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Abstract

Vision-language models (VLMs) pre-trained on large-
scale image-text pairs have demonstrated impressive trans-
ferability on various visual tasks. Transferring knowledge
from such powerful VLMs is a promising direction for build-
ing effective video recognition models. However, current
exploration in this field is still limited. We believe that the
greatest value of pre-trained VLMs lies in building a bridge
between visual and textual domains. In this paper, we pro-
pose a novel framework called BIKE, which utilizes the
cross-modal bridge to explore bidirectional knowledge: i)
We introduce the Video Attribute Association mechanism,
which leverages the Video-to-Text knowledge to gen-
erate textual auxiliary attributes for complementing video
recognition. ii) We also present a Temporal Concept Spot-
ting mechanism that uses the Text-to-Video expertise
to capture temporal saliency in a parameter-free manner,
leading to enhanced video representation. Extensive stud-
ies on six popular video datasets, including Kinetics-400 &
600, UCF-101, HMDB-51, ActivityNet and Charades, show
that our method achieves state-of-the-art performance in
various recognition scenarios, such as general, zero-shot,
and few-shot video recognition. Our best model achieves
a state-of-the-art accuracy of 88.6% on the challenging
Kinetics-400 using the released CLIP model. The code is
available at https://github.com/whwu95/BIKE.

1. Introduction

In recent years, the remarkable success of large-
scale pre-training in NLP (e.g., BERT [9], GPT [4, 38],
ERNIE [69] and T5 [39]) has inspired the computer vi-
sion community. Vision-language models (VLMs) lever-
age large-scale noisy image-text pairs with weak correspon-
dence for contrastive learning (e.g., CLIP [37], ALIGN
[19], CoCa [65], Florence [66]), and demonstrate impres-
sive transferability across a wide range of visual tasks.
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Figure 1. Illustration of the difference between our paradigm (c)
with existing unimodality paradigm (a) and cross-modal paradigm
(b). Please zoom in for the best view.

Naturally, transferring knowledge from such powerful
pre-trained VLMs is emerging as a promising paradigm for
building video recognition models. Currently, exploration
in this field can be divided into two lines. As depicted in
Figure 1(a), one approach [27,35,64] follows the traditional
unimodal video recognition paradigm, initializing the video
encoder with the pre-trained visual encoder of VLM. Con-
versely, the other approach [21,34,48,58] directly transfers
the entire VLM into a video-text learning framework that
utilizes natural language (i.e., class names) as supervision,
as shown in Figure 1(b). This leads to an question: have we
fully utilized the knowledge of VLMs for video recognition?

In our opinion, the answer is No. The greatest charm of
VLMs is their ability to build a bridge between the visual
and textual domains. Despite this, previous research em-
ploying pre-aligned vision-text features of VLMs for video
recognition has only utilized unidirectional video-to-text
matching. In this paper, we aim to facilitate bidirectional
knowledge exploration through the cross-modal bridge for
enhanced video recognition. With this in mind, we mine
Video-to-Text and Text-to-Video knowledge by
1) generating textual information from the input video and
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2) utilizing category descriptions to extract valuable video-
related signals.

In the first Video-to-Text direction, a common
practice for mining VLM knowledge is to embed the in-
put video and category description into a pre-aligned fea-
ture space, and then select the category that is closest to
the video, as illustrated in Figure 1(b), which serves as our
baseline. One further question naturally arises: Can we
incorporate auxiliary textual information for video recog-
nition? To address this question, we introduce an Video-
Attributes Association mechanism, which leverages the
zero-shot capability of VLMs to retrieve the most relevant
phrases from a pre-defined lexicon for the video. These
phrases are considered potential “attributes” of the video
and can predict the video category directly. For example, a
video of someone kicking a soccer ball may be associated
with relevant phrases such as “running on the grass”, “jug-
gling soccer ball” and “shooting goal”. Surprisingly, us-
ing only the generated attributes, we can achieve 69% top-1
accuracy on the challenging Kinetics-400 dataset. Further-
more, these attributes provide additional information that
the video visual signal may not capture, allowing us to build
an Attributes Recognition Branch for video recognition.

In the second Text-to-Video direction, we believe
that temporal saliency in videos can be leveraged to improve
video representations. For instance, in a video with the cat-
egory “kicking soccer ball”, certain frames of kicking the
ball should have higher saliency, while other frames that
are unrelated to the category or background frames should
have lower saliency. This insight motivates us to propose
the Video Concept Spotting mechanism, which utilizes the
cross-model bridge to generate category-dependent tempo-
ral saliency. In previous works [34, 48, 58], this intuitive
exploration was disregarded. To be more specific, instead
of treating each video frame equally, we use the correlation
between each frame and the given concept (e.g., category)
as a measure of frame-level saliency. This saliency is then
used to temporally aggregate the frames, resulting in a com-
pact video representation.

In the light of the above explorations, we propose BIKE,
a simple yet effective framework via BIdirectional cross-
modal Knowledge Exploration for enhanced video recog-
nition. Our BIKE comprises two branches: the Attributes
branch, which utilizes the Video-Attributes Association
mechanism to introduce auxiliary attributes for complemen-
tary video recognition, and the Video branch, which uses the
Video Concept Spotting mechanism to introduce tempo-
ral saliency to enhance video recognition. To demonstrate
the effectiveness of our BIKE, we conduct comprehensive
experiments on popular video datasets, including Kinetics-
400 [22] & 600 [6], UCF-101 [43], HMDB-51 [24], Ac-
tivityNet [5] and Charades [41]. The results show that our
method achieves state-of-the-art performance in most sce-

narios, e.g., general, zero-shot, and few-shot recognition.
Our main contributions can be summarized as follows:

• We propose a novel framework called BIKE that
explores bidirectional knowledge from pre-trained
vision-language models for video recognition.

• In the Video-to-Text direction, we introduce the
Video-Attributes Association mechanism to generate
extra attributes for complementary video recognition.

• In the Text-to-Video direction, we introduce the
Video Concept Spotting mechanism to generate tem-
poral saliency, which is used to yield the compact
video representation for enhanced video recognition.

2. Methodology
An overview of our proposed BIKE is shown in Figure 2.

We next elaborate on each component in more detail.

2.1. Preliminary: Video Recognition with VLM

In this section, we describe the typical cross-modal video
recognition pipeline [21,34,48,58] based on the pre-trained
vision-language model (VLM). Given a video, we sample
T frames from the video as input v. We also have a col-
lection of categories C = {c1, c2, · · · , cK}, where K is the
number of classes. The goal of the video recognition task is
to classify the video v into a category c ∈ C. Under the for-
mulation of video recognition, the video v is encoded with
a vision encoder f(·|θv) to obtain the video embedding ev,
and the category c is encoded with a text encoder g(·|ϕc) to
obtain the category embedding ec, where

ev = f(v|θv), ec = g(c|ϕc). (1)

Finally, we obtain the similarity score SV as follows:

SV = s(ev, ec), (2)

where s(·, ·) is the cosine similarity function. The ob-
jective during training is to maximize SV if v and c are
matched, and minimize it in all other cases. During infer-
ence, we compute the score between the video embedding
and each category embedding, and choose the category with
the highest SV as the top-1 prediction. The parameter θv
and ϕc of the video encoder and text encoder are initialized
with weights from the pre-trained VLM (e.g., CLIP [37]).
Throughout the rest of this work, we use the same notation.

2.2. Video-to-Text: Video-Attributes Association

First we focus on exploring Video-to-Text auxiliary
signals. We present an Attributes branch as a complement
to the regular Video branch in Sec. 2.1 for video recognition.
Pre-generated Attributes. We begin by describing how to
generate auxiliary attributes. As depicted in Figure 2(b), we
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Figure 2. An overview of our BIKE for video recognition. (a) BIKE explores bidirectional cross-modal knowledge from the pre-trained
vision-language model (e.g., CLIP) to introduce auxiliary attributes and category-dependent temporal saliency for improved video recog-
nition. BIKE comprises an auxiliary Attributes branch and a main Video branch. (b) In the Video-to-Text direction, we present the
Video-Attribute Association mechanism, which retrieves semantically relevant phrases from a pre-defined lexicon as video attributes for
the input video. These attributes are concatenated and combined with a textual prefix to form an attribute sentence for text recognition. (c)
In the Text-to-Video direction, we present the Video Concept Spotting mechanism, which computes the similarity between video
frames and a given category as a measure of temporal saliency to enhance video representation. D is the dimension of embedding, T is the
number of frames, and N is the number of words in the category name.

utilize the zero-shot capability of the VLM (e.g., CLIP [37])
to identify the most relevant phases from a pre-defined lex-
icon as possible “Attributes” of the video. To achieve this,
we first apply the CLIP’s image encoder to the input video
V to extract frame-level features. These features are then
combined using average pooling to yield a video embed-
ding. Next, we feed each phase in the pre-defined lexi-
con into the CLIP’s text encoder to produce a set of text
embeddings. We then calculate the similarity between this
video embedding and each text embedding, sort the results,
and select the top few phrases as the “Attributes”. Once
we have obtained the attributes, we employ a simple fusion
method that concatenates them into a single attributes sen-
tence a. We also add a manually-designed prompt as a pre-
fix to the sentence, such as “This is a video about {}”.
Attributes Recognition. As shown in Figure 2(a), the at-
tributes sentence a is encoded with a text encoder g(·|ϕa) to
produce the attribute embedding ea:

ea = g(a|ϕa). (3)

We use this attribute embedding to perform Attributes
Recognition by calculating the similarity SA between the
attribute embedding and category embeddings. Note that
both the attribute sentence and categories are encoded us-
ing the same text encoder from CLIP. Interestingly, the At-
tributes branch can achieve a certain level of recognition
performance (e.g., ∼56%) without any extra training, even
though it’s a lightweight text recognition pipeline. During
inference, we combine the well-trained Video branch with
the plug-and-play Attributes branch using the following fu-
sion equation:

S = λSV + (1− λ)SA, (4)

where λ is the fusion weight. Without any additional train-
ing, the Attributes Recognition surprisingly improve the

video recognition performance, e.g., 78.8% +1.2%−−−−→ 80.0%
on the challenging Kinetics-400. Naturally, the text encoder
g(·|ϕa) can be further trained in an end-to-end manner to
improve the Attributes branch and provide a stronger com-

plementary capability, e.g., 78.8% +2.6%−−−−→ 81.4%.
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2.3. Text-to-Video: Video Concept Spotting

In Sec. 2.2, the Video-to-Text knowledge is em-
ployed to generate auxiliary attributes, thereby construct-
ing a complementary Attributes branch. Naturally, we also
conduct an exploration to leverage the Text-to-Video
knowledge to enhance the standard Video branch for video
recognition. Specifically, we propose the use of category-
dependent temporal saliency to guide the temporal aggre-
gation process, resulting in a compact video representation
that enhances video recognition.
Background. To obtain a video representation based on a
pre-trained image model, the typical pipeline involves two
stages. First, we employ the image model to extract the
spatial embedding of each frame. Next, the embeddings of
these frames are temporally aggregated (e.g., mean pooling)
to yield a video-level representation.
Parameter-Free Video Concept Spotting. Mean pooling
is a widely used technique to aggregate the frame embed-
dings and obtain the final video representation. Instead
of treating each video frame equally as in mean pooling,
we propose a parameter-free solution that utilizes the pre-
aligned visual and textual semantics offered by the VLM
(e.g., CLIP [37]) to capture temporal saliency for video
feature aggregation, as illustrated in Figure 2(c). To es-
timate temporal saliency, we employ word embeddings as
the query to obtain finer word-to-frame saliency. Formally,
the pre-trained VLM can encode each video or category
name separately, and output two sets of embeddings: {vt ∈
Rd|t = 1, 2, · · · , T} is a set of frame embeddings, where
T is the number of sampled frames, and {tn ∈ Rd|n =
1, 2, · · · , N} is a set of word embeddings, where N is the
number of words in the class name. We calculate the sim-
ilarity between each word and each frame to measure the
fine-grained relevancy. After that, we perform a softmax
operation to normalize the similarities for each frame, and
then aggregate the similarities between a certain frame and
different words to obtain a frame-level saliency.

St =
1

N

N∑
n=1

exp(vt
Ttn/τ)∑T

t=1 exp(vt
Ttn/τ)

, t ∈ [1, T ], n ∈ [1, N ],

(5)
where τ is the temperature of this softmax function. See
Figure 3 for the visualization of temporal saliency. Next,
we utilize the temporal saliency to aggregate these frame
embeddings as follows:

ev =
T∑

t=1

vtSt, (6)

ev ∈ Rd is the final enhanced video representation.

2.4. Objectives of BIKE

We present the BIKE learning framework for video
recognition, as depicted in Figure 2(a). Formally, our BIKE
extracts feature representations ev, ea, and ec for a given
video v, pre-generated attributes a, and category c with
the corresponding encoders f(·|θv), g(·|ϕa), and g(·|ϕc).
Model parameters θv , θa, and θc are initialized with the
weights from the pre-trained VLM (e.g., CLIP [37]). In
this paper, we freeze the parameters of the pre-trained text
encoder for g(·|ϕc) and design extra manual prompts for the
category c and attributes sentence a.

During the training phase, our objective is to ensure that
the video representation ev and the category representation
ec are similar when they are related and dissimilar when
they are not, and the same applies to the attributes-category
pairs. Given a batch of B quadruples {evi, eai, eci ≡
C[yi], yi}Bi=1, where C is the collection of K categories in-
dexed by yi ∈ [0,K − 1] and yi is a label indicating the
index of the category in the dataset, and evi, eai, eci de-
note the i-th video embedding, attributes embedding, and
category embedding, respectively. We follow the common
practice [21,48] to consider the bidirectional learning objec-
tive and employ symmetric cross-entropy loss to maximize
the similarity between matched Video-Category pairs and
minimize the similarity for other pairs:

LV 2C = − 1

B

B∑
i

1

|K(i)|
∑

k∈K(i)

log
exp(s(eci, evk)/τ)∑B
j exp(s(eci, evj)/τ)

,

LC2V = − 1

B

B∑
i

1

|K(i)|
∑

k∈K(i)

log
exp(s(eck, evi)/τ)∑B
j exp(s(ecj , evi)/τ)

,

LV =
1

2
(LV 2C + LC2V ),

(7)
where k ∈ K(i) = {k|k ∈ [1, B], yk = yi}, s(·, ·) is
the cosine similarity, and τ refers to the temperature hyper-
parameter for scaling. Similarly, the loss for Attributes
branch is formulated as:

LA2C = − 1

B

B∑
i

1

|K(i)|
∑

k∈K(i)

log
exp(s(eci, eak)/τ)∑B
j exp(s(eci, eaj)/τ)

,

LC2A = − 1

B

B∑
i

1

|K(i)|
∑

k∈K(i)

log
exp(s(eck, eai)/τ)∑B
j exp(s(ecj , eai)/τ)

,

LA =
1

2
(LA2C + LC2A).

(8)
The total loss L is the sum of LV and LA:

L = LV + LA. (9)

For inference, we simply combine the similarity score of the
two branches as Equation 4.
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Method Venue Input Pre-training Top-1(%) Top-5(%) Views FLOPs Param

NL I3D-101 [49] CVPR’18 128×2242 ImageNet-1K 77.7 93.3 10×3 359×30 61.8
MVFNetEn [54] AAAI’21 24×2242 ImageNet-1K 79.1 93.8 10×3 188×30 -
TimeSformer-L [2] ICML’21 96×2242 ImageNet-21K 80.7 94.7 1×3 2380×3 121.4
ViViT-L/16×2 [1] ICCV’21 32×3202 ImageNet-21K 81.3 94.7 4×3 3992×12 310.8
VideoSwin-L [30] CVPR’22 32×3842 ImageNet-21K 84.9 96.7 10×5 2107×50 200.0
Methods with large-scale image pre-training
ViViT-L/16×2 [1] ICCV’21 32×3202 JFT-300M 83.5 95.5 4×3 3992×12 310.8
ViViT-H/16×2 [1] ICCV’21 32×2242 JFT-300M 84.8 95.8 4×3 8316×12 647.5
TokenLearner-L/10 [40] NeurIPS’21 32×2242 JFT-300M 85.4 96.3 4×3 4076×12 450
MTV-H [63] CVPR’22 32×2242 JFT-300M 85.8 96.6 4×3 3706×12 -
CoVeR [68] arXiv’21 16×4482 JFT-300M 86.3 - 1×3 - -
CoVeR [68] arXiv’21 16×4482 JFT-3B 87.2 - 1×3 - -
Methods with large-scale image-language pre-training
CoCa ViT-giant [65] arXiv’22 6×2882 JFT-3B+ALIGN-1.8B 88.9 - - - 2100
VideoPrompt ViT-B/16 [21] ECCV’22 16×2242 WIT-400M 76.9 93.5 - - -
ActionCLIP ViT-B/16 [48] arXiv’21 32×2242 WIT-400M 83.8 96.2 10×3 563×30 141.7
Florence [66] arXiv’21 32×3842 FLD-900M 86.5 97.3 4×3 - 647
ST-Adapter ViT-L/14 [35] NeurIPS’22 32×2242 WIT-400M 87.2 97.6 3×1 8248 -
AIM ViT-L/14 [64] ICLR’23 32×2242 WIT-400M 87.5 97.7 3×1 11208 341
EVL ViT-L/14 [27] ECCV’22 32×2242 WIT-400M 87.3 - 3×1 8088 -
EVL ViT-L/14 [27] ECCV’22 32×3362 WIT-400M 87.7 - 3×1 18196 -
X-CLIP ViT-L/14 [34] ECCV’22 16×3362 WIT-400M 87.7 97.4 4×3 3086×12 -
Text4Vis ViT-L/14 [58] AAAI’23 32×3362 WIT-400M 87.8 97.6 1×3 3829×3 230.7

BIKE ViT-L/14 CVPR’23
16×2242

WIT-400M
88.1 97.9 4×3 830×12 230

8×3362 88.3 98.1 4×3 932×12 230
32×3362 88.6 98.3 4×3 3728×12 230

Table 1. Comparisons with state-of-the-art methods on Kinetics-400. We report the FLOPs in inference phase.“Views” indicates # temporal
clip × # spatial crop. The magnitudes are Giga (109) and Mega (106) for FLOPs and Param.

3. Experiments

3.1. Setups

We conduct experiments on six widely used video
benchmarks, i.e., Kinetics-400 [22] & 600 [6], Activ-
ityNet [5], Charades [41], UCF-101 [43] and HMDB-
51 [24]. See Supplementary for statistics of these datasets.

Training & Inference. In our experiments, we adopt
the visual encoder of CLIP [37] as the video encoder and
use the textual encoder of CLIP for both the category and
attributes encoders. To avoid conflict between the two
branches, we first train the video encoder and then the at-
tributes encoder. To prepare the video input, we sparsely
sample T (e.g., 8, 16, 32) frames. We set the temperature
hyperparameter τ to 0.01 for all training phases. See Sup-
plementary for detailed training hyperparameters.

To trade off accuracy and speed, we consider two evalua-
tion protocols. (1) Single View: We use only 1 clip per video
and the center crop for efficient evaluation, as shown in Ta-
ble 6. (2) Multiple Views: It is a common practice [7,14,54]
to sample multiple clips per video with several spatial crops
to get higher accuracy. For comparison with SOTAs, we use

four clips with three crops (“4×3 Views”) in Table 1.

3.2. Main Results

Comparison with State-of-the-arts. We present our re-
sults on Kinetics-400 in Table 1 and compare our ap-
proach with SOTAs trained under various pre-training set-
tings. Our approach outperforms regular video recognition
methods while requiring significantly less computation, as
shown in the upper table. We also demonstrate superiority
over methods that use web-scale image pre-training, such
as JFT-300M [44] and JFT-3B [67]. Our model performs
better than all JFT-300M pre-trained methods, achieving a
higher accuracy (+2.3%) than CoVeR [68]. Surprisingly,
our method even outperforms the JFT-3B pre-trained model
(88.6% v.s. 87.2%) despite the latter having almost 3 bil-
lion annotated images and a data scale 7.5×larger than ours.
We further compare our method with others using web-
scale image-language pre-training, such as CLIP [37] and
Florence [66]. Despite Florence having a larger dataset
(2×more data than the 400M image-text data used in CLIP),
our approach still achieves a higher accuracy by 2.1%. Ad-
ditionally, using only 8 frames and the same CLIP pre-
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Method Top-1 mAP

ListenToLook [17] - 89.9
MARL [55] 85.7 90.1
DSANet [59] - 90.5
TSQNet [60] 88.7 93.7
NSNet [61] 90.2 94.3

BIKE ViT-L 94.7 96.1

Table 2. Comparisons with SOTAs
on ActivityNet.

Method Frames mAP

MultiScale TRN [71] - 25.2
STM [20] 16 35.3
SlowFast R101 [14] 16+64 42.5
X3D-XL (312↑) [13] 16 43.4
ActionCLIP [48] 32 44.3

BIKE ViT-L 16 50.4

Table 3. Comparisons on Multi-label
video dataset Charades.

Method Shot HMDB UCF ANet K400

VideoSwin [30] 2 20.9 53.3 - -
VideoPrompt [21] 5 56.6 79.5 - 58.5
X-Florence [34] 2 51.6 84.0 - -

BIKE ViT-L
1 72.3 95.2 86.6 73.5
2 73.5 96.1 88.7 75.7
5 77.7 96.5 90.9 78.2

Table 4. Comparisons on few-shot action recognition
across four video datasets.

Method UCF∗ / UCF HMDB∗ / HMDB ActivityNet∗/ ActivityNet Kinetics-600

GA [33] 17.3±1.1 / - 19.3±2.1 / - - -
TS-GCN [16] 34.2±3.1 / - 23.2±3.0 / - - -
E2E [3] 44.1 / 35.3 29.8 / 24.8 26.6 / 20.0 -
DASZL [23] 48.9±5.8 / - - / - - -
ER [8] 51.8±2.9 / - 35.3±4.6 / - - 42.1±1.4
ResT [26] 58.7±3.3 / 46.7 41.1±3.7 / 34.4 32.5 / 26.3 -

BIKE ViT-L 86.6±3.4 / 80.8 61.4±3.6 / 52.8 86.2±1.0 / 80.0 68.5±1.2

Table 5. Comparisons on zero-shot video recognition. ∗ denotes randomly selecting half of the test dataset’s classes for evaluation,
repeating the process ten times, and reporting the mean accuracy with standard deviation. For Kinetics-600, we adopt official code [8] to
select the 220 new categories outside of Kinetics-400 for evaluation.

training, our model performs on par with the best results
of other methods, such as EVL [27], X-CLIP [34], and
Text4Vis [58]. When we use more frames as input, our
method achieves a new state-of-the-art accuracy of 88.6%
under the CLIP pre-training setting.

We also evaluate our method on the untrimmed video
dataset, ActivityNet-v1.3, to verify its generalizability.
We fine-tune the Kinetics-400 pre-trained model with 16
frames, and report the top-1 accuracy and mean average pre-
cision (mAP) using the official evaluation metrics. Our ap-
proach significantly outperforms recent SOTAs, as shown
in Table 2. Furthermore, to demonstrate its effectiveness
on smaller datasets, we also evaluate our method on UCF-
101 and HMDB-51, achieving top-1 accuracy of 98.8% and
83.1%, respectively. We include the results in the Supple-
mentary due to space limitations.

Multi-Label Video Recognition. In addition to the single-
label video recognition, we also evaluate our method on
multi-label video recognition. We use the Charades
dataset, which contains long-term activities with multi-
ple actions, and utilize the Kinetics-400 pre-trained ViT-L
backbone for training. The results are evaluated using the
mAP metric. As shown in Table 3, our BIKE achieves the
performance of 50.4% mAP, demonstrating its effectiveness
in multi-label video classification.

Few-Shot Video Recognition. We demonstrate the few-
shot recognition capability of our method, which refers to

video recognition using only a few training samples. In
this experiment, we scaled up the task to categorize all cat-
egories in the dataset with only a few samples per cate-
gory for training. We used a CLIP pre-trained ViT-L/14
with 8 frames for few-shot video recognition, without fur-
ther Kinetics-400 pre-training. The top-1 accuracy on four
datasets is reported in Table 4. Our method shows remark-
able transferability to diverse domain data in a data-poor
situation. On UCF-101 and HMDB-51, our method out-
performs VideoSwin [30] by 42.8% and 52.6%, respec-
tively. In comparison with image-language pre-trained
methods, our method outperforms VideoPrompt [21] and
X-Florence [34] by 21.1% and 21.9% on HMDB-51, re-
spectively. See Supplementary for training details.

Zero-shot Video Recognition. We further evaluate our
method in an open-set setting. Table 5 presents the re-
sults of zero-shot evaluation on four video datasets using
our Kinetics-400 pre-trained model (i.e., ViT-L/14 with 8
frames). There are two major evaluation methods on UCF-
101, HMDB-51, and ActivityNet: half-classes evaluation
(marked as ∗) and full-classes evaluation. For fair com-
parison, we present the results under the half-classes eval-
uation protocol, which has been widely used in previous
works [3, 8, 26, 33]. Additionally, we provide results on
the entire dataset for more challenging and realistic accu-
racy evaluation. See Supplementary for further details on
evaluation protocols. Our method exhibits strong cross-
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Video branch g(·|ϕc) Top-1(%)

Baseline: Mean Pool b 76.8
+ Video Concept Spotting b 78.5 (+1.7)
+ (Technique) Transf b 78.7 (+1.9)
+ Frozen label encoder µ 78.9 (+2.1)

(a) The effectiveness of temporal saliency. b means finetuning
category encoder g(·|ϕc). Transf is the temporal transformer.

VCS
Source

Recognition
Source Top-1

Word Emb. Word Emb. 78.1
[CLS] Emb. [CLS] Emb. 74.7
Word Emb. [CLS] Emb. 78.5

(b) Different category embeddings are used for
Video Concept Spotting (VCS) and recognition.

Attributes Category Top-1

✗ ✗ 46.2
✓ ✗ 51.2
✓ ✓ 56.6

(c) The effects of the textual prompt
in Attributes recognition branch
(w/o training).

#Attributes A V+A

3 53.4 79.9
5 56.6 80.0
7 57.1 79.7

(d) Study on different number
of attributes (w/o training).

Training A V +∆%−−−→ V+A

✗ 56.6 78.9 +1.1%−−−→ 80.0

✓ 69.6 78.9 +2.5%−−−→ 81.4

(e) The impact of Attributes branch.
✓ means fine-tuning the attributes encoder.

V +∆%−−−→ V+A

Baseline 76.8 +2.4%−−−→ 79.2

Ours 78.9 +2.5%−−−→ 81.4

(f) The effects of Attributes branch
to complement Video branch.

Lexicon V +∆%−−−→ V+A

IN-1K 78.9 +1.4%−−−→ 80.3

K400 78.9 +2.5%−−−→ 81.4

(g) Study on the impact of differ-
ent lexicon.

Method T Backbone Top-1(%)

VideoPrompt [21] 16 ViT-B/32 76.9
ActionCLIP [48] 8 ViT-B/32 78.4
BIKE (Ours) 8 ViT-B/32 81.4 (+3.0)

(h) Comparison with CLIP-based methods using single-view infer-
ence. T is the number of frames.

Backbone Baseline → V → V+A V∗ → V∗+A

ViT-B/32 76.8 +2.1%−−−→ 78.9 +2.5%−−−→ 81.4 80.2 +1.7%−−−→ 81.9

ViT-B/16 79.9 +2.2%−−−→ 82.1 +1.1%−−−→ 83.2 83.2 +0.7%−−−→ 83.9

ViT-L/14 85.2 +0.8%−−−→ 86.4 +0.1%−−−→ 86.5 87.4 +0%−−→ 87.4

(i) Component-by-component evaluation of our approach using various backbones.
Models are fed 8 frames, where * stands for multiple view inference.

Table 6. Ablation studies on Kinetics-400. Models use ViT-B/32 as the backbone, and 8 frames as input, unless otherwise specified. We
report top-1 accuracy (%) for a single clip input with 224×224 spatial size. The V and A abbreviations are used for the Video recognition
branch and Attributes recognition branch, respectively. We refer to ImageNet-1K and Kinetics-400 as IN-1K and K400, respectively.

dataset generalization ability and outperforms classic zero-
shot video recognition methods.

3.3. Ablation Studies

In this section, we provide extensive ablations to demon-
strate our method with the instantiation in Table 6.
The Effect of Temporal Saliency. We investigate the im-
pact of our proposed Video Concept Spotting (VCS) mech-
anism on the performance of the Video branch, as shown in
Table 6a. We start with a baseline that uses mean pooling
to aggregate the features of all frames, without considering
temporal saliency. We observe that equipping the baseline
with VCS can improve the accuracy by +1.7%. We then
introduce a multi-layer (e.g., 6-layers) Transformer encoder
with position embedding for sequence features, commonly
used in previous methods, and find that it provides an ad-
ditional 0.2% performance boost. Moreover, freezing the
category encoder not only reduces training parameters but
also slightly improves performance (+0.2%).
Exploration of Category Embedding for Temporal
Saliency and Classification. As mentioned in Section 2.3,
CLIP’s textual encoder can generate two types of embed-
dings: the [CLS] embedding for the entire sentence and the
word embedding for each word. Therefore, we can encode
the category into these two types of embeddings. The cate-
gory embedding has two roles in our method: 1) it serves as

a query to determine the temporal saliency, and 2) it calcu-
lates similarity with video representation to produce recog-
nition results. We demonstrate the results for three different
combinations in Table 6b. We find that the global [CLS]
embedding performs better than the word-level embedding
for final recognition, but the word-level embedding is nec-
essary for temporal saliency.
Prompt Engineering and Number of Attributes. For
both attributes and categories in the Attributes recognition
branch, we manually define a prompt, i.e., “This is a video
about {}”. The results in Table 6c show that the prompt sig-
nificantly improves accuracy, even without training the at-
tributes encoder. Furthermore, in Table 6d, we observe that
the number of attributes has little effect on the performance
of the Attributes recognition and two-branch recognition.
The Impact of Attributes branch. Table 6e shows that
without any training, the Attributes branch can be plug-
and-played on the Video branch to improve the recognition
performance. After training the attributes encoder, the At-
tributes branch further boosts performance by an impres-
sive 2.5% on the fusion result. Additionally, we find that
the Attributes branch can also improve the baseline when
fused with it, as shown in Table 6f. By combining the VCS
and the Attributes branch, we can achieve a remarkable im-
provement of 4.6% on the baseline.
Attributes Generation with Different Lexicons. In
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Sec. 2.2, we use a pre-defined lexicon to obtain attributes.
In Table 6g, we explore the impact of different lexicons. We
used ImageNet-1K, an image dataset that covers 1000 ob-
ject categories, as our lexicon to search for potential object
attributes. According to the results, this can increase the
performance of the Attributes branch by 1.4%. We found
that using the 400 categories of Kinetics-400 as the lexicon
can further improve the results.
Comparison with CLIP-Based Methods. Table 6h
presents a comparison between our method and two CLIP-
based approaches, VideoPrompt [21] and ActionCLIP [48],
both trained with contrastive loss. Despite using fewer
frames, our method achieves higher Top-1 accuracy than
VideoPrompt. Moreover, using the same ViT-B/32 back-
bone, our approach outperforms ActionCLIP by 3.0%.
More Evaluation with Different Backbones. Table 6i
presents a comprehensive evaluation of the applicability of
our method using larger backbones. Our observations are as
follows: 1) Despite the greatly improved performance of the
baseline with larger backbones, our VCS mechanism still
provides consistent, additional gains. This demonstrates the
continued necessity of Text-to-Video saliency knowl-
edge for large models. 2) As the absolute accuracy of the
Video branch increases, the complementing effect of the At-
tributes branch gradually weakens. We conjecture that with
larger models, richer representations are learned, leading
to reduced bias in learned representations and an increased
correlation with the Attributes branch, resulting in a reduc-
tion in complementary information. 3) Multiple-view eval-
uation involving more video clips leads to increased per-
formance, reducing the bias of the model itself. For mod-
els with a top-1 accuracy of 87.4%, the Attributes branch
is unable to provide supplementary knowledge. Therefore,
the Attributes branch is not utilized in our ViT-L/14 models
presented in Sec. 3.2.

3.4. Visualization

Figure 3 illustrates the temporal saliency generated by
Video Concept Spotting mechanism, highlighting the frame
that is most relevant to the category. We also demonstrate
the complementarity of the auxiliary attributes generated by
our Video-Attribute Association mechanism with the video
branch. See more qualitative results in Supplementary.

4. Related Works
Video Recognition. Convolutional networks have been
the standard backbone architecture in video recognition for
a long time. Early works focused on jointly learning spatial
and temporal context through parallel branches [14, 15, 42,
47, 50, 52]. Later works developed plug-and-play temporal
modules [25,29,31,36,45,46,54,59,62] for 2D CNN back-
bones to improve temporal modeling. Some works also de-
signed dynamic inference mechanisms [51,53,55,56,60,61]

Ground-truth:
catching fish

Temporal
Saliency0.5133 0.2689

+ Attributes This is a video about snowmobiling, snowkiting,
snowboarding, skiing crosscountry.

0.1264 0.0914

+ Attributes This is a video about ice skating, somersaulting,
gymnastics tumbling, crying, cartwheeling.

ice fishing

snowkiting

Prediction

Figure 3. Visualization of (Top) temporal saliency and (Bottom)
attributes. Please zoom in for the best view.

for efficient video recognition. Recently, Vision Transform-
ers [10, 18, 28] has emerged as a new trend in image recog-
nition backbones. Transformers have also been adopted
for video recognition, such as TimeSFormer [2], ViViT [1],
VideoSwin [30], and MViT [11].
Transferring CLIP Models for Video Recognition.
CLIP [37] provides good practice in learning the coordi-
nated vision-language models using large-scale image and
text pairs. The pre-trained model can learn powerful vi-
sual representations aligned with rich linguistic semantics.
Initially, some works [12, 32, 57, 70] propose to directly
use CLIP for video-text retrieval. Later, a few works
also explore the use of CLIP models for video recogni-
tion [21, 27, 34, 35, 48, 58, 64], they can be broadly cate-
gorized into two lines. The first line [27, 35, 64] follows the
unimodal transferring paradigm, where the image encoder
of CLIP is used as a strong initialization for the video en-
coder. The second line [21,34,48,58] provides cross-model
learning baselines that directly extend CLIP to video-label
matching for video recognition. However, these studies
only briefly tap into the knowledge from CLIP. In contrast,
our work aims to further explore the bidirectional cross-
modal knowledge from CLIP to enhance the cross-model
baseline. Our approach introduces auxiliary attributes in the
Video-to-Text direction and category-dependent tem-
poral saliency in the Text-to-Video direction, resulting
in a more effective and interpretable video recognition.

5. Conclusion
In this work, we introduce a novel two-stream frame-

work called BIKE that leverages bidirectional cross-modal
knowledge from CLIP models to enhance video recogni-
tion. Our approach involves the Attributes branch, which
utilizes the Attributes-Category Association mechanism
to generate attributes for auxiliary recognition, and the
Video branch, which uses the Video Concept Spotting
mechanism to generate temporal saliency and produce a
more compact video representation. Our approach is eval-
uated on six video datasets, and the experimental results
demonstrate its effectiveness.
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