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Abstract

We show how shadows can be efficiently generated in
differentiable rendering of triangle meshes. Our central ob-
servation is that pre-filtered shadow mapping, a technique
for approximating shadows based on rendering from the
perspective of a light, can be combined with existing dif-
ferentiable rasterizers to yield differentiable visibility infor-
mation. We demonstrate at several inverse graphics prob-
lems that differentiable shadow maps are orders of mag-
nitude faster than differentiable light transport simulation
with similar accuracy – while differentiable rasterization
without shadows often fails to converge.

1. Introduction

Differentiable renderers have become an essential tool
for solving inverse problems in computer vision. They cur-
rently come in two flavors: (1) forward rasterization us-
ing local shading models [9, 10, 39] and (2) path tracing
and/or Monte Carlo methods for global light transport sim-
ulation [22, 36, 53, 76]. While local methods are orders of
magnitude faster, they lack effects of global light interaction
such as shadows, caustics, or indirect illumination.

Modern methods in real-time graphics can generate sur-
prisingly realistic images by using efficient approximations
of global effects. The single most important aspect for in-
creasing the realism of local shading is the consideration of
shadows (see Figure 1): for each pixel to be shaded, check
if the path to a light source is unobstructed before evaluating
a local shading model. Doing this accurately is costly and
many approximate techniques have been developed. Our
central observation is that one of the oldest and most widely
used, shadow maps [71] (see Section 3), can be adapted to
work in differentiable rendering frameworks.

In Section 4 we explain how (certain approximations
of) shadow mapping can be differentiated, exploiting ex-
isting differentiable rasterizers. Our main idea is simi-
lar to shadow maps: exploit efficient rasterization from
the light’s point of view. For differentiable shadows
this means: Existing differentiable rasterizers handle dis-

Local Shading + Shadows Global ShadingLocal Shading

Figure 1. Adding shadows (middle) to local shading (left) is a
significant step towards global light transport simulation (right).

Rendering Numerical Deriva�ves Our Deriva�ves

Figure 2. Complex scene (330k triangles) rendered in real time
with our differentiable shadow mapping. It shows self-shadowing
of objects, shadowing between objects, and colored surfaces. Fi-
nite differences and our automatic derivatives w.r.t. movement of
the light (note the non-zero derivatives at shadow boundaries).

continuities of primary visibility along primitive borders;
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we use this machinery to handle dis-
continuities of secondary visibility along
shadow borders. The resulting images
contain shadows and are differentiable
(see Figure 2). For many inverse graph-
ics problems the level of realism they
provide will suffice, while being gener-
ated significantly faster than with global
methods. This is important for machine
learning tasks, where the renderings (and
their derivatives w.r.t. scene parameters)
are computed repeatedly. We provide de-
tails of the implementation and how parameters affect opti-
mization based on target images in Section 5.

Given the importance of shadows for realistic image syn-
thesis, it is unsurprising that many inverse problems heavily
depend on them. We demonstrate the trade-off and possi-
billities of differentiable shadow mappings in several appli-
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cations, ranging from pose estimation, over different types
of geometry reconstruction, to interactive editing by manip-
ulating shadows (Section 6).

The main idea of this work, using existing differentiable
rendering frameworks that readily resolve the problem of
visibility discontinuities for dealing with discontinuities of
secondary rays, may be useful for various other scenarios
beyond shadows. We elaborate on this and other immediate
consequences of our approach in Section 7.

2. Related Work: Differentiable Rendering
Differentiable rendering enables computing derivatives

of the rendering process, which generates a virtual image
from a set of scene parameters. While there are differen-
tiable renderers for a variety of scene representations, in-
cluding volumes [51] or implicit surfaces [4,24,68], we fo-
cus on triangle meshes here and refer to Kato et al. [26] for
a broader overview.

Many differentiable mesh renderers are based on ras-
terization, effectively point-sampling the scene on a regu-
lar grid in the image plane. Point sampling means that a
primitive either covers a pixel or not; this binary outcome
makes computing derivatives w.r.t. scene parameters diffi-
cult. Some differentiable rasterizers approximate the gra-
dient computation [27, 39] whereas others approximate the
rasterization [9–11, 30, 38, 58, 66], using a form of smooth-
ing or anti-aliasing to ensure differentiability. Approaches
also differ in terms of local shading of a pixel, from con-
sidering only given colors to evaluating reflection models
based on the BRDF.

At the other end of the spectrum are complex physically-
based differentiable renderers [22, 36, 53, 76], often based
on Monte Carlo integration to numerically approximate the
rendering equation [25]. For handling visibility disconti-
nuities in the gradients, several techniques have been de-
veloped [5, 36, 40, 81]. Significant effort has been made to
improve the immense time and memory requirements [23,
52, 67]. While modern GPUs possess specialized hardware
for ray-triangle intersection, they still cannot match the per-
formance of rasterization-based renderers.

Multi-view 3D reconstruction and related inverse prob-
lems such as view synthesis and material estimation are
prime examples for the potential of differentiable render-
ing. Recent combinations of inverse graphics with machine
learning techniques, like NeRF [6, 7, 44, 49, 79] or neu-
ral implicit surfaces [50, 54, 70, 74, 75, 78] are particularly
successful. It is still common to use local shading mod-
els, especially in combination with efficient differentiable
rasterizers for triangle meshes. Missing shadows or indi-
rect illumination in the differentiable rendering process are
often compensated for by assuming a setting where these
effects are either neglegible (e.g. co-located camera and
light [41,77] or soft environment lighting [17,47]), by mod-

eling the interaction of light and material as a black box neu-
ral network [72], or simply ignored [18, 61]. In addition to
analysis-by-synthesis settings, differentiable renderers have
been used in a variety of contexts to train machine learning
models [9, 15, 21, 32, 37, 43, 56, 62, 69, 73, 80].

Despite the popularity in computer graphics, surprisingly
little effort has been spent on combining local shading mod-
els and approximate global solutions in the context of differ-
entiable rendering. Lyu et al. [42] take a first step in this di-
rection by approximating soft shadows produced by image-
based lighting, however, their gradients are so far limited
by the proxy geometry [60] used for shadow computation.
In contrast, we use the full mesh geometry for the shadows
and are not restricted to a specific class of deformations.

3. Background: Shadow Mapping
Shadow mapping [71] is based on the observation that

points in a scene are lit by a (point) light source if they are
closest to the light source. The shadow map is a depth im-
age from the perspective of the light source. If a point in the
scene is further from the light than the value stored in the
shadow map, it is in the shadow. Otherwise it has the value
stored in the shadow map, is closest to the light source, and
lit. In local shading models, light is added over all light
sources and the shadow computation is performed for each
individual light, using a shadow map per light. In the fol-
lowing we consider a single light source and shadow map.

Formally, let the scene be given as the set X ⊂ R3. A
point light source is defined by its position p. We assume
a projective model and represent positions in homogeneous
coordinates, so p can be at infinity, creating a directional
light source, in which case p is the direction vector. Denote
the distance of x ∈ R3 to the light source as d : R3 7→ [0 :
dmax], where the distance to a directional light source is
measured from a plane outside of X so that distance values
are finite and non-negative.

The shadow map is parameterized over
the space of rays emanating from p. For sim-
plicity we assume that the rays from p to any
point in the scene can be parameterized over
a single plane and we assume a rectangle U
on this plane to be the parameter space for
the rays; if the light source is placed so that
this condition is violated, several planes (i.e.,
arranged in the form of a box) may be used.
The mapping from scene points x ∈ R3 to
U is the linear projective camera transforma-
tion L : R3 7→ R2. In this setup, the shadow map can be
expressed as

f : U 7→ R, f(u) = min {d(x) : L(x) = u,x ∈ X}
(1)

Given the shadow map, we get the visibility of any point in
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Figure 3. Shadow mapping suffers from self-shadowing artifacts
(“shadow acne”) that are alleviated by biasing the depths towards
the light source in the visibility test. Variance shadow mapping
handles these artifacts implicitly.

the scene w.r.t. the light source as

V (x) =

{
0 d(x) > f(L(x))

1 else.
(2)

It is important to note that the ‘else’ case really reduces to
d(x) = f(L(x)) because f had been constructed to store
the smallest possible value of f in direction L(x).

The usefulness of shadow maps arises from the fact that
they can be efficiently approximated using graphics hard-
ware: simply render the scene from the perspective of the
light source, disabling all lighting computations and storing
only the depth values. However, a naive implementation
will suffer from severe artifacts. First, the condition for a
point to be lit is d(x) ≤ f(L(x)) in finite precision arith-
metic, which may or may not happen for visible points on a
smooth surface because of the different discretization of the
rendered image and the shadow map. The resulting problem
is referred to as “shadow acne” and commonly tackled by
introducing a bias β for the depth comparison, considering
points with d(x) ≤ f(L(x)) + β to be lit (Figure 3). While
suitably chosen bias attenuates artifacts along smooth sur-
faces, it cannot remedy aliasing across shadow boundaries.

Various techniques have been suggested for dealing
with aliasing artifacts resulting from the discrete nature of
shadow maps [2, 3, 12, 57]. Many such approaches can be
traced back to or interpreted as approximations of percent-
age closer filtering [59]. Rather than comparing d(x) to
only f(L(x)) we consider a small neighborhood around
L(x) in the shadow map and take the percentage of the rays
around L(x) that would lit x. In a slight generalization of
the original formulation, we assume the neighborhood to be
implicitly defined by a smooth (compactly supported) ker-
nel kx(u) satisfying

∫
kx(u) du = 1. Then the desired

visibility function is

v(x) =

∫
d(x)≤f(u)

kx(u) du. (3)

Note that in this case we can indeed have d(x) < f(u) be-
cause u is not restricted to L(x) but varies over a region.

The visibility function is taking on values in [0, 1], and in
particular the boundaries of shadows are smoothly transi-
tioning between the two extreme values. This also means
that on completely lit smooth surfaces, even if the visibility
is not 1 in concave areas, it is always smoothly varying and
close to 1, eliminating the necessity to estimate a suitable
bias, which can be difficult for some scenes [13].

Percentage closer filtering successfully alleviates many
sampling artifacts but is costly: for every point x in the
scene the integral needs to be evaluated. One would much
rather pre-filter the shadow map [2]. Yet, simply convolv-
ing f with k and then evaluating the smoothed shadow map
is different. This can be readily seen as the result would
take only the discrete values 0 and 1. Better approxima-
tions (see [16] for an overview) generally pre-warp f and/or
pre-filter not only f but also simple functions g(f), such as
g(f) = fk or g = exp. Then an approximation to Eq. (3)
is built from the set of pre-computed functions.

While our approach works with all such approxima-
tions, we demonstrate it at the example of variance shadow
maps [12]. The approximation is built by taking the view
that the local shadow map may be considered a probability
distribution. This makes sense because it is irrelevant what
points are in the integration domain in Eq. (3) as long as
the measure of the integration domain is correct. The local
weighted mean and variance of the shadow map are

µx =

∫
kx(u)f(u) du, σ2

x =

∫
kx(u)f(u)

2 du− µ2
x.

(4)
We note that v(x) is a measure and since the shadow map
f is positive the best bound for this measure is given by the
one-sided Chebyshev or Cantelli inequality, yielding

v(x) ≤ σ2
x

σ2
x + (d(x)− µx)2

. (5)

Notice that, similar to percentage closer filtering, it may
happen that d(x) < µx because µx is a filtered version
of f . Since in this case the approximation of the visibility
function would decrease as d(x) comes closer to the light
source, Donnelly and Lauritzen [12] suggest the following
slightly modified visibility function:

v̂(x) =

{
σ2
x

σ2
x+(d(x)−µx)2

, d(x) > µx

1 else.
(6)

The resulting shadow maps (see Figure 3) have been ob-
served to be very similar to percentage closer filtering.

4. Differentiable Filtered Shadow Mapping
Our goal is to differentiate the visibility function with re-

spect to the scene parameters Θ. The binary visibility V (x)
has zero derivative almost everywhere. The exact form v(x)
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of percentage closer filtering (Eq. (3)) is smooth, yet the in-
tegration domain not only varies with the scene parameters
but also depends on x. We suggest to rather consider v̂.

The main difficulty in computing ∂v̂
∂Θ is that the shadow

map f is only piecewise smooth, and the boundaries of the
smooth regions may change with Θ. This makes the deriva-
tives of the integrals in Eq. (4) challenging to compute.
Similar in spirit to the original shadow map idea [71], we
can use existing rasterizers. While the original motivation
was efficiency, and this is also true in our case, an additional
point is that significant effort has been spent to estimate
such derivatives when rendering from the perspective of the
viewer [9–11,27,30,38,39]. We can readily exploit any ex-
isting solution and simply render from the perspective of the
light. Most differentiable rasterizers effectively replace the
piecewise smooth functions f and f2 with smoothed func-
tions f̃ and f̃2. Attenuating aliasing artifacts in pre-filtered
shadow mapping requires smoothing, so the smoothing by
differentiable rasterizers is complementary in our setting.

In the following, the vectors f̃ and f̃2 represent the dis-
crete versions of f̃ and f̃2, with ∇f̃ and ∇f̃2 their Jacobians
w.r.t. Θ. The elements in v̂ dependent on the shadow map
are µ and σ2. The weighted mean µ is a convolution that, in
the discrete case, can be expressed as the scalar product

m1 = Gf̃ , (7)

where G is a Toeplitz matrix and m1 is the first discrete
moment of the shadow map. The derivative is then simply

∂m1

∂Θ
=

∂m1

∂ f̃

∂ f̃

∂Θ
= G∇f̃ . (8)

For σ2 we introduce the second discrete moment

m2 = Gf̃2, (9)

which similarly has the derivative

∂m2

∂Θ
=

∂m2

∂ f̃2

∂ f̃2

∂Θ
= G∇f̃2. (10)

The discrete image of σ2 can be computed from the mo-
ments as m2 −m1 ⊗m1 and its derivative directly follows
from expressions above and the product rule for m1 ⊗m1.

The distance d(x) is independent of the shadow map. Its
variation with Θ stems from possible modification of the
position of the light source or geometry and can be eas-
ily expressed. Lastly, v̂ is a piecewise rational function of
these variables, with the boundary between the two pieces
at d = µ depending on both d and µ. This requires no
special treatment, however, because v̂ is a continuously dif-
ferentiable function across d = µ, as we see from

∂v̂

∂µ
= −∂v̂

∂d
=

{
2 σ2(d−µ)

(σ2+(d−µ)2)2
d > µ

0 else
. (11)

Thus, ∂v̂
∂Θ can be directly computed using the chain rule.

Direc�onal Lights Spot Lights IBLPoint Lights

Figure 4. We implement directional lights and spot lights in our
framework. An extension to omnidirectional point lights is straight
forward. Image-based lighting (IBL) is not supported, but the il-
lumination from some environment maps can be sufficiently well
approximated by a collection of point lights.

5. Implementation and Parameter Exploration
Our reference implementation is based on NVD-

IFFRAST [30] for creating and smoothing the shadow map.
The Jacobians ∇f̃ and ∇f̃2 (w.r.t. the scene parameters)
are not explicitly computed. Rather, we use reverse-mode
differentiation to compute the gradients of an objective
function. The relevant derivatives are computed automat-
ically [55] and are implicitly evaluated.

We currently use a single shadow map per light source,
which supports directional lights and spot lights. Omnidi-
rectional point lights can be implemented by creating and
querying several shadow maps. Area lights or environ-
ment lighting would have to be approximated by point light
sources – we leave a more accurate treatment for future
work. Figure 4 illustrates the supported light sources in our
current implementation.

By building on an existing differentiable rasterizer and
automatic differentiation, our code becomes rather straight-
forward. The pseudo-code below is provided for a single
light source – keep in mind that the methods have to be exe-
cuted for each light source. The pre-computation of the pre-
filtered depth images m1 and m2 is described in Alg. 1 be-
low. Here, we assume that the RENDERSCENE function re-
turns the smoothed discrete depth image f̃ as well as f̃2. The
modular design of NVDIFFRAST implements this in two
steps, first providing the discrete values f and f2 = f ⊗ f ,
which are then smoothed using the antialias function.
We implement the filtering as a convolution with a kernel
of size k (e.g. a Gaussian). Once the discrete smoothed
shadow maps have been computed, the visibility for a point
x ∈ X can be computed with Alg. 2.

Algorithm 1 Render the shadow map for a light source l

function RENDERSHADOWMAP(X , pl, k)
f̃ , f̃2 ← RENDERSCENE(X ,pl)
m1 ← FILTER(f̃ , k)
m2 ← FILTER(f̃2, k)
return m1, m2

Optimization without Smoothed Shadow Map. We test
our hypothesis that the discrete shadow map f and f2 must
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Algorithm 2 Compute the visibility between a point x and
a light at p given the pre-filtered shadow map

function COMPUTEVISIBILITY(x, p, m1, m2)
u← L(x)
m1,m2 ← SAMPLESHADOWMAP(u,m1,m2)
d← d(x,p), µ← m1, σ2 ← m2 −m2

1

if d ≤ µ then return 1
else return σ2/(σ2 + (d− µ)2)

R
en

d
er

in
g

Ini�al No An�-Aliasing With An�-AliasingReference

Figure 5. Convergence behavior for a simple scene with and with-
out using a smoothed shadow map in the differentiable rasterizer.
Without smoothing, shadow discontinuities are not properly dif-
ferentiated and optimization fails.

be turned into smooth versions f̃ and f̃2 for properly track-
ing shadow discontinuities. This is facilitated by the modu-
larity of NVDIFFRAST that allows disabling the smoothing.

Our setup is as simple as possible: a single square oc-
cluder casts a single shadow on a single square receiver. We
optimize the position of one displaced vertex of the occluder
to reproduce the shadow in a reference configuration (see
Figure 5). The optimization minimizes the mean squared
error to the reference shadow image.

We find that the target configuration is not attained
when using the discontinuous discrete shadow map for gen-
erating the visibility (i.e., without using NVDIFFRAST’s
antialias function). Importantly, this result is indepen-
dent of the kernel k used for pre-filtering to generate the
moments m1 and m2. In other words, filtering f and f2

cannot recover the connection between the scene parame-
ters and the shadow boundaries. Using the smooth functions
(i.e., applying antialias to f and f2) shows the expected
convergence across variations of all other parameters.

Shadow Map Resolution and Filter Kernel. The
shadow map resolution and the filter kernel size are key pa-
rameters as they directly affect the quality of the shadow
approximation (see Figure 6). Instead of investigating the
forward pass of shadow map rendering, we focus on the
backward pass, because it influences the gradient computa-
tion and any optimization based on it.

Consider a scene similar to the one above, now with a
highly tessellated and slightly rotated occluder. High tes-
sellation (relative to shadow map pixels) results in sparse
shadow map Jacobians for occluder geometry because the

1282 322 5122 

k = 3 k = 7 k = 13 

Figure 6. Effect of shadow map resolution (top row) and filter size
k (bottom row) on the shadows cast by differently slanted planes.

Finite Difference Automa�c Deriva�ves with Filter Size k
k = 0 7 15

Figure 7. Jacobian of the visibility∇xv, where x is the horizontal
translation of a highly tessellated occluder over a planar receiver.
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Figure 8. Convergence plots for the single rectangular occluder
experiment with different filter kernel sizes k. Stochastic gradient
descent (left) and ADAM [28] (right) with small and large steps
sizes α. The y-axis shows the signed error of the x translation.

anti-aliasing misses primitive boundaries. This might oc-
cur for arbitrary differentiable renderers relying on explicit
boundary detection. The filter applied to recover the mo-
ments (Eqs. (7), (9)) is also applied to the Jacobians of the
shadow map and thus affects the Jacobian of the visibility
function (see Figure 7). While the filter kernel size is merely
a visual effect in the forward pass, it can indeed affect the
optimization: Figure 8 shows that larger filter kernels in-
crease the robustness of gradient descent, both for stochastic
gradient descent and momentum-based variants. However,
larger kernels also increase the runtime.

Low shadow map resolution may lead to occluders be-
ing missed completely by the visibility test (see Figure 6,
top row). These issues can be alleviated by increasing the
shadow map resolution; again at the cost of runtime.

In the following we consider a more complex setting to
test different shadow map resolutions and filter kernel sizes
in a more involved optimization: an object is placed on
a rectangular floor plane and illuminated by n directional
lights (Figure 9). Given a single reference image Iref, we
wish to recover the n light directions {li}, minimizing the
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Reference Filter Kernel Size Shadow Map Resolu�on
3 15 642 5122

Figure 9. Light direction estimation with four lights, varying filter
kernel sizes and shadow map resolutions.
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Figure 10. Quantitative results for the parameter exploration, us-
ing a light direction estimation experiment. The y-axis in the top
row is the average alignment of predicted light directions to the
reference light directions, measured by the dot product.

mean squared image error.
We run the optimization for different objects and vary-

ing number of lights n. We report qualitative results in
Figure 9 and quantitative results in Figure 10. As ex-
pected, increasing the shadow map resolution or the filter
kernel size increases the runtime. The optimization behaves
robustly with high accuracy and consistent error bounds
across resolutions and filter sizes. Again, the accuracy im-
proves slightly with larger filter size, albeit this improve-
ment seems marginal considering the error bounds. Lower-
ing the shadow map resolution has a similar effect because
the effective filter footprint increases if k stays constant. We
observe that the optimization for one light can get stuck in
local minima where the shadows do not align but the shade
of the floor plane matches that in the reference image. For
multiple lights, shadows dominate the image, so this sce-
nario is less likely; this could explain the different error
bounds. Conversely, recovering multiple lights is more dif-
ficult, hence the lower average accuracy. These challenges
are specific to the task and, in general, we observe that our
method works robustly with different sets of parameters.

6. Applications
We run all experiments on a workstation with an

NVIDIA 1070 Ti GPU with 8 GB VRAM.

6.1. Monocular Pose Estimation

Estimating the orientation and position of an object from
images is a classic computer vision task. The problem be-

2 Lights 3 Lights1 Light

Mitsuba 3

Ours

Figure 11. Visual difference between path-traced images by Mit-
suba 3 [22] in direct illumination mode and our approximation
based on local shading models and pre-filtered shadow maps.

Reference Ini�al Rast. Rast. + Shadow Mitsuba 3

Figure 12. Pose estimation results with path-traced references. In
most cases, shadows provide viable cues for convergence (top row)
but occasionally pure local shading is sufficient (bottom row).

comes easier for sequences of images [34] or if priors ap-
ply, such as in pose estimation of human body parts [11,64].
Given only a single (monocular) image makes retrieving the
rigid transformation of an known object ill-posed. Shafer
and Kanade [65] noticed that the shadow of an object in the
image provides viable cues for reducing the ambiguity. We
consider a simplified version of the 6D problem, allowing
only 2 translational and one rotational degree of freedom.
We place an object in front of a receiver plane and a direc-
tional light orthogonal to the plane. In this setting, we re-
cover the parameters t = (x, y) (translation parallel to the
plane) and φ (rotation around the object-centric “up” axis),
given a reference image Iref.

We perform tests across a variety of common 3D mesh
models. The reference images are generated using the dif-
ferentiable path tracer Mitsuba 3 [22] in direct illumination
mode. We verify that our local shading model can generate
images similar to the reference images (Figure 11). The re-
sults are generated by averaging over several random start-
ing conditions for each object. This experiment is repeated
for different camera image resolutions (1282, 5122, 10242).

We report quantitative results for the 5122 resolution in
Table 1 (more data is in the supplementary material) and
qualitative results in Figure 12. Mitsuba 3 recovers the ro-
tation and translation most accurately, which could be at-
tributed to its accurate gradient computation, using multiple
sub-pixel samples. It should be expected, however, that the
results are biased towards the method used for generating

147



Table 1. Quantitative results for the pose estimation experiments
for different scenes and image resolution 512 × 512 (full table in
the supplementary material). We measure the rotation error ∆φ,
the translation error ∆t, and the total runtime t, averaged over ten
runs. We include results for a GPU with ray-tracing cores (“RT”)
and for a setting where we use our renderer as reference (“Our
Ref.”). Best scores in bold, second best scores underlined.

Mitsuba 3 [22] Rast. + Shadows (Ours) Rasterizer

↓ ∆φ[◦] ↓ ∆t ↓ t [s] ↓ ∆φ[◦] ↓ ∆t ↓ t [s] ↓ ∆φ[◦] ↓ ∆t ↓ t [s]

Bunny 0.23 0.10 325.29 0.33 0.22 3.76 0.31 0.26 1.58
Dragon 2.86 3.91 306.46 3.32 4.53 3.64 8.02 11.63 1.54
Hand 1.41 5.18 317.40 1.68 5.36 3.66 1.85 5.66 1.51
Spot 0.03 0.02 381.80 0.05 0.05 3.76 5.80 23.15 1.77

Spot (RT) 0.03 0.02 53.26 0.05 0.05 1.93 6.92 21.52 1.05
Spot (Our Ref.) 0.05 0.12 384.24 0.02 0.06 3.60 5.83 23.12 1.71

Ground Truth Op�mized (1 Shadow) Op�mized (3 Shadows)

Figure 13. Face reconstruction from synthetic shadows.

the reference images. We show that this is the case by using
our renderer as reference for one experiment (see Table 1)
and finding our method to yield the most accurate results in
this instance. Across all experiments, not using shadows at
all and relying purely on the shading of the object surface
performs worst, yet still manages to converge to reasonable
solutions in some instances.

Unsurprisingly, rasterization is magnitudes faster than
path tracing, both with and without shadows. Shadow map-
ping roughly doubles the runtime in rasterization, however,
the pose estimation accuracy is significantly increased: our
method consistently yields accuracy similar or close to the
path tracing approach. Modern GPUs posses hardware units
for ray-triangle intersections that significantly increase ray
tracing performance. We include scores for a system with
such a GPU (NVIDIA RTX 3080 Ti). It improves the path
tracing runtime but, at least in this example, rasterization is
still 27× faster.

6.2. Face Reconstruction from Profile Shadows

While the variation within certain classes of objects is
governed by pose, such as in articulated objects, deforma-
tions are best described by morphable models. A promi-
nent example for morphable models is face geometry [14].

Ini�al Prince Philip Gary Lineker Derren Brown

Reference

Ours

Figure 14. Face reconstruction from real silhouettes of public fig-
ures. We masked out hair, facial hair, and the base.

Our idea is to reconstruct face geometry from one (or more)
shadows of the face. We base the experiment on the pub-
licly available morphable model assembled by Li et al. [35]
(other models would work as well).

In the first experiment we generated synthetic shadows
from the morphable model. This allows comparing the op-
timization result not just based on images but also geome-
try (see Figure 13). We find that using more shadows only
slightly increases the runtime (the time is not linear in the
number of light sources, because we have one base pass and
multiple shadow passes) but significantly improves the ac-
curacy (see supplementary material for quantitative results).

We have also performed reconstructions of face ge-
ometry from ‘real’ silhouettes, created manually by artist
Charles Burns using scissors and black paper [8] (the pro-
cess is shown here [1]). We ignore regions appearing to be
(facial) hair or torso as those are not captured by the mor-
phable model we use. While the lack of ground truth makes
it difficult to quantify the resulting geometry, visually they
appear to be reasonable approximations (Figure 14).

6.3. Shadow Art

Shadow Art [20, 46] is the design of a 3D object based
only on the shadows it casts. When solving this design
problem computationally, it is commonly simplified by as-
suming that the shadows are cast to planar surfaces orthog-
onal to directional lights, reducing the shadow images to
silhouettes. In the traditional approach [46], the object is
represented on a volumetric grid and voxel lines outside
the shadow regions are removed – similar in spirit to visual
hulls [33] or space carving [29]. Sadekar et al. [63] perform
Shadow Art with differentiable rendering of meshes, but the
limitation of co-located cameras and lights remains.

In our framework, lights and cameras can be placed arbi-
trarily. Also, curved shadow receivers work out-of-the-box
(Figure 15). The only (minor) constraints we impose are
gradient pre-conditioning [48] and a smoothness term be-
tween the normals of neighboring faces [41, 72] to avoid
arbitrary vertex movements during optimization.

A single triangle mesh is only one possible representa-
tion of the generated geometry. The combination of auto-
matic differentiation and gradient descent allows optimizing
arbitrary scene parameters. For example, we can also repre-
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Figure 15. Shadow Art with one view. Our method can be used for simple scenes with co-located light and camera (left), for more complex
settings with perspective cameras that observe the shadow receiver from any direction (middle), and for complex receiver geometry (right).
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Figure 16. Shadow art with two views. Our method can be used
in any setting that permits differentiable rendering, for example
optimizing vertex positions of a mesh (left) or optimizing the pa-
rameters of multiple geometric objects (middle and right).

sent the object as a collection of shapes (see Figure 16).
Beyond our reference implementation based on triangle
meshes, the same approach readily works with any geom-
etry representation as long as it can be differentiably ren-
dered (e.g. signed distance functions [4,68] or spheres [31]).

6.4. Interactive Modeling from Shadows

Our rasterization-based implementation generates shad-
ows and – most importantly – the gradients of the objec-
tive function in real time. We demonstrate this by turn-
ing the shadow art setting, which is usually concerned with
static reference shadows, into a “shadow modeling” setting,
where a user can interactively paint the target shadows and
an appropriate deformation is applied to the initial geome-
try in real time (see Figure 17). Note that using co-located
camera and light is a design decision since painting silhou-
ettes feels intuitive – the method is not limited to this setup.

7. Conclusion

Our approach to inverse graphics using differentiable
rasterization with local shading models and shadow maps
helps in closing the gap between efficient differentiable
renderers based on rasterization and renderers based on
path tracing and Monte Carlo methods that more accurately
model light transport.

Op�mizedUser InputIni�al

Figure 17. Shadow art from one view, with co-located camera and
light is used as an interactive modeling tool. Users can modify the
shadow of the reference object (gray) and an appropriate deforma-
tion is applied to the mesh in real-time (green).

Limitations Focusing on direct shadows neglects other
effects of global illumination. But even within the frame-
work of local shading models with shadow maps we have
made simplifiying assumptions: so far we consider only
point light sources (instead of area lights) and for those we
consider only one planar shadow map. Also, the particular
choice of variance shadow maps suffers from artifacts, such
as light bleeding, i.e. shadows becoming lighter in regions
of high depth variance. Independent of the illumination ef-
fects, we have so far only considered triangle meshes for the
representation of geometry.

Possible Generalizations Apart from shadows, various
effects of global illumination have been recreated by effi-
cient real-time approximations. Approaches very similar to
ours may readily work with ambient occlusion [45], reflec-
tions and refractions [19], or generally indirect illumination.

Other geometry representations that are popular in the
vision community, such as signed distance fields [24] or
NeRFs [44], should work with shadow maps as well – al-
though it is not clear if the same efficiency can be achieved,
as the fast computation is mainly achieved by rasterizing
triangle primitives.
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