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Abstract

Triangle mesh segmentation is an important task in 3D
shape analysis, especially in applications such as digi-
tal humans and AR/VR. Transformer model is inherently
permutation-invariant to input, which makes it a suitable
candidate model for 3D mesh processing. However, two
main challenges involved in adapting Transformer from nat-
ural languages to 3D mesh are yet to be solved, such as
i) extracting the multi-scale information of mesh data in
an adaptive manner; ii) capturing geometric structures of
mesh data as the discriminative characteristics of the shape.
Current point based Transformer models fail to tackle such
challenges and thus provide inferior performance for dis-
cretized surface segmentation. In this work, heat diffusion
based method is exploited to tackle these problems. A novel
Transformer model called MeshFormer is proposed, which
i) integrates Heat Diffusion method into Multi-head Self-
Attention operation (HDMSA) to adaptively capture the fea-
tures from local neighborhood to global contexts; ii) ap-
plies a novel Heat Kernel Signature based Structure Encod-
ing (HKSSE) to embed the intrinsic geometric structures
of mesh instances into Transformer for structure-aware
processing. Extensive experiments on triangle mesh seg-
mentation validate the effectiveness of the proposed Mesh-
Former model and show significant improvements over cur-
rent state-of-the-art methods.

1. Introduction

Discretized surface semantic segmentation is a task to
semantically classify the labeling of each discrete element
in 3D discretized surface. Such discrete element can be tri-
angle face in mesh input [22, 24, 37] or 3D point in point
cloud input [11, 20, 26, 28, 34, 48–50, 52]. It is an essen-
tial task in many applications for 3D vision and computer
graphics, such as 3D human body analysis, digital humans
and AR/VR, etc. In this work, we mainly focus on mesh
representation as input, as point cloud representation can

be regarded as the special case of mesh which discards the
surface connectivity.

The challenges in learning mesh representation involves
its inherent characteristics such as irregularity and un-
orderedness. Following the success in NLP [7, 15, 44] and
2D computer vision domain [16, 29, 43, 46], Transformer
model such as [20, 32, 50, 52] has been adopted as an effec-
tive model for processing 3D point cloud input due to its in-
herent capability in processing unordered point sets. Along
such direction, it is natural to adapt the Transformer model
to the mesh input, which is also one of the most common
representation for 3D input modality. However, adapting
Transformer model from natural languages to mesh input,
with respect to the specific characteristics of mesh struc-
tures, involves many challenges, such as i) extracting the
multi-scale information of mesh data in an adaptive man-
ner; ii) capturing geometric structures of mesh representa-
tion as the discriminative characteristics. Sufficiently cap-
turing such two essential information is the prerequisite for
accurate mesh based semantic segmentation task. In ret-
rospect to the recent point cloud based Transformer mod-
els [20, 32, 52], it is found that all these methods did not
provide effective approaches to tackle the challenges men-
tioned above, and thus provided a limited increment in seg-
mentation accuracy for mesh input.

Recent work Swin Transformer [29] applies multiple
fixed-size windows for limiting the attention computation
along scale-varying regions, and hence provides a hierar-
chical Transformer model to extract multi-scale informa-
tion for dense prediction task. However, such approach
which uses fixed-size windows is only applicable to regu-
lar 2D images input, while it is infeasible for irregular input
such as 3D meshes with diverse shapes. In order to adapt
the Transformer model for adaptively extracting multi-scale
information for irregular mesh input, it is essential to ex-
tend its core operation, self-attention, to have capability in
progressively comparing the feature similarity from local
neighborhood to global range of the mesh input, in the form
of intrinsic geometry of surface [9]. In fact, several seminal
works [12,13] had studied on using heat diffusion method to
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intrinsically communicate the interactions with the neigh-
bouring vertices on discretized surface. Such heat diffusion
method is able to compute the geodesic distance on mesh in
a stable and accurate manner, which is essential to capture
the intrinsic locality in discretized surface.

In this work, we opt for the heat diffusion method to
propose a novel self-attention operation called Heat Dif-
fusion based Multi-head Self-Attention (HDMSA), which
adaptively limits the self-attention computation within mul-
tiple heat diffusion ranges to capture the multi-scale surface
features from local neighborhood to global contexts. This
extension facilitates the construction of multi-scale Trans-
former encoder in the proposed MeshFormer model.

The second challenging issue in adapting Transformer
model for mesh input is to encode the geometric structural
information of mesh as a supplement for shape-specific in-
ductive bias of Transformer model. In Non-Euclidean do-
main, very recent works such as SAN [25], GNN-LSPE [17]
methods have investigated on injecting the eigenfunctions,
which are derived from graph Laplacian operator, into posi-
tional encoding as a kind of graph-specific inductive bias to
traditional Transformer model. This approach exploits the
spectral information of graph Laplacian to capture the struc-
ture of input modality, and thus is considered as a promis-
ing candidate for processing mesh input. However, this ap-
proach suffers from the issue of eigenfunction sign ambigu-
ity, that means eigenfunction with either positive or negative
sign still satisfies the original eigenproblem and is associ-
ated with the same eigenvalue, which lowers the discrimi-
native power in the extracted structural information. In this
work, instead of directly applying the spectral information,
a novel Heat Kernel Signature based Structure Encoding
(HKSSE) module is proposed, which effectively captures
the intrinsic geometric structural information of the mesh
while bypassing the issue of eigenfunction sign ambiguity.
Moreover, it provides a more powerful way to capture the
more advanced geometric information, i.e., the symmetry in
geometry structure, which is very common in human body
shapes. As a result, this capability brought to Transformer
model reinforces a structure-aware segmentation prediction
for mesh input.

To the best of our knowledge, the proposed model is the
first mesh based Transformer model which integrates heat
diffusion methods to tackle the discretized surface semantic
segmentation problem. The main contributions of this work
are summarized as follows:

1. With the heat diffusion extension, the proposed multi-
head self-attention operation allows intrinsic commu-
nication for vertices on mesh input from local neigh-
borhood to global context and thus is able to capture
multi-scale mesh features.

2. A novel heat kernel signature based structure encoding

module is applied to embed the mesh intrinsic geomet-
ric structures into Transformer for providing structure-
aware segmentation output.

3. The proposed work demonstrates the feasibility on the
extension of generic Transformer model structure for
3D mesh input with heat diffusion methods.

2. Related Works
In this section, the three main related techniques: deep

learning methods on triangular meshes, Transformer on
point clouds and heat diffusion methods are discussed.

2.1. Deep Learning on 3D Meshes

With the significant success in image recognition tasks
[19, 23, 38, 42], deep convolutional neural network (CNN)
models have been extended to be applied on processing the
3D mesh input in computer graphics domain. The early pi-
oneering works [5, 31] generalize the CNN operation on
mesh structure. Such methods although provide promis-
ing results, require complex geometric tools and thus suf-
fer from great difficulties in training. Recent works such
as MeshCNN [22] and HodgeNet [39] exploit the connec-
tivity in mesh. However, these methods are often not ro-
bust to variations in mesh structure and lack of capability
in capturing multi-scale features of meshes. Also it is dif-
ficult to implement HodgeNet [39] for GPU acceleration
and thus its deployment is limited. Spectral convolution ap-
proach [14,51] which constructs the equivalent convolution
operation on spectral domain is another promising direc-
tion. However, such approach is limited by its low gener-
alization to other shapes and inefficiency. LapCluster [35]
exploits spectral clustering method to capture the mesh fea-
tures, but the advanced structure of mesh still cannot be well
captured. Recent method SubdivNet [24] tries to bring tra-
ditional geometric processing tools such as surface subdivi-
sion and simplification into deep CNN models, but it still
suffers from highly complex and irregular mesh input and
is incapable to capture the globally long-range contexts.

2.2. Transformer on Point Clouds

Transformer [44] and its variants have become the most
leading models for various NLP tasks [8, 15, 44] since its
first launch. Recently, Transformer models are transferred
to 2D image domain [10, 16, 29, 46] and 3D vision do-
main [20, 50, 52]. Its powerful representation learning via
self-similarity comparisons and the extracted global con-
textual information provide competitive or better perfor-
mance than the long-standing CNN based models. As 3D
point cloud data is an orderless representation, Transformer
model inherently becomes the ideal candidate for process-
ing orderless point cloud representation due to its inher-
ent order-agnostic property. Point cloud based Transformer
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Figure 1. The entire architecture of MeshFormer.

model such as [20, 32, 50, 52] has been adopted as an ef-
fective model for processing 3D point cloud input due to
its inherent capability in processing unordered point sets.
Along such direction, it is natural to adapt the Transformer
model to the mesh input, which is also one of the most com-
mon representations for 3D input modality. However, those
methods [20, 32, 50, 52] do not provide effective ways to
capture the multi-scale features of 3D input. Also, such
methods only use a simple positional encoding, e.g. node
embedding and thus lose the essential geometric structural
information. The very recent work MeshMAE [27] applies
the pre-training on a large-scale dataset, but it still suffers
from limited performance on segmentation task since it only
uses a patch embedding without the consideration on an ef-
fective geometric structural embedding.

2.3. Heat Diffusion Methods

Heat diffusion method has been widely adopted in nu-
merical computation on 3D meshes for its capability in cap-
turing the intrinsic surface properties. Seminal works such
as [12, 13] had applied the heat diffusion mechanism to
compute the geodesic distance on mesh in stable manner.
And thus it is invaluable to exploit such approach to ex-
tract intrinsic locality on discretized surface. Heat Kernel
Signatures (HKS) [40] and its follow-up works [3, 6] are
proved to be a suitable shape descriptor to capture the geo-
metric structural information, while bypassing the issue of
eigenfunction sign ambiguity. Inspired by these promising

methods, a novel MeshFormer model is proposed to inte-
grate heat diffusion mechanism into Transformer model for
capturing the intrinsic multi-scale surface features and geo-
metric structural information for mesh based representation
learning.

3. Method
In this section, the details of the proposed Transformer

model: MeshFormer for 3D mesh segmentation are pre-
sented. The proposed MeshFormer comprises two novel
essential modules: i) Heat Diffusion based Multi-head
Self-Attention (HDMSA) for adaptively capturing the mesh
features from local neighborhood to global contexts, ii)
Heat Kernel Signature based Structure Encoding (HKSSE)
applied to embed the intrinsic geometric structures into
Transformer framework for structure-aware mesh process-
ing. The entire architecture of MeshFormer is illustrated in
Fig.1. The details of each proposed module are described
in the following sections.

3.1. Extracting Mesh Locality from Heat Diffusion
Method

In order to allow the communication with features in lo-
cal neighborhood situated in diverse 3D mesh structures, the
heat diffusion method [12] is applied to effectively extract
the communication range on the intrinsic geometry of dis-
cretized surface [9]. The heat diffusion equation describes
how a quantity, e.g. feature value f defined on a manifold
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is propagated across the time period t,

d

dt
f(x, t) = ∆f(x, t) (1)

The mesh geodesic distance starting from each reference
vertex is used to measure the communication range, that is
the locality. To compute such mesh geodesic distance, we
need to first solve the heat diffusion equation. The resulting
solution f(x, t) is called the heat kernel, which represents
the heat distribution over time. To relate the heat kernel dis-
tribution f(x, t) with the desired geodesic distance function
d(x,x′), the normalized gradient operation is first applied
to heat kernel distribution f(x, t), then the resulting vector
field X = −∇f/|∇f | (along gradient descent direction) is
plugged into the Poisson equation ∆d = ∇ ·X , where the
notation ∆ and ∇· denotes the Laplace-Beltrami operator
and divergence operator, respectively. After solving such
equation, we could obtain the desired geodesic distance d.

To convert the Eq. (1) into discretized setting in time, a
backward Euler step (ft− f0)/t ≈ ∆ft is applied to obtain
the following linear equation:

(Id− t∆)ft = f0 (2)

where Id denotes the identity matrix. f0 and ft represent
the initial value and the discrete value at a short time step t,
respectively. Since smaller backward Euler time step may
leads to large discretization error, a more suitable strategy is
to set the time step as the square of the average edge length
of mesh h, i.e. t = h2.

To further discretize the Eq. (2) in spatial setting,
piecewise linear elements on triangle mesh based on fi-
nite element method (FEM) are exploited, and the Laplace-
Beltrami operator in smooth setting is approximated by
cotangent Laplacian [36] in discrete setting. Fig. 3 illus-
trates the different geodesic distances on a mesh computed
by heat diffusion method mentioned above, which is then
used to extract the locality region for the self-attention op-
eration. As the maximum geodesic distance di starting from
each source vertex vi can be represented as its global com-
munication range, the portion of the maximum geodesic
distance is used to describe the locality range from heat dif-
fusion, e.g. half of global range is denoted as di/2.

3.2. Heat Diffusion based Multi-head Self-Attention
(HDMSA)

An input triangle mesh is presented as a pair (V, F ),
where V and F denotes a list of vertices V = {v1, ..., vn}
and a list of triangular faces F = {fa1, ..., fam}, respec-
tively. Each triangular face faj comprises the indices of
three vertices for storing the triangle connectivity. We use
p(vi) = pi ∈ R3 to denote the 3D position of each vertex.

Node Embedding Each input mesh is first evenly-sampled
into M vertices. For each sampled vertex, a K-nearest
neighbor (e.g. K=16) grouping is applied for creating a
group of neighboring vertices, as illustrated in Fig.1(a).
Such group, now considered as node, works as the basic
processing element, analogous to the word token in Trans-
former for NLP task. As the raw coordinate of each node
is only 3-dim, a linear projection layer is then applied on
such group to obtain M node embeddings (NE) with higher
dimensions. Note that the number of sampled vertices M is
regarded as the sequence length of input for Transformer.
However, as the input sequence length M in our case is
generally larger than the one in NLP, the globally pair-wise
comparison computations in general self-attention opera-
tion are unaffordable.

To tackle such issue, a novel Heat Diffusion based
Multi-head Self-Attention (HDMSA) operation is proposed
for limiting the comparison range while capturing the
locality in 3D shape. The latter capability is also essential
to learn the multi-scale features of mesh structure. The
node embeddings are passed through the multi-scale
Transformer encoder, which is composed of multiple
heat diffusion (HD) Transformer blocks with diffusion
regions from local neighborhood to global range, denoted
as d/2k, (k = 0, 1, 2, 3), where d represents the maximum
geodesic distance starting from each source vertex, as
illustrated in Fig 1(c). An example of multiple diffusion
ranges on a mesh example is illustrated in Fig.3.

HD Transformer block Each HD Transformer block
comprises the core component, Heat Diffusion based
Multi-head Self-Attention (HDMSA) module (will be
described in the following section), and the general compo-
nents in a standard Transformer block, such as a succeeding
multi-layer perceptron (MLP) layer. The HDMSA module
and MLP layer are all preceded by a LayerNorm (LN)
layer for stabilizing the training process. And the residual
connection is applied in the same style as a standard
Transformer block. The whole HD Transformer block is
illustrated in Fig. 2.

HD based Multi-head Self-Attention As the standard
Transformer model [44] and the point cloud based variants
[20,52] perform global self-attention by computing all pair-
wise similarity comparisons among all the tokens, such in-
tensive computation is unsuitable for dense prediction task.
Instead, inspired by exploiting heat diffusion method to cap-
ture the intrinsic locality on the surface, a heat diffusion
based multi-head self-attention is proposed to limit the sim-
ilarity comparisons. The resulting feature maps in multi-
ple diffusion ranges scales (Fd/8,Fd/4,Fd/2,Fd) are further
fused by an attention layer to obtain the multi-scale feature
map FMS , which is then attached with the prediction head
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Figure 2. The construction of Heat Diffusion (HD) Transformer
block.

to obtain the mesh semantic segmentation output, as illus-
trated in Fig. 1(c)-(e).

It is noted that no downsampling or pooling operation
for mesh is required in our model, and consequently, the
intrinsic geometric structure of mesh can be preserved to
the highest degree.

3.3. Heat Kernel Signature based Structure Encod-
ing (HKSSE)

To capture the structural information of a 3D mesh, it’s
natural to exploit the eigenvalues and the corresponding
eigenfunctions derived from the Laplacian-Beltrami opera-
tor computed on the mesh data, like the recent methods such
as SAN [25] and GNN-LSPE [17]. However, such approach
cannot process the spectral information in a consistent man-
ner and thus fails to provide sufficiently accurate structural
information of input. In this work, instead of directly apply-
ing the spectral information like SAN [25] method which
suffers from eigenfunction sign ambiguity issue, we fur-
ther integrate a novel intrinsic geometric structural encod-
ing module which exploits heat kernel signature [41] de-
rived from the spectrum of 3D shape. This specific encod-
ing module is called the heat kernel signature based struc-
tural encoding (HKSSE). The heat kernel signature [41]
preserves all the intrinsic geometric information captured
in heat kernels, which are the fundamental elements to de-
scribe the heat diffusion process on the manifold.

To describe the intrinsic geometric structure of each in-
put mesh instance, the set of eigenvalues {λi} and the cor-
responding eigenfunctions {φi} of the cotangent Laplacian
related to the mesh shape is first computed by eigendecom-
position. It is noted that φi = {φi(x)} is a function defined
on all the vertices (x ∈ V ). Then the heat kernel signature
HKS(x, t) for time scale t can be computed by the follow-

ing equation:

HKS(x, t) =

n∑
i=1

e−λitφ2i (x) (3)

where t > 0 denotes the heat diffusion temporal period and
n is the number of vertices in a mesh. The HKS sums over
all the spectrum, and applies a squared term on the eigen-
function. As a result, the spectral information of the shape
are effectively captured without the eigenfunction sign am-
biguity. And thus the set of all time-scale heat kernel signa-
tures HKS(x) = {HKS(x, t), t ∈ R+} fully characterizes
the intrinsic structures of 3D shape in multi-scale manner.
The Fig. 4 illustrates the comparison on a set of eigenfunc-
tions and heat kernel signatures in multiple time scales. It
is shown that heat kernel signatures are able to extract the
more advanced geometric structures, such as the symmetric
parts in human body, i.e. hands and legs, which is essen-
tial to be encoded into the Transformer model for geometric
structure-aware processing for 3D mesh.

Then, the proposed encoding module HKSSE is attached
to the Transformer model, together with node embedding,
to build up the full MeshFormer model, as illustrated in
Fig.1(b). As a result, the structure-specific inductive bias
is captured for structure-aware mesh segmentation.

4. Experiments
Both the quantitative and qualitative experiments are

conducted to verify the effectiveness of the proposed Mesh-
Former model in 3D mesh semantic segmentation task.
The evaluations are performed on two diverse mesh based
benchmark datasets, the HumanBody-Part [31] dataset and
the COSEG [47] dataset. For measuring the model perfor-
mance, we use the face based intersection over union (IoU)
over parts, which is a widely-adopted evaluation metrics for
mesh based segmentation task. Furthermore, the ablation
studies on the core components of MeshFormer model is
also provided.

4.1. Training Details

For training the MeshFormer model, AdamW [30] opti-
mizer with default hyper-parameters is applied for optimiz-
ing the training loss. The initial learning rate is set to 0.001
with cosine annealing. All training settings are consistent
for both HumanBody-Part [31] and COSEG [47] dataset.
The experimental evaluations and ablation analysis were
conducted using Nvidia 2080Ti GPU and the implementa-
tion of MeshFormer model is based on Pytorch library.

For comparison with point based methods, such as Point-
Transfromer [52], and PCT [20] models, the mesh object is
uniformly sampled into 4,096 points with the associated la-
bels for training. For the accuracy evaluation, the nearest-
face strategy is adopted to assign the label of each vertex
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Figure 3. Multiple diffusion ranges (in blue color) on a mesh example (Stanford Bunny) from a source point i (in red color). The maximum
geodesic distance di represents the global communication range for source point.

Figure 4. (a) Laplacian eigenfunctions of human body shape. (b) Heat kernel signatures in increasing time scales. (c) Learnable heat kernel
signature based structural encoding (HKSSE) module.

to its nearest face. If the face is assigned with different la-
bels among the three incident vertices, the majority voting
is applied to choose a single label for the face.

4.2. Mesh Segmentation on HumanBody-Part
Dataset

The HumanBody-Part dataset [31] for mesh segmenta-
tion evaluation is collected from SCAPE [2], FAUST [4],
MIT [45], Adobe Fuse 2016 [1] and SHREC07-Human
[18], and is annotated in 8 body parts. As this human
body dataset contains meshes reconstructed from multiple
scans on real human bodies in different persons and diverse
poses, the resulting instances with a variety of mesh struc-
tures brings great challenges for accurate segmentation. For
quantitative evaluation, the train/test split from MeshCNN
[22] setting is used (381 mesh instances for train set and 18
mesh instances for test set).

Quantitative and Qualitative Results: In Table 1,
the results of proposed MeshFormer model are displayed
with comparisons with several state-of-the-art methods on
Humanbody-Part dataset. The part-wise Intersection-over-
Union (IoU) is used as the accuracy metric in quantitative
evaluation. It is observed that the proposed MeshFormer
provides the best accuracy with 94.2% score in part-wise
IoU, outperforming both point-based and mesh-based mod-

els, especially the current Transformer models for 3D input
(Point-Transformer [52], PCT [20]).

The qualitative segmentation results are illustrated in
Fig.5(a). It is shown that the MeshFormer model provides
accurate segmentation output with structure-aware prop-
erty, and thus can handle symmetric parts well on the hu-
man bodies. Fig.5(b) provides the qualitative comparison to
point based Transformer models(PCT, PCT+HKSSE). The
predicted output of PCT suffers from ignoring the intrin-
sic geometric structural information and thus gives erro-
neous segmentation on symmetric body parts, e.g. hands,
lower arms. After equipped with HKSSE to capture in-
trinsic geometric structures, the extended PCT gives accu-
rate segmentation on symmetric parts. However, it still suf-
fers from mis-segmentation around the joints, while Mesh-
Former provides coherent segmentation with the help of
sufficient correlations captured by HDMSA.

4.3. Mesh Segmentation on COSEG Dataset

The proposed MeshFormer is also evaluated on the
shape COSEG dataset [47], which is a mesh dataset with
a wide variety of diverse shapes. Three largest categories in
COSEG, such as vases, chairs, and tele-aliens are selected
for the quantitative evaluation. These three categories con-
tains 200, 400 and 300 instances respectively, and are an-
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Figure 5. (a) Qualitative results of MeshFormer on the test set of HumanBody-Part [31] dataset. (b) Qualitative comparison to point based
Transformer models(PCT, PCT+HKSSE). The dashed circles highlight the erroneous segmentations.

Figure 6. Qualitative results of MeshFormer on the test set of tele-aliens category in COSEG [47] dataset.

notated in 3 to 4 parts labels. The train/test split from Sub-
divNet [24] setting is used (randomly split the train/test set
based on a ratio of 4 : 1).

Quantitative and Qualitative Results: In Table 2,
the quantitative evaluations of MeshFormer are given with
comparisons to several state-of-the-art methods on COSEG
dataset. The comparison results illustrated that the pro-
posed MeshFormer model outperforms current state-of-the-
art methods such as MeshCNN [22], PD-MeshNet [33],
MeshMAE [27] and SubdivNet [24], as reported by the
part-wise IoU for each category.

The qualitative results of mesh segmentation on COSEG
dataset are illustrated in Fig. 6. The tele-aliens set is se-
lected for qualitative evaluation since the shapes of this cat-
egory are full of complex and diverse geometric structures.
It is shown that the MeshFormer model can predict mesh-
based segmentation outputs which are very close to the
ground-truth annotations. Noted that the proposed model is
able to capture the structural and multi-scale information on
3D mesh and thus provides accurate semantics predictions
on mesh objects with diverse geometric structures.
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Method Point or Mesh Accuracy
Pointnet [11] point 74.7
Pointnet++ [34] point 82.3
DGCNN [48] point 89.7
Point Transformer [52] point 91.4
PCT [20] point 91.7
Toric Cover [31] mesh 88.0
PD-MeshNet [33] mesh 86.9
SNGC [21] mesh 91.0
MeshCNN [22] mesh 92.3
SubdivNet [24] mesh 93.0
MeshFormer mesh 94.2

Table 1. The accuracy of mesh segmentation evaluated on
HumanBody-Part dataset [31]. Metric is part-wise IoU (%).

Method Vases Chairs Tele-aliens
MeshCNN [22] 85.2 92.8 94.4
PD-MeshNet [33] 81.6 90.0 89.0
MeshMAE [27] 97.0 97.2 97.9
SubdivNet [24] 96.7 96.7 97.3
MeshFormer 97.5 97.8 98.1

Table 2. The accuracy of mesh segmentation evaluated on COSEG
dataset [47]. Metric is part-wise IoU (%).

4.4. Ablation Analysis

Here, the ablation analyses are presented to analyze fur-
ther the proposed MeshFormer model. To validate the effi-
cacy of the key components, the analyses are conducted on
both Humanbody-Part [31] and Tele-aliens set of COSEG
[47] dataset. The ablation result is listed in Table 3, starting
from (a) Baseline to (f) full MeshFormer model.

(1). The effectiveness of HDMSA module. The pro-
posed self-attention based on heat diffusion mechanism en-
ables the model to directly extract the multi-scale intrinsic
surface features. For the comparison, general multi-head
self-attention ((a), (c) and (d)) only captures the similar-
ity information through the globally pairwise comparisons,
and thus lacks of the capability to capture the multi-scale
features in surface. As a consequence, it provides inferior
accuracy in mesh based segmentation.

(2). The effectiveness of HKSSE module. The heat
kernel signature based structural encoding (HKSSE) mod-
ule integrates the intrinsic geometric structural information
into Transformer model as an effective supplement of 3D
shape inductive bias. Therefore, the resulting MeshFormer
is able to provide structure-aware segmentation for mesh
input. By removing HKSSE module ((a) and (b)), the per-
formance is significantly decreased due to the loss of the
geometric structural information. LSE ((c) and (e)) refers to
using the raw Laplacian eigenvector as structure encoding.

IoU %
(Humanbody-Part) (COSEG-TA)

(a). Baseline 87.8 92.8
(b). Baseline + HDMSA 89.2 94.1
(c). Baseline + LSE 88.9 93.9
(d). Baseline + HKSSE 90.3 95.3
(e). Baseline + HDMSA + LSE 92.6 96.3
(f). Baseline + HDMSA + HKSSE 94.2 98.1

Table 3. The part-wise mIoU scores of all ablated variants, starting
from (a) Baseline to (f) full MeshFormer model.

These two options show positive improvement for 3D shape
segmentation, but are still lower than HKSSE ((d) and (f)),
since HKS can extract the more advanced geometric struc-
tures and sidestep the eigenfunction sign ambiguity issue.

The mesh based part-wise IoU scores of all ablated vari-
ants are compared in Table 3. We can conclude that: i)
The most important impact comes from the HKSSE mod-
ule, since the geometric structural information is essential
in mesh based segmentation, especially for objects with ad-
vanced symmetric structures. ii) The role of HDMSA shows
the next important impact in performance, especially for ob-
jects with diverse shapes.

5. Conclusion

In this work, a novel mesh based Transformer model
called MeshFormer is proposed which exploits the heat dif-
fusion mechanism to tackle several challenges in semantic
segmentation for mesh input with diverse shapes and com-
plex geometric structures. The proposed MeshFormer in-
tegrates heat diffusion into multi-head self-attention oper-
ation to extract the multi-scale intrinsic surface features. It
also applies a learnable heat kernel based structure encoding
to facilitate the mesh based Transformer model to reinforce
the geometric structural correctness in prediction to provide
structure-aware segmentation output.

Through these two improvements, the segmentation re-
sults for 3D mesh based objects (especially the objects with
diverse shapes and symmetric structures such as human
bodies) have significant gains in accuracy. The performance
of MeshFormer is validated in terms of part-wise IoU scores
over two challenging benchmarks. From the experiments,
MeshFormer outperforms both point based and mesh based
segmentation methods. The experimental evaluations also
validate the contributions of MeshFormer: i) heat diffu-
sion integrated into multi-head self-attention is an effec-
tive method to capture the intrinsic surface property from
3D mesh; ii) a more accurate and structure-aware semantic
segmentation with sufficient geometric correctness for mesh
objects with diverse shapes and advanced symmetric struc-
tures; iii) better performance than current state-of-the-art
Transformer models for 3D input (e.g., Point-Transformer,
PCT and MeshMAE models).
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