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Abstract

Detection-based methods have been viewed unfavorably
in crowd analysis due to their poor performance in dense
crowds. However, we argue that the potential of these meth-
ods has been underestimated, as they offer crucial informa-
tion for crowd analysis that is often ignored. Specifically,
the area size and confidence score of output proposals and
bounding boxes provide insight into the scale and density
of the crowd. To leverage these underutilized features, we
propose Crowd Hat, a plug-and-play module that can be
easily integrated with existing detection models. This mod-
ule uses a mixed 2D-1D compression technique to refine
the output features and obtain the spatial and numerical
distribution of crowd-specific information. Based on these
features, we further propose region-adaptive NMS thresh-
olds and a decouple-then-align paradigm that address the
major limitations of detection-based methods. Our exten-
sive evaluations on various crowd analysis tasks, including
crowd counting, localization, and detection, demonstrate
the effectiveness of utilizing output features and the poten-
tial of detection-based methods in crowd analysis. Our code
is available at https://github.com/wskingdom/
Crowd-Hat.

1. Introduction
Crowd analysis is a critical area in computer vision due

to its close relation with humans and its wide range of appli-
cations in public security, resource scheduling, crowd mon-
itoring [18, 28, 33]. This field can be divided into three
concrete tasks: crowd counting [12, 17, 27], crowd local-
ization [1, 23, 26], and crowd detection [16, 20, 30]. While
most existing methods mainly focus on the first two tasks
due to the extreme difficulty of detecting dense crowds,
simply providing the number of the crowd or representing
each person with a point is insufficient for the growing real-
world demand. Crowd detection, which involves localiz-
ing each person with a bounding box, supports more down-
stream tasks, such as crowd tracking [24] and face recogni-
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Figure 1. Our approach involves extracting output features from
the detection outputs and refining them into 2D compressed matri-
ces and 1D distribution vectors. These features are then encoded
into local and global feature vectors to regress region-adaptive
NMS thresholds and the crowd count. We select the final output
bounding boxes using the decouple-then-align paradigm.

tion [35]. Therefore, constructing a comprehensive crowd
analysis framework that addresses all three tasks is essential
to meet real-world demands.

Although object detection may seem to meet the de-
mands above, most relevant research views it pessimisti-
cally, especially in dense crowds [12, 23, 27, 28, 37]. First
and foremost, compared to general object detection sce-
narios with bounding box annotations, most crowd analy-
sis datasets only provide limited supervision in the form
of point annotations. As a result, detection methods are
restricted to using pseudo bounding boxes generated from
point labels for training [16, 20, 30]. However, the inferior
quality of these pseudo bounding boxes makes it difficult
for neural networks to obtain effective supervision [1, 23].

Secondly, the density of crowds varies widely among
images, ranging from zero to tens of thousands [6, 20, 22,
28, 38], and may vary across different regions in the same
image, presenting a significant challenge in choosing the
allowed overlapping region in Non-Maximum-Suppression
(NMS). A fixed NMS threshold is often considered a hy-
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perparameter, but it yields a large number of false positives
within low-density crowds and false negatives within high-
density crowds, as criticized in [23].

Thirdly, current detection methods adopt the detection-
counting paradigm [17, 27] for crowd counting, where the
number of humans is counted by the bounding boxes ob-
tained from the detection output. However, the crowd de-
tection task is extremely challenging without bounding box
labels for training, resulting in a large number of mislabeled
and unrecognized boxes in crowds [23,28]. This inaccurate
detection result makes the detection-counting paradigm per-
form poorly, yielding inferior counting results compared to
density-based methods.

In this paper, we ask: Has the potential of object de-
tection been fully discovered? Our findings suggest that
crucial information from detection outputs, such as the size
and confidence score of proposals and bounding boxes, are
largely disregarded. This information can provide valuable
insights into crowd-specific characteristics. For instance, in
dense crowds, bounding boxes tend to be smaller with lower
confidence scores due to occlusion, while sparse crowds
tend to produce boxes with higher confidence scores.

To this end, we propose the a module on top of the Head
of detection pipeline to leverage these underutilized detec-
tion outputs. We name this module as “Crowd Hat” be-
cause it can be adapted to different detection methods, just
as a hat can be easily put on different heads. Specifically, we
first introduce a mixed 2D-1D compression to refine both
spatial and numerical distribution of output features from
the detection pipeline. We further propose a NMS decoder
to learn region-adaptive NMS thresholds from these fea-
tures, which effectively reduces false positives under low-
density regions and false negatives under high-density re-
gions. Additionally, we use a decouple-then-align paradigm
to improve counting performance by regressing the crowd
count from output features and using this predicted count
to guide the bounding box selection. Our Crowd Hat
module can be integrated into various one-stage and two-
stage object detection methods, bringing significant perfor-
mance improvements for crowd analysis tasks. Extensive
experiments on crowd counting, localization and detection
demonstrate the effectiveness of our proposed approach.

Overall, the main contributions of our work can be sum-
marized as the following:

• To the best of our knowledge, we are the first to con-
sider detection outputs as valuable features in crowd
analysis and propose the mixed 2D-1D compression to
refine crowd-specific features from them.

• We introduce region-adaptive NMS thresholds and a
decouple-then-align paradigm to mitigate major draw-
backs of detection-based methods in crowd analysis.

• We evaluate our method on public benchmarks of
crowd counting, localization, and detection tasks,

showing our method can be adapted to different de-
tection methods while achieving better performance.

2. Related Work
Density-Based Methods Density-based methods have
been continuously improved since first proposed in [8], for
their superior performance and high efficiency in counting
tasks. In this paradigm, a network is trained to map an in-
put image to the crowd density map, thus the number of
crowds is computed by summing the whole density map.
While most advanced crowd counting methods are density-
based [3,4,7,9,12,14,15,17,19,21,27,29,34], they tend to
neglect spatial information [1,20,23], resulting in poor per-
formance in individual pinpointing and bounding box pro-
vision for crowd heads [16, 20, 30].

Localization-Based Methods To address the shortcom-
ings of density-based methods in localization, researchers
have proposed localization-based methods such as [1, 6, 13,
23,31]. These methods achieve better performance in crowd
localization and count crowds by summing the total num-
ber of points. However, while these methods outperform
density-based methods in localization, their counting per-
formance is generally worse [12, 25, 32], and they still fall
short in meeting the needs of crowd detection [16, 20, 30].

Detection-Based Methods Although detection-based
methods are capable of resolving detection, localization,
and counting tasks simultaneously, current research shows
a pessimistic view of this paradigm. The fundamental capa-
bility of detection typically requires a significant number of
bounding box labels for training, which are often unavail-
able in many crowd datasets [5,6,38]. Only a few methods,
such as [16, 20, 30], attempt to train a detection network
with pseudo box labels generated from point annotations.
However, these methods suffer from inaccurate bounding
boxes due to a fixed NMS process, which leads to too
many false positives. As a result, detection-based methods
generally perform worse in counting and localization tasks.

3. Preliminary
Given a set of pair (I,A) in the dataset, we define

I ∈ R3×H×W as the input image containing N people
and A = {a1, a2, ..., aN} as the list of corresponding
point annotations where ak = (axk, a

y
k) is the center lo-

cation of k th head. B = {b1, b2, ..., bk, ..., bn} denotes
the set of bounding boxes output by the network with n
predictions, and the k th box is bk = (bxk, b

y
k, b

w
k , b

h
k , b

c
k)

where bxk and byk is the coordinates of the center point,
bwk , b

h
k is the width and height, and bck is the confidence

of this box. For two-stage methods with region proposals,
we denote P = {p1, p2, ..., pk, ..., pm} as the set of pro-
posals with m predictions. Likewise the k th proposal is
pk = (pxk, p

y
k, p

w
k , p

h
k , p

c
k) with pxk, p

y
k as center coordinates,
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Figure 2. Overview of the Crowd Hat module. We adopt a two-stage detection method PSDNN as our detection pipeline for illustration.

pwk , p
h
k as the width and height, and pck as the confidence of

the proposal. Note that proposals and bounding boxes re-
fer to the predictions before applying NMS and confidence
score filtering.

All methods in our paper were trained using only point
annotations to ensure fair comparisons [6, 28, 38]. There-
fore, we generated pseudo bounding box labels from point
annotations for training all detection methods, following
common practice [16, 20, 30].

4. Methodology: Crowd Hat

In our paper, we define detection outputs as the predicted
bounding boxes and proposals from the detection pipeline.
We find these outputs convey abundant crowd-specific in-
formation, making them valuable assets for crowd analysis
tasks. In particular, we adopt two output features, namely
“area size” and “confidence score” from detection outputs.
Compared to feature maps extracted from convolution lay-
ers (CNN features), output features focus mostly on hu-
mans, the foreground of the image, and are considered rel-
atively “pure” features for crowd analysis tasks. Therefore,
we propose the Crowd Hat module to mine and utilize these
output features, as shown in Figure 2. In this section, we use
the two-stage detection method PSDNN [16] as the detec-
tion pipeline, and other one-stage detection methods [20,30]
can be easily adapted.

4.1. Output Feature Compression

The original format of detection outputs is a list of 5D
vectors (see definitions in Section 3). Since the number of
generated bounding boxes n and the number of proposals
m vary among images, it is hard to pass these irregular vec-
tors directly into neural networks. While mapping the out-
put features directly back to the input image according to
the center coordinates of detection outputs may seem like
a trivial approach, the resulting feature maps will be too
sparse to convey representative information since the num-
ber of predicted proposals or bounding boxes is far less than
the number of pixels per image. To address this issue, we

propose a mixed 2D-1D compression method to further re-
fine the output features and obtain the spatial and numerical
distribution of these crowd-specific information. We show
visualization results of different features from the 2D-1D
compression method in Figure 3.

4.1.1 2D Compression

To determine the spatial distribution of crowd density in an
image, we propose 2D compression using a matrix M ∈
RS×S to compress each output feature into patches. We
map the proposal or bounding box to the input image based
on its center coordinates, divide the image into S × S
patches of equal height and width, and sum up each output
feature located within each patch to obtain the correspond-
ing element in the compression matrix M .

Consider compressing bounding box area using a com-
pression matrix. To calculate the normalized area of the k-
th bounding box, we multiply its width by the image height
and divide the result by the product of the image’s width and
height. This normalization step removes the impact of dif-
ferent image resolutions. Specifically, the normalized size
is calculated as bwk

W · bhk
H . We denote MA

B as the compressed
matrix of bounding box area. Thus the formula yields:

MA
B (i, j) =

n∑
k=1

[

⌊
bxk
w0

⌋
= i] · [

⌊
byk
h0

⌋
= j] · b

w
k

W
· b

h
k

H
(1)

where two indicator functions [
⌊

bxk
w0

⌋
= i] and [

⌊
byk
h0

⌋
= j]

are equal to 1 only if the bounding box bk belongs to the
patch indexed (i, j) and 0 otherwise.

We use the notation MC
B to represent the compressed

matrix of bounding box confidence scores, and MA
P and

MC
P to represent the compressed matrices of proposal area

size and confidence score, respectively. If a one-stage de-
tection method does not generate proposals, we only use
MA

B and MC
B as the compressed matrices. These matrices

are formally defined as follows:

15611



Original Image Box Area Box Confidence Proposal Area Proposal Confidence

Figure 3. Visualization of output feature compression. We present the 2D compression matrices (left) and 1D distribution vectors (to the
right) for each output feature. In the 1D distribution vectors, we use 0 to denote the top of the vector and 1 for the bottom. Additionally,
we provide the original image in the leftmost column for reference. Zoom in for better visualization.

MC
B (i, j) =

n∑
k=1

[

⌊
bxk
w0

⌋
= i] · [

⌊
byk
h0

⌋
= j] · σ(bck) (2)

MA
P (i, j) =

m∑
k=1

[

⌊
pxk
w0

⌋
= i] · [

⌊
pyk
h0

⌋
= j] · p

w
k

W
· p

h
k

H
(3)

MC
P (i, j) =

m∑
k=1

[

⌊
pxk
w0

⌋
= i] · [

⌊
pyk
h0

⌋
= j] · σ(pck) (4)

4.1.2 1D Compression

Crowd density varies greatly within and among images,
with some images having densities ranging from zero to
tens of thousands [6,20,22,28,38]. To determine the overall
crowd density of an image, we propose a 1D compression
method that finds the numerical distribution of output fea-
tures within the image. For instance, a low overall distribu-
tion of output bounding box area sizes could indicate a high
crowd density in the scene.

Our proposed 1D compression method works as follows:
first, we normalize the confidence score and area size values
to a range of 0 to 1. Next, we divide this range into L dis-
crete intervals, where the i-th interval is [ iL ,

i+1
L ). We then

calculate the number of values that fall into each interval
to form a histogram and obtain the numerical distribution
where the i-th value of the histogram represents the number
of values that fall into the interval [ iL ,

i+1
L ).

To normalize the output features into the interval of 0 to
1, we use a two-step process. First, we multiply the output

feature by a scaling coefficient α ≥ 1, which is a hyper-
parameter. This step is necessary to ensure that the distri-
bution of output features is distinguishable after nonlinear
mapping. The raw values of area size and confidence score
may be numerically congested, causing them to fall into the
same interval or nearby intervals after nonlinear mapping.
Second, we apply a nonlinear mapping function to the out-
put feature to limit its range to [0, 1]. Note that area size
is always greater than zero, while confidence can be either
positive or negative, thus we use the sigmoid function σ(x)
for the confidence score and the hyperbolic tangent function
tanh(x) for the area size.

For instance, we transform the confidence score of the
k-th bounding box, bck, to σ(bck · α). This value falls into
the interval σ(bck · α)/( 1

L ) = σ(bck · α) · L. We refer to the
distribution vector of the bounding box confidence score as
V C
B and its scaling coefficient as αC

B . The formula yields:

V C
B (i) =

n∑
k=1

[
⌊
σ(bck · αC

B) · L
⌋
= i] (5)

Similarly, we denote V A
B as the distribution vector of the

bounding box area size and V A
P , V C

P as those of proposal
area size and confidence score. The scaling coefficients for
the corresponding output features are denoted as αA

B , αA
P ,

and αC
P , respectively. For one-stage detection methods that

do not generate proposals, we only use V A
B and V C

B from
the predicted bounding boxes. In formal terms:

V A
B (i) =

n∑
k=1

[

⌊
tanh(

bwk
W

· b
h
k

H
· αA

B) · L
⌋
= i] (6)

V A
P (i) =

m∑
k=1

[

⌊
tanh(

pwk
W

· p
h
k

H
· αA

P ) · L
⌋
= i] (7)
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Figure 4. Detailed neural network structure of Crowd Hat module. The 2D compressed matrices and 1D distribution vectors are further
transformed into global and local feature vectors via convolutional neural networks. Each convolution layer is followed by ReLU activation
and a max-pooling layer, except for the last layer where we use global average pooling.

V C
P (i) =

m∑
k=1

[
⌊
σ(pck · αC

P ) · L
⌋
= i] (8)

4.2. Crowd Hat Network

To aggregate information from the different output fea-
tures above, we stack the 2D compressed matrices to form
a tensor t2d ∈ RC×S×S , and the distribution vectors from
1D compression are stacked to form a tensor t1d ∈ RC×L.
Here, C is the number of output features used, with C = 4
for two-stage methods and C = 2 for one-stage methods.
These tensors are then passed into our Crowd Hat network
to obtain global and local features, as described below. The
detailed structure is shown in Figure 4.

Global Feature To incorporate both the spatial information
from t2d and the numerical distribution information from
t1d, we use 2D convolutions to further encode t2d and 1D
convolutions for t1d, as shown in Figure 4. After global
average pooling, we concatenate both of them to form the
global feature vector Fg .

Local Feature To capture the high variation of crowd den-
sity within an image and support our region-adaptive NMS,
we introduce local features by dividing t2d into fixed-sized
patches and encoding them using neural networks. We split
t2d into K × K patches and then pass them through a 2D
convolutional neural network with global average pooling
to generate local feature vectors [F 1

l , F
2
l , ...F

K2

l ].

4.3. Region-Adaptive NMS Decoder

We propose a NMS Decoder to address the challenge of
varying crowd densities across regions. The region-adaptive
NMS approach learns optimal NMS thresholds for each re-
gion, maximizing F1 score with current pseudo bounding

box labels. To determine the pseudo NMS threshold la-
bels for each region [T1, T2, ..., TK2 ], we use a linear search
algorithm, measuring model performance under different
NMS thresholds ranging from 0 to 1 at a fixed step of s,
and selecting the NMS threshold that leads to the highest
F1 score for each region.

To train our NMS Decoder, we concatenate local and
global features and pass them through an MLP, PN , to gen-
erate region-adaptive NMS thresholds. We directly regress
pseudo NMS threshold labels for training. The region NMS
loss can be defined as follows:

Lnms =
1

K2

K2∑
i=1

|PN (F i
l ⊙ Fg)− Ti| (9)

where ⊙ denotes concatenation.
During inference, we apply the learned pseudo NMS

threshold labels from the NMS Decoder to perform region-
adaptive NMS. For each region, we use the corresponding
pseudo NMS threshold label as the NMS threshold to filter
out redundant bounding boxes. Since different regions may
have different crowd densities, the region-adaptive NMS
can filter out more redundant bounding boxes in regions
with high crowd density and retain more bounding boxes
in regions with low crowd density, leading to better perfor-
mance.

4.4. Decouple-then-Align Paradigm

Detection-based methods for crowd counting suffer from
the drawback of utilizing a detection-counting paradigm
[16, 20, 30], where crowd count is predicted by counting
the number of output bounding boxes. This paradigm leads
to entanglement between counting performance and detec-
tion and localization results, which is particularly problem-
atic given that datasets typically provide only point annota-
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Table 1. Quantiative comparisons in crowd counting, best in bold, second in underline. All results are from corresponding papers or
official implementations, and official records from NWPU-Crowd benchmark.

Method Type ShanghaiTech A ShanghaiTech B JHU-Crowd++ UCF-QNRF NWPU-Crowd

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

Topo-Count [1] (AAAI 2020)

Localization-Based

61.2 104.6 7.8 13.7 60.9 267.4 89.0 159.0 107.8 438.5
P2P-Net [23] (ICCV 2021) 52.7 85.1 6.3 9.9 56.3 268.3 85.3 154.5 77.4 362.0
GL [26] (CVPR 2021) 61.3 95.4 7.3 11.7 59.9 259.5 84.3 147.5 79.3 346.1
CLTR [11] (ECCV 2022) 56.9 95.2 6.5 10.6 59.5 240.6 85.8 141.3 74.3 333.8

ADSCNet [2] (CVPR 2020)

Density-Based

55.4 97.7 6.4 11.3 - - 71.3 132.5 - -
SUA-Fully [18] (ICCV 2021) 66.9 125.6 12.3 17.9 80.1 305.3 119.2 213.3 111.7 443.2
MAN [12] (CVPR 2022) 56.8 90.3 - - 53.4 209.9 77.3 131.5 76.5 323.0
CrowdFormer [36] (IJCAI 2022) 56.9 97.4 5.7 9.6 - - 78.8 136.1 67.1 301.6

LSC-CNN [20] (TPAMI 2021)
Detection-Based

66.4 117.0 8.1 12.7 87.3 309.0 120.5 218.2 115.4 418.5
SDNet [30] (TIP 2021) 65.1 104.4 7.8 12.6 78.8 295.4 102.1 176.0 100.2 385.8
PSDNN [16] (CVPR 2019) 70.2 125.8 9.1 14.2 95.7 344.3 137.5 240.1 140.7 553.6

LSC-CNN + Crowd Hat (ours)
Detection-Based

60.2 95.7 7.1 11.3 63.0 270.9 84.7 150.2 90.6 336.6
SDNet + Crowd Hat (ours) 53.4 87.2 6.5 10.4 56.9 251.5 81.0 139.4 73.7 321.0
PSDNN + Crowd Hat (ours) 51.2 81.9 5.7 9.4 52.3 211.8 75.1 126.7 68.7 296.9

tions, resulting in limited supervision to train the detection
pipeline.

To address this issue, we propose to decouple the detec-
tion and counting process by directly regressing the crowd
count using global features Fg . Unlike some early methods
that use CNN features for count regression, the output fea-
tures we use provide valuable crowd-specific information,
making them more suitable for direct count regression. We
use a separate MLP, called the Count Decoder PC , to pre-
dict the crowd count n̂ = PC(Fg), which is supervised by
the ground truth crowd count obtained from point annota-
tions. The loss function is formulated as follows:

Lcount = |PC(Fg)−N | (10)

However, using a separate count regression may cause
confusion due to inconsistent results between the regres-
sion and detection process. The number of bounding boxes
generated after NMS filtering nc may differ from the count
output from the Count Decoder n̂, leading to uncertainty
about which number to reference. To address this issue, we
prioritize the accuracy and reliability of the Count Decoder
and select the min(n̂,nc) bounding boxes with the highest
confidences as the final results.

5. Experiments
5.1. Implementation Details

The Crowd Hat module is decoupled from the detection
pipeline and can be applied to a pre-trained detection model.
Our framework is implemented on top of three detection-
based methods, namely PSDNN [16], LSC-CNN [20], and
SDNet [30]. During inference, relevant data such as t2d, t1d
(Section 4.2), and [T1, T2, ..., TK2 ] (Section 4.4) is saved to
disk, while the detection pipeline’s weights remain fixed.
The Crowd Hat network (Figure 4) is then trained using this
data, with a spatial size of 64 for the 2D compressed matrix
S and a length of 256 intervals for the 1D distribution vector

L. We extract local features by splitting the images into
K2 = 16 patches with a step for linear search s set to 0.01.
Our model is trained on 4 Nvidia RTX 3090 GPUs with a
batch size of 16 for all datasets using the Adam optimizer
with a learning rate of 1e − 5, over a period of 120 epochs
for NWPU-Crowd dataset and 100 epoched for others.

5.2. Experimental Settings

We evaluate our methods for crowd analysis tasks, in-
cluding detection, localization, and counting.

Crowd Detection Our method is evaluated on the
WIDER-Face validation set for crowd detection using av-
erage precision (AP) as the detection metric with an IOU
set to 0.5, following standard practice [16, 20, 30].

Crowd Localization We evaluated our approach on three
public benchmarks: JHU-Crowd++ [22], UCF-QNRF [6],
and NWPU-Crowd [28]. We used Precision, Recall, and
F-measure as evaluation metrics. For NWPU-Crowd and
JHU-Crowd++, we followed the evaluation criteria in [28],
which uses box labels for assessing successful matches. For
UCF-QNRF, which does not have box labels, we evaluated
at various distance thresholds (1 to 100 pixels) as per the
standard practice in [1, 6].

Crowd Counting In addition to datasets used for local-
ization, we also performed comparisons on the Shang-
haiTech dataset [38]. We evaluated the counting perfor-
mance using the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) metrics, which are widely
used in prior work [17, 27, 28, 37].

5.3. Comparison to State-of-the-Art
Crowd Counting Table 1 shows quantitative results for
counting across five datasets. Density-based methods gen-
erally perform best, while existing detection methods per-
form worst; however, our Crowd Hat greatly improves
the counting performance of detection methods, making
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Table 2. Comparisons in crowd localization, best in bold, second in underline. All other results except for ours are from corresponding
papers or official implementations, and official records from NWPU-Crowd benchmark.

Method Type JHU-Crowd++ UCF-QNRF NWPU-Crowd

F1-m ↑ Pre ↑ Rec ↑ F1-m ↑ Pre ↑ Rec ↑ F1-m ↑ Pre ↑ Rec ↑

Topo-Count [27] (NeurIPS 2020)

Localization-Based

57.6 62.6 53.4 80.3 81.8 79.0 69.2 68.3 70.1
P2P-Net [23] (ICCV 2021) 61.7 65.7 58.2 82.8 83.4 82.2 71.2 72.9 69.5
GL [26] (CVPR 2021) 61.8 64.6 59.3 76.5 78.2 74.8 66.0 80.0 56.2
AutoScale [33] (IJCV 2022) 53.7 57.2 50.7 77.3 78.9 75.8 62.0 67.4 57.4
CLTR [11] (ECCV 2022) - - - 82.2 80.0 80.1 69.4 67.6 68.5

LSC-CNN [20] (TPAMI 2021)
Detection-Based

52.5 55.6 49.8 74.1 74.6 73.5 59.3 67.1 53.4
SDNet [30] (TIP 2021) 56.2 61.3 52.0 78.0 78.9 77.2 63.7 65.1 62.4
PSDNN [16] (CVPR 2019) 50.2 53.7 47.1 67.0 63.6 70.8 53.7 53.3 54.1

LSC-CNN + Crowd Hat (ours)
Detection-Based

57.7 60.4 55.3 80.1 80.4 79.8 70.8 74.3 67.7
SDNet + Crowd Hat (ours) 64.3 68.0 61.1 83.5 84.0 83.1 75.9 74.0 77.8
PSDNN + Crowd Hat (ours) 65.9 72.6 60.3 86.2 85.9 86.6 78.2 78.2 78.3

Table 3. Comparisons in crowd detection, best in bold, second
in underline.

Method Easy ↑ Medium ↑ Hard ↑

CSR-A-thr [10] (CVPR 2018) 30.2 41.9 33.5
LSC-CNN [20] (TPAMI 2021) 40.5 62.1 46.2
PSDNN [16] (CVPR 2019) 60.5 60.5 39.6
SDNet [30] (TIP 2021) 75.8 71.0 64.4

LSC-CNN + Crowd Hat (ours) 68.4 72.3 59.7
PSDNN + Crowd Hat (ours) 81.5 78.1 66.5
SDNet + Crowd Hat (ours) 84.7 75.9 69.4

them competitive with state-of-the-art density-based meth-
ods. Notably, our PSDNN + Crowd Hat even outperforms
some advanced density-based methods on certain datasets.

Crowd Localization Our method’s evaluation under the
crowd localization task is shown in Table 2. It significantly
improves detection-based methods and achieves state-of-
the-art performance across three datasets.

Crowd Detection Our method significantly boost the per-
formance of detection methods on the dense face detection
dataset WIDER-Face, achieving state-of-the-art detection
results across three test sets, as demonstrated in Table 3.

5.4. Ablation Studies

Here, we study the effect of some of our key designs.

Output features vs. CNN Features We compared out-
put features to CNN features (the last feature map from the
backbone network) in Ablation 1 of Table 4 to study their
quality. By replacing the output features with CNN features
while keeping the rest constant, we found that the output
features perform significantly better than CNN features.

Study of selected features In Ablation 2, we evaluated
the effectiveness of each output feature used in our pa-
per. Our results show that each output feature improves the
performance of the detection baseline, and the best perfor-
mance is achieved by aggregating all of these features.

Study of Output Feature Compression In Ablation 3,
we evaluated the effectiveness of 2D compressed matrices
and 1D distribution vectors. All other modules were in-
cluded in this experiment. We started by mapping the de-
tection outputs back to the input image without compres-
sion as “Baseline + w/o Compression”. Our results show
that directly using output features without compression only
provides a negligible increase in performance. However,
we found that adding 2D compression matrices resulted in
increased performance in all experiments. Further addi-
tion of 1D distribution vectors boosted overall performance,
demonstrating the effectiveness of both 2D and 1D com-
pression.

Study of Region Adaptive NMS and Decouple-then-
Align Paradigm In Ablation 4, we evaluated the ef-
fectiveness of two important modules: Region Adaptive
NMS and Decouple-then-Align Paradigm, using all out-
put features with compression for all experiments. We
found that adding Region Adaptive NMS resulted in per-
formance increases for all tasks, particularly for Localiza-
tion and Detection tasks. Decouple-then-Align Paradigm
mainly boosted the performance of crowd counting task
while also providing minor benefits for detection and local-
ization tasks. The best performance was achieved by adding
both modules.

Sensitivity of Hyperparameters Figure 5 shows sensi-
tivity experiments conducted on three important hyperpa-
rameters of PSDNN + Crowd Hat: the spatial dimension
of the 2D compressed matrix S, the spatial dimension of the
1D compressed vector L, and the number of regions in the
region-adaptive NMS threshold K. Specifically, counting
experiments were conducted for S and L, while a localiza-
tion experiment was conducted for K using the UCF-QNRF
dataset. During testing of one hyperparameter, the others
were fixed to their default settings as specified in the imple-
mentation details. The performance for various values of S
and L remained relatively stable, with the best performance
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Table 4. Ablation studies on counting, localization, and detection. We conduct counting and localization experiments under UCF-QNRF
dataset and detection experiments under WIDER-Face dataset (Hard set). We adopt PSDNN [16], a two-stage detection based method as
our baseline, which generates both proposals and bounding boxes.

Ablation Method Counting Localization Detection

MAE ↓ RMSE ↓ F1-m ↑ Precision ↑ Recall ↑ AP ↑

Ablation I CNN Features 129.3 222.8 68.1 67.3 68.9 41.2
Output Features 75.1 126.7 86.2 85.9 86.6 66.5

Ablation II

Box Area 89.1 150.3 79.0 78.6 79.5 55.2
Box Confidence 86.9 147.3 82.5 82.1 82.9 58.1
Proposal Area 86.7 145.2 83.7 83.3 84.2 61.9
Proposal Confidence 87.4 151.6 82.2 80.9 83.5 58.5
All Output Features 75.1 126.7 86.2 85.9 86.6 66.5

Ablation III

Baseline 137.5 240.1 67.0 63.6 70.8 39.6
Baseline + w/o Compression 103.6 171.0 72.4 71.8 73.1 46.8
Baseline + 2D 82.1 138.3 83.8 83.2 84.4 62.8
Baseline + 2D + 1D 75.1 126.7 86.2 85.9 86.6 66.5

Ablation IV

Baseline 137.5 240.1 67.0 63.6 70.8 39.6
Baseline + Region Adaptive NMS 88.2 151.3 84.9 84.5 85.3 62.2
Baseline + Decouple-then-Align 76.2 130.1 72.3 70.5 74.2 45.7
Baseline + All 75.1 126.7 86.2 85.9 86.6 66.5

Figure 5. Studies on the sensitivity of hyperparameters on UCF-QNRF dataset.

Table 5. Comparison of the model size (M), and Inference time (s
/ 100 images).

Method Model Size Inference Time

LSC-CNN [20] 35.08 57.73
LSC-CNN + Crowd Hat (ours) 36.71 (+4.6%) 59.64 (+3.3%)

SDNet [30] 40.04 193.54
SDNet + Crowd Hat (ours) 41.67 (+4.1%) 195.47 (+1.0%)

PSDNN [16] 47.51 14.35
PSDNN + Crowd Hat (ours) 49.14 (+3.4%) 16.38 (+14.1%)

achieved when S = 64 and L = 256. For the hyperparameter
K, the best performance was achieved with K = 4.

Running Cost Evaluations We compared the model size
and inference time in Table 5 by processing all images into
1024 × 768 resolution and running the experiment on one
RTX 3090 GPU. Our results show that after adding our
Crowd Hat module, there was no significant increase in

model size or inference time, indicating that our model is
lightweight and can be easily adapted to different detection
pipelines.

6. Conclusion
In this paper, we propose a Crowd Hat module to lever-

age underutilized output features from bounding boxes and
proposals in the detection pipeline for crowd analysis tasks.
Our extensive evaluations under three different crowd anal-
ysis tasks demonstrate the effectiveness of our approach and
highlight the potential of using output features as valuable
assets in crowd analysis.

limitations and future work. We show that area size and
confidence score have a strong correspondence with the
crowd distribution, but there can be potential better features
more effective. In addition, as the 1D compression is not
differentiable, our model can not be trained in an end-to-
end manner.
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