strong structural differences. For all of the
methods, viewing several different saliency maps in pro-
gression (as shown in the video accompanying this paper),
suggests that variability is in part due to the classifier focus-
ing on different features associated with the class at hand,
combined with background noise in varying degrees.
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golf ball parachute

Figure 8. Ensemble Dreams: Images optimized for maximiz-
ing class-logit activations appear to capture typical features of the
class in a more complete way when using marginalized model gra-
dients (right image) than single model results (left image).

4.4. Feature Visualization by Optimization

In a final experiment, we apply our method to feature vi-
sualization by optimization. The well-known “deep dream”
/ “inceptionism” approach [23] can be used to create typi-
cal input images that trigger the activation of neurons in a
network. We augment this approach towards an ”Ensem-
ble Dream” method that uses gradients from an ensemble
of independently trained networks. Specifically, we maxi-
mize output logits of an ensemble of 20 ResNet18 models
and average their gradients during optimization. We employ
the lucent library with all baseline parameters. Results are
shown in Fig. 8: While ensembling does not lead to quali-
tatively different visualizations, the results are often cleaner
and appear to show more complete features specific to the
class detected by the network.

5. Discussion

Assessing our overall findings, it is very important to state
that this paper at its core shows a negative result: Saliency
maps based on gradients as well as popular more sophis-
ticated attribution methods vary substantially with training
randomness (initialization, random batch choices). Conse-
quently, it cautions the reader to draw conclusions about the
nature of the phenomenon observed from single model in-
stances only, as some of the structures obtained originate
in initialization randomness rather than uniquely reflecting
training data properties. Also, the observed variability does
not imply that attribution results are wrong, but we can be
sure that they must be at least incomplete at times.

Importantly, one should also not make the converse con-
clusion: While marginalization is able to reliably dampen
training noise to obtain clearer signals1 this eliminates only
one but not all potential extrinsic factors (such as archi-
tectural limitations and hyperparameters), and cannot ad-
dress conceptual limitations such as the limited sensitivity
of gradient-based saliency maps.

In a non-rigorous sense, the results obtained from ensem-
ble dreams (Fig. 8) provide an intuitive analogy of our main
results: single networks appear to model features in a less
complete way than a set of models drawn from different
initializations. However, the visualization of the marginal
model still shows only a limited understanding of the phe-
nomenon at hand.

If marginalization is not possible (for example due to
the increased training costs), the (popular) top-level Grad-
CAM results appear to be least affected by training noise.
Nonetheless, the lower-level variability we have observed
might still be problematic in certain critical applications.

Limitations & Future work: Our paper studies only a
limited range of data sets and architectures, and counter-
examples in Fig. 1 and 6 are manually curated. As
these serve primarily as counter-examples, we consider this
nonetheless sufficient to show the presence of a potential
problem. However, a study of a broader class of attribu-
tion methods (such as masking-based and attention-based
methods) as well as strongly divergent architectures (such
as vision transformers [6]) is still subject to future work.

The employed marginalization technique is rather inef-
ficient; more sophisticated schemes for sampling network
ensembles exist already in the literature [37]. Our approach
has been motivated by simplicity and elimination of hidden
dependency, not practical efficiency.

A broader study of external randomness due to choices
of architectures and hyperparameters would also be an in-
teresting direction for future research, aiming at drawing
attribution conclusions in a more automated fashion.

1Averaging 50 networks yields a 7-fold and 30 networks a 5.5-fold in-
crease in SNR by the

√
n
−1-law, pushing all SNR values well above 1.0.
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