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Abstract

Open-vocabulary detection (OVD) is an object detection
task aiming at detecting objects from novel categories be-
yond the base categories on which the detector is trained.
Recent OVD methods rely on large-scale visual-language
pre-trained models, such as CLIP, for recognizing novel
objects. We identify the two core obstacles that need to
be tackled when incorporating these models into detec-
tor training: (1) the distribution mismatch that happens
when applying a VL-model trained on whole images to
region recognition tasks; (2) the difficulty of localizing
objects of unseen classes. To overcome these obstacles,
we propose CORA, a DETR-style framework that adapts
CLIP for Open-vocabulary detection by Region prompt-
ing and Anchor pre-matching. Region prompting mitigates
the whole-to-region distribution gap by prompting the re-
gion features of the CLIP-based region classifier. Anchor
pre-matching helps learning generalizable object localiza-
tion by a class-aware matching mechanism. We evaluate
CORA on the COCO OVD benchmark, where we achieve
41.7 AP50 on novel classes, which outperforms the pre-
vious SOTA by 2.4 AP50 even without resorting to extra
training data. When extra training data is available, we
train CORA™ on both ground-truth base-category annota-
tions and additional pseudo bounding box labels computed
by CORA. CORA™ achieves 43.1 AP50 on the COCO OVD
benchmark and 28.1 box APr on the LVIS OVD benchmark.
The code is available at https://github.com/tgxs002/CORA.

1. Introduction

Object detection is a fundamental vision problem that
involves localizing and classifying objects from images.
Classical object detection requires detecting objects from a
closed set of categories. Extra annotations and training are
required if objects of unseen categories need to be detected.
It has attracted much attention on detecting novel categories

without tedious annotations, or even detect object from new
category, which is currently referred as open-vocabulary de-
tection (OVD) [36].

Recent advances on large-scale vision-language pre-
trained models, such as CLIP [30], enable new solutions for
tackling OVD. CLIP learns a joint embedding space of im-
ages and text from a large-scale image-text dataset, which
shows remarkable capability on visual recognition tasks.
The general idea of applying CLIP for OVD is to treat it
as an open-vocabulary classifier. However, there are two
obstacles hindering the effective use of CLIP on tackling
OVD.

How to adapt CLIP for region-level tasks? One trivial
solution is to crop regions and treat them as separate im-
ages, which has been adopted by multiple recent works
[7, 14,31, 35]. But the distribution gap between region
crops and full images leads to inferior classification accu-
racy. MEDet [7] mitigates this issue by augmenting the
text feature with image features. However, it requires extra
image-text pairs to prevent overfitting to so-called “base”
classes that are seen during training. RegionCLIP [40] di-
rectly acquires regional features by RolAlign [17], which
is more efficient but cannot generalize well to novel classes
without finetuning. The finetuning is costly when adopting
a larger CLIP model.

How to learn generalizable object proposals? ViLD [14],
OV-DETR [35], Object-Centric-OVD [31], Region-
CLIP [40] need RPN or class-agnostic object detectors [29]
to mine potential novel class objects. However, these RPNs
are strongly biased towards the base classes on which they
are trained, while perform poorly on the novel classes.
MEDet [7] and VL-PLM [39] identify this problem and
adopt several handcrafted policies to rule out or merge
low-quality boxes, but the performance is still bounded by
the frozen RPN. OV-DETR [35] learns generalizable object
localization by conditioning box regression on class name
embeddings, but at the cost of efficiency issue induced by
repetitive per-class inference.

In this work, we propose a new framework based on DE-
tection TRansformers (DETR) [6] that incorporates CLIP
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into detector training to achieve open-vocabulary detection
without additional image-text data. Specifically, we use a
DETR-style object localizer for class-aware object localiza-
tion, and the predicted boxes are encoded by pooling the in-
termediate feature map of the CLIP image encoder, which
are classified by the CLIP text encoder with class names.
However, there is a distribution gap between whole-image
features from CLIP’s original visual encoder and the newly
pooled region features, leading to an inferior classification
accuracy. Thus, we propose Region Prompting to adapt the
CLIP image encoder, which boosts the classification perfor-
mance, and also demonstrates better generalization capabil-
ity than existing methods. We adopt DAB-DETR [26] as
the localizer, in which object queries are associated with dy-
namic anchor boxes. By pre-matching the dynamic anchor
boxes with the input categories before box regression (An-
chor Pre-Matching), class-aware regression can be achieved
without the cost of repetitive per-class inference.

We validate our method on COCO [24] and LVIS
v1.0 [16] OVD benchmarks. On the COCO OVD bench-
mark, our method improves AP50 of novel categories over
the previous best method [40] by 2.4 AP50 without train-
ing on extra data, and achieves consistent gain on CLIP
models of different scales. When compared under a fairer
setting with extra training data, our method significantly
outperforms the existing methods by 3.8 AP50 on novel
categories and achieves comparable performance on base
categories. On the LVIS OVD benchmark, our method
achieves 22.2/28.1 APr with/w.o. extra data, which signif-
icantly outperforms existing methods that are also trained
with/w.o. extra data. By applying region prompting on the
base classes of COCO, the classification performance on
the novel classes is boosted from 63.9% to 74.1%, whereas
other prompting or adaptation methods easily bias towards
the base classes.

The contributions of this work are summarized as fol-
lows: (1) Our proposed region prompting effectively miti-
gates the gap between whole image features and region fea-
tures, and generalize well in the open-vocabulary setting.
(2) Anchor Pre-Matching enables DETR for generalizable
object localization efficiently. (3) We achieve state-of-the-
art performance on COCO and LVIS OVD benchmarks.

2. Related Works

Open-Vocabulary Object Detection OVR-CNN [30]
firstly put forth this new formulation of detection, and
proposes its baseline solution by aligning region features
with nouns in captions that are paired with the image.
Mingfeng [11] et al. mine pseudo labels by utilizing the
localization ability of pre-trained vision-language models.
PromptDet [10] addresses the gap between image and re-
gion classification by adding learnable prompts when en-
coding the class names, namely regional prompt learning
(RPL), which is expected to generalize from base to novel
categories. OV-DETR [35] is the first DETR-style open-

vocabulary detector, which proposes conditional matching
to solve the missing novel class problem in assignment,
but at the cost of inefficient inference. RegionCLIP [40]
propose a second-stage pre-training mechanism to adapt
the CLIP model to encode region features, and demon-
strates its capability on OVD and zero-shot transfer setting.
GLIP [21] jointly learns object localization and VL align-
ment. Matthias et al. [15] proposes to finetune a VL aligned
model for detection, while we fix the pre-trained VL model
for better generalization towards novel categories.

Detection Transformers DETR [6] is an object detection
architecture based on transformers that formulates object
detection as a set-to-set matching problem, which greatly
simplifies the pipeline. Several works address the slow
convergence problem of DETR by architectural improve-
ment [ 1, 13,26,38] or special training strategies [8, | 8]. Zhu
et al. [1] proposes multi-scale deformable attention mod-
ule to efficiently aggregate information from multi-scale
feature maps. Gao et al. [13] proposes to modulate the
cross-attention in the transformer decoder by anchor box
coordinates to accelerate the detector convergence. DAB-
DETR [26] formulates the queries in DETR architecture as
anchor boxes, which accelerates detector training. Chen et
al. [38] proposes Group DETR, which adds auxiliary object
queries during training to take advantage of one-to-many
matching for faster convergence.

Prompt Tuning Prompting is originated from NLP, and
it refers to prepending task instructions before the input
sequence to give the language model the hint about the
task [5]. Later works [22,27] explores tuning continuous
prompt vectors when few-shot data is available. VPT [19],
Visual Prompting [2, 3] explore prompting in the pixel
space. [20] and [25] prompts pre-trained model for video
recognition tasks. [34] proposes class-aware visual prompt
tuning to generalize the learned prompts to unseen cate-
gories. Recent works demonstrate that prompt tuning is an
effective and parameter-efficient way to adapt large-scale
pre-trained models to downstream tasks.

3. Method

Open-vocabulary detection (OVD) is an object detection
task aiming at detecting objects from novel categories be-
yond the base categories on which the detector is trained.
Formally, the detector is trained on a detection dataset with
base-category C'® box annotations, and tested on a new in-
put image I € RH*XWX3 (o detect objects belonging to a
novel category set C, where CP N CN = (). In this sec-
tion, we introduce CORA, a framework that adapts CLIP
for the OVD task by Region prompting and Anchor pre-
matching. For fairer comparisons with existing methods,
we also experiment with a broader setting where extra data
is available, which is referred to as CORA™T, and will be
introduced along with the experiments.
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Figure 1. Overview of our method. The image is encoded into a feature map by the CLIP image encoder for both localization and
classification. The regional feature is extracted by pooling the feature map, and then prompted before classified by the CLIP class name
embeddings. The anchor boxes are pre-matched and conditioned on a class before decoding. During training, per-class post-matching is
conducted. During inference, the box predictions are classified by the region classifier.

3.1. Overview

The overall framework of CORA is illustrated in Fig. 1.
Given an image as input, we acquire the spatial feature map
using the ResNet backbone from the pre-trained CLIP im-
age encoder, which is shared by both region classification
and object localization branches. Unlike conventional de-
tectors, localization and classification are decoupled and
sequentially conducted in our framework to better fit the
characteristic of the OVD problem. We train a DETR-style
object localizer that refines a set of object queries together
with their associated anchor boxes to localize the objects,
which are then classified by a region classifier adapted from
CLIP.

Region Classification. Given a region to be classified (an-
chor box or box prediction), we adopt RolAlign to obtain
the region feature, followed by the attention pooling mod-
ule of CLIP to generate region embeddings, which can be
classified by class embeddings obtained from the CLIP text
encoder, as done in CLIP. We name this module as CLIP-
based region classifier (Fig. 1-(a)).

Object Localization. The visual feature map is firstly
refined by the DETR-like encoder, and then fed into the
DETR-like decoder. The queries of anchor boxes are firstly
classified by the CLIP-based region classifier, which are

then conditioned on their predicted labels before iteratively
refined by the DETR-like decoder for better localization.
The decoder also estimates the matchability of the query
with the previously predicted label. During training, the
predicted boxes are one-to-one matched with ground truth
boxes that has the same labels (Fig. 1-(b)), and trained as in
DETR. In the inference stage, the class labels of the boxes
are adjusted by the CLIP-based region classifier.

As mentioned in Sec. 1, there are two obstacles to be ad-
dressed: (1) object detection conducts recognition on image
regions, while the CLIP model is trained on whole-image
input, leading to a distribution gap that hinders classification
performance. (2) the detector needs to learn object localiza-
tion for novel classes, while we only have annotations on a
limited number of base classes. To solve the first obstacle,
we propose region prompting to modulate the region fea-
tures for better generalizable region embeddings, which will
be introduced in Sec. 3.2. To solve the second obstacle, we
put forward anchor pre-matching to encourage class-aware
object localization that can generalize to novel classes dur-
ing inference, which will be introduced in Sec. 3.3.

3.2. Region Prompting

OVD requires the detector to classify image regions into
a given category list. In this section, we will elaborate how
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Figure 2. Comparison between the CLIP-based region classifier
and the vanilla pipeline. We pool regional feature from the feature
map, rather than cropping the region patch and classify them as a
separate image.

a pre-trained CLIP model is adapted to formulate the CLIP-
based region classifier. Given the CLIP model, region clas-
sification can be realized by comparing the similarity be-
tween the regional embedding from the CLIP image en-
coder and the class name embedding from the CLIP text
encoder.

Region Prompting. As illustrated in Fig. 2, given an image
and a set of region of interest (Rol), we firstly encode the
whole image into a feature map by the CLIP encoder’s first
3 blocks, which are then pooled by RolAlign [32] either ac-
cording to anchor boxes or predicted boxes into region fea-
tures, before encoded by the last block of the CLIP image
encoder backbone. There exists a distribution gap between
the CLIP image encoder’s whole-image feature map and the
pooled regional features. We propose region prompting to
fix the misalignment by augmenting the region feature with
learnable prompts p € RS*SXC where S is the spatial size
of the regional feature, and C is the dimension of the re-
gional feature. Specifically, given the input regional feature
fregion, the region prompting is conducted as

Uprompt = P(fregion S p), (D

where @ denotes element-wise addition, P is the attention
pooling module of the CLIP visual encoder.

Optimizing Region Prompts. We train the region prompts
on a detection dataset with base-class annotations. The class
name embeddings are pre-computed by the CLIP text en-
coder, which are used as classifier weights later. We train
the prompts by a standard cross-entropy loss to classify
the ground truth boxes with their pooled regional features
fregion. When optimizing the region prompts, we keep other
model weights frozen, and only make the region prompts to
be learned.

Comparison with existing methods. The previous com-
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Figure 3. Comparison between anchor pre-matching and condi-
tional matching. Anchor pre-matching decodes a constant number
of object queries, and assigns different numbers of object queries
based on the image content, avoiding repetitive decoding as in con-
ditional matching.

mon practice for region classification with CLIP is to crop
the Rols, and encode them as separate images, before com-
paring with text embeddings. This pipeline is not efficient
when encoding regions with overlaps, since the overlap-
ping regions are encoded more than once in different region
crops. Its accuracy also suffers from the missing context
information. In contrast, our regional prompting is more
efficient and preserves richer context.

The region prompts contain less than 1M parameters,
which is in line with recent advances of the prompt tuning
and adapter literatures. Region prompting generalizes well
to unseen novel classes. We attribute the generalization ca-
pability to the fact that region prompting directly fix the dis-
tribution mismatch right after where it occurs (after region
pooling), whereas the existing methods tweak irrelevant pa-
rameters to compensate for the distribution mismatch.

3.3. Anchor Pre-Matching

Region prompting helps solve the region classification
problem. Object localization is the other critical sub-
task of object detection. Considering the inferior perfor-
mance of pre-trained RPN on novel classes, we introduce
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a class-aware query-based object localizer, which demon-
strates better generalization capability on unseen classes.
As shown in Fig. 1, Given the visual feature map from
the frozen CLIP image encoder, the object queries are pre-
matched to the class name embeddings by the CLIP text
encoder.

Anchor Pre-Matching. The object localizer is im-
plemented by a DETR-style transformer encoder-decoder
structure, where the encoder refines the feature map, and
the decoder decodes a set of object queries into box predic-
tions. We adopt DAB-DETR [26], where each object query
is associated with an anchor box. Each ground truth box is
pre-matched to a set of queries with the same label. The
label ¢; of an object query is assigned by classifying the
associated anchor box b;

¢; = arg max cosine(v;, [..), 2)
ceCB

where v; is the region feature of anchor box b;, (.. is the class
name embedding of class ¢, and cosine denotes the cosine
similarity. After pre-matching, each object query conditions
on the predicted class embedding to allow class-aware box
regression. The conditioned object query is given by

¢ = MLP(,). 3)

The DETR-like decoder iteratively refines each object
query with its associated anchor box (g;,b;) into ¢; =
(pi, I;i), where b; is the refined box coordinates and p; is
the matching probability to the query’s pre-matched class
C;.

Given the model predictions, the assignment between
ground truth boxes and model predictions is conducted by
performing bipartite matching for each class separately. We
only allow each ground truth box to be assigned to the pre-
diction with the same pre-matched label, in order to enforce
the decoder to be aware of the conditioned text embedding.

Specifically, for class ¢, given the N¢ box predictions
9° = {§; | & = c} that are pre-matched to class ¢, and
the set of ground truth boxes y¢ in class ¢, we optimize a
permutation of N¢ elements 0 € Gye that minimizes the
following cost

NC
0. = argmax Z Lecost (yfv gg(i) )7 4

oc€eGNe

where the matching cost is defined as
Lecost (Z/7 ZQ) = Lumatch (pa ﬁ) + Ebox(ba Z;) ®)

Limaten(p, D) is a binary classification loss, and Lyox (b, 13)
characterizes the localization error of b w.r.t b. In our case,
we implement L, by the focal loss [23]. Ly,0x is imple-
mented by a weighted sum of L loss and GIoU [37] loss
following prior works.

The model is optimized by the following loss

L= Z Limatch (pc7ﬁgc) + Lbox(bca B:ETC)
ceCB (6)
= )\focalﬁfocal + /\L1 £L1 + )\GIOUEGIOU'

During inference, we adopt the region classifier intro-
duced in Sec. 3.2 to classify the predicted boxes {b;} for
better classification accuracy. The class score is multiplied
by the pre-matching score to account for the box quality

P(b; € ¢) = pscosine(d;, ). @)

Comparison with Conditional Matching [35]. Condi-
tional Matching in OV-DETR [35] also proposes to condi-
tion the queries on the text embedding for class-aware re-
gression. But it suffers from repetitive per-class inference.
Specifically, as shown in Fig. 3, each class in C™V needs to
be separately localized with the same group of query, which
means both computation and memory consumption scales
linearly with the vocabulary size. During training, the num-
ber of negative classes sampled in each iteration is limited
due to the memory constraint, which hinders convergence.
During inference, repetitive per-class decoding is required
and results in low inference efficiency, especially when the
vocabulary size is large.

Contrary to conditional matching, our anchor pre-
matching mechanism assigns anchor boxes for different
classes adaptively according to the image content, which
ensures a constant number of query decoupled from the cat-
egory size. By anchor pre-matching, all the classes can be
decoded together in one pass, eliminating the need for repet-
itive per-class decoding.

To improve the generalization capability and training
convergence of open-vocabulary detectors equipped with
Anchor Pre-Matching, we also introduce two effective
training techniques, namely, “Drop Class” and “CLIP-
Aligned Labeling”.

Class Dropout. The generalization capability of the model
can be further boosted by randomly dropping categories
during training. Since our goal is to train a detector that
can detect objects from a user specified category list, train-
ing on a fixed list of categories leads to bias. We mitigate
this bias by randomly dropping out the base categories dur-
ing training. For efficiency reason, we implement this idea
by splitting the base classes into two complementary groups
and train on both of them, instead of training on one group
while dropping the other group. Specifically, in each train-
ing iteration, we split C® and the ground truth boxes at a
probability of p, and train the detector on the same image
with two complementary sets of categories. It enforces the
model to condition its prediction on the query categories.
Since a ground truth box in one group does not appear in
the other group, the model needs to be aware of the cate-
gories to treat differently for the two sets of annotations.

CLIP-Aligned Labeling. Directly training the localizer on
the original COCO dataset suffers from convergence issue.
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By anchor pre-matching mechanism, a ground truth box in-
corporates training only when at least one query with the
same pre-matched label exists. Otherwise, it is ignored,
which hinders convergence. This issue can be partially at-
tributed to the inaccurate anchor box. However, even if a
ground truth box has an accurate anchor box, it may still be
ignored due to the limited recognition accuracy limitation
of the region classifier, or in other words, the ground truth
box label is not aligned with the CLIP region classifier used
for pre-matching. Thus, we relabel the boxes in the train-
ing dataset with the region classifier, which we refer to as
CLIP-Aligned labeling. With this technique, more ground
truth boxes can be matched.

4. Experiments

In this section, we comprehensively evaluate our CORA
on the open-vocabulary detection task. Datasets and eval-
uation protocols are introduced in Sec. 4.1, and implemen-
tation details of our method are provided in Sec. 4.2. We
compare with state-of-the-art methods in Sec. 4.3, demon-
strating advantages of our CORA, and then validate the ef-
fectiveness of the proposed Region Prompting and Anchor
Pre-Matching in Sec. 4.4 and Sec. 4.5, respectively.

4.1. Dataset & Training & Evaluation

Following the convention of the COCO OVD benchmark
proposed in [4], the 80 classes in the COCO dataset [24]
classes are divided into 48 base classes and 17 novel classes.
The model is trained on the 48 base classes, which con-
tains 107,761 images and 665,387 instances. The model is
then evaluated on the validation set of novel classes, which
contains 4,836 images and 33,152 instances from both the
48 base classes and the 17 novel classes. We also con-
duct experiments on the LVIS v1.0 [16] dataset. On LVIS
dataset, the model is trained on 461 common classes and
405 frequent classes, which contains 100,170 images and
1,264,883 instances. After training, the model is evaluated
on the LVIS validation set, which contains 19,809 images
and 244,707 instances.

To make fairer comparisons with other methods, we
propose CORA™, which utilizes extra dataset or target
novel class names. CORAT is a detector trained with
both ground-truth base-category annotations and additional
pseudo bounding box labels. When target class names are
provided, we generate pseudo boxes of novel classes on the
base training dataset using CORA, and when extra image-
text dataset (text could be captions or class names) is avail-
able, pseudo boxes of all objects mentioned by the cor-
responding text are generated. We use standard detector
architecture and training target to train CORA™. SAM-
DETR [38] is used for the experiment on COCO and Cen-
terNet2 [43] is used for the experiment on LVIS.

In the OVD task, we evaluate our model under the “gen-
eralized” setting, in which the model needs to predict ob-
jects from both base and novel classes, and then evaluated

on novel objects. On the COCO benchmark, we take AP50
as our evaluation metric, which counts the average preci-
sion at an intersection over union (IoU) of 50% for each
class, and then averages among all the classes. For the LVIS
OVD benchmark, we evaluate on the full validation dataset,
and report the mean AP of boxes from the novel classes to
compare with prior works [40]. For the region classifica-
tion task, we let the model classify the ground truth boxes
in the COCO dataset, the performance is evaluated in terms
of mAP.

4.2. Implementation Details

Model Specifications. We use DAB-DETR [26] as the ob-
ject localizer. Specifically, localizer is configured to have
1,000 object queries, 3 encoder layers and 6 decoder layers.
We use a multi-layer perceptron (MLP) with 128 hidden
neurons to transform class name embeddings into an ob-
ject query. Following CLIP [30], each class embedding is
computed as the average text embedding of the class name
over 80 context prompts. In class dropout, each class is ran-
domly assigned to one of the two groups with equal proba-
bilities. When adopting region prompting on LVIS, classes
in the common and frequent group are sampled with equal
weights, meaning that the objects in the less frequent classes
are over sampled. When training our method on LVIS,
we sample 100 categories (including the ground truth cat-
egories) in each iteration. Since the number of classes in
the LVIS dataset is much larger than that of COCO, we re-
lax the matching constraint in anchor pre-matching, such
that ground truth boxes can be post-matched to the anchor
boxes with a similar label. Specifically, classes with a co-
sine similarity greater than 0.7 are considered similar.
Training & Hyperparameters. We train the region
prompts for 5 epochs with a base learning rate of 1074,
which decays after the 4" epoch by a factor of 0.1. The lo-
calizer is trained for 35 epochs with a learning rate of 10~*
without learning rate decay. Both the region prompts and
the localizer are trained with batch size 32 by the AdamW
optimizer [28] with 10~ weight decay. We apply gradient
clipping with a maximal norm of 0.1. To stabilize training,
we evaluate on the exponential moving average (EMA) of
the model after training. The class dropout probability p is
set as 0.2. Aocal, AL, and Agrou are set as 2.0, 5.0, 2.0, re-
spectively. For the experiment on LVIS, we use repeat fac-
tor sampling [16] with default hyperparameters to balance
the training samples. We use non-maximum suppression
(NMS) with an IoU threshold 0.5 during inference.

4.3. Comparison with State-of-the-Art Methods

Tab. 1 summarizes our main results. Since the pre-
trained model is crucial to the open-vocabulary capability
of the detector, we compare our method with baseline meth-
ods that are trained with the same CLIP model. When com-
pared with methods trained on CLIP RN50, CORA outper-
forms VL-PLM by 0.7 AP50 on novel classes. With a larger
pre-trained model, our method improves the previous state-
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Method Detector Training Generalized (17 + 48)
Extra Dataset Pre-train Model Require Novel Class | Novel
OVR-CNN [36] COCO Captions [9] - X 22.8
Detic [42] COCO Captions [9] CLIP (text encoder) X 27.8
RegionCLIP [40] | CC3M [33] CLIP (RN50) X 314
VL-PLM [39] - CLIP (RN50) v 344
CORA (Ours) - CLIP (RN50) X 35.1
VILD [14] - CLIP (ViT-B/32) v 27.6
OV-DETR [35] - CLIP (ViT-B/32) v 29.4
MEDet [7] COCO Captions [9] CLIP (ViT-B/32) X 32.6
RegionCLIP [40] | CC3M [33] CLIP (RN50x4) X 39.3
CORA (Ours) - CLIP (RN50x4) X 41.7
CORAT (Ours) COCO Captions [9] CLIP (RN50x4) X 43.1

Table 1. Main results on the COCO OVD benchmark. We report AP50 as the evaluation metric. The baseline methods are grouped by
their pre-trained model. We also list the extra dataset requirement of each method, and whether they require the novel class to be provided

during training.

Detector Training LVIS

Method Ext. Data Pre-train Model APr
ViLD [14] - CLIP (ViT-B/32) 16.3
OV-DETR [35] - CLIP (ViT-B/32) 17.4
RegionCLIP [40] | CC3M CLIP (RN50x4) 22.0
CORA (Ours) - CLIP (RN50x4) 22.2
MEDet [7] CC3M CLIP (ViT-B/32) 22.4
Detic [42] IN-21k CLIP (text encoder) | 26.2
CORAT (Ours) IN-21k CLIP (text encoder) | 28.1

Table 2. Results on the LVIS [16] OVD benchmark.

of-the-art RegionCLIP [40] by 2.4 AP50. When extra data
is available, the performance can be further boosted to 43.1
AP50. The results on LVIS [16] OVD benchmark is shown
in Tab. 2.

Note that among the baseline methods, VL-PLM [39],
ViLD [14] and OV-DETR [35] use novel class names during
training in order to recognize the potential novel objects and
assign pseudo labels for them. Consequently, a new detector
needs to be trained whenever there is a new set of categories
to be detected. CORA can generalize to any combination
of novel categories once trained without tedious re-training.
Other compared methods relying on CLIP require image tag
annotations extracted from language descriptions [7,31,40]
or image labels [42] during training. We argue that the ex-
tra annotations do not provide additional information over
CLIP. Instead, they serve as a media to transfer the knowl-
edge from CLIP to the detector. Our method directly adapts
the CLIP model to obtain region classifier, thus no extra
image-text data is needed.

In this work, both region prompting and anchor pre-
matching aim to generalize the knowledge learned from
base classes to novel classes. Consequently, the perfor-
mance gap between novel and base classes is significantly

Method | CLIP model Novel Base
CLIP RNS50 58.2
CLIP-Adapter [12] | RN50 63.0
CoOp [41] RN50 64.4
CORA RN50 65.1
CLIP RN50x4 63.9
CORA RN50x4 74.1

Table 3. Results on the region classification task evaluated in mAP.
We compare our method with the original CLIP regional classifier
and other baseline methods.

lowered than the compared methods. Note that in OVD,
the performance is evaluated by the generalization capabil-
ity towards novel classes, rather than the bases classes on
which they are trained.

4.4. Effectiveness of Region Prompting

Region Prompting. Since object classification is decou-
pled from localization in this work, the CLIP-based region
classifier can be directly evaluated by the region classifi-
cation task. After trained on the base-class annotations of
COCO dataset, we evaluate the CLIP-based region classi-
fier on both base and novel classes in the validation set. We
use mean average precision (mAP) as our evaluation metric.

Tab. 3 shows our main result. Directly evaluating on the
CLIP model without further training already achieves con-
siderable performance of 58.2 mAP on the novel classes.
We compare our result with two competitive methods
from the adapter and prompt tuning literatures. CLIP-
Adapter [12] adopts an additional bottleneck layer to learn
new features and performs residual style feature blending
with the original pre-trained features. CoOp [4 1] prepends
shared learnable prompts to the text embeddings before en-
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CLIP model | Feature

RN50 whole-image  43.8  40.5
RNS50 regional 58.6 582

Novel Base

Table 4. Comparison of the whole-image classification pipeline
and the regional classification pipeline. Results are reported in
mAP.

Query Per-Class CLIP-Aligned Novel
Conditioning Post-Matching Labeling
X X v 26.0
v X v 29.9
v v X 40.9
4 4 v 41.7

Table 5. Ablation studies on anchor pre-matching and CLIP-
aligned labeling. Anchor pre-matching consists of query condi-
tioning and per-class post-matching.

coded by the CLIP text encoder. Experiments show that the
compared methods bias strongly towards base classes. Note
that the baseline methods adapts the CLIP model by tuning
the text input or output feature, which are irrelevant or dis-
tant to the regional feature, where the mismatch between
regional and whole-image feature occurs. On the contrary,
region prompting directly prompts the mismatched features,
thus generalizes better to the novel classes, achieving a per-
formance gain of 6.9 mAP over CLIP on the novel classes.
Region prompting also scales with larger backbones. On the
RN50x4 CLIP backbone, region prompting further boosts
CLIP by 10.2% mAP over the corresponding CLIP model.
Comparison with whole-image classification. A com-
mon practice of region classification by CLIP is to crop the
regions and classify them as separate images. We compare
the region classifier with the common practice on the orig-
inal CLIP weights without region prompting. As shown in
Tab. 4, when classifying a region as a whole-image, the per-
formance is significantly lower than using the regional fea-
ture, despite the extra computation. We attribute the perfor-
mance gap to the missing context of cropped images.

4.5. Effectiveness of Anchor Pre-Matching

We conduct ablation studies to validate anchor pre-
matching and the proposed training techniques.
Anchor Pre-Matching. Anchor pre-matching consists of
two separate operations: query conditioning and per-class
post-matching. We analyze their effects in Tab. 5. Firstly,
we train a model without anchor pre-matching. We keep
using DAB-DETR [26] as the localizer, and use the same
number of object queries and anchor boxes for fair com-
parison. The object queries are not pre-matched to classes,
and are initialized as 0 as done in DAB-DETR. Since the
model predictions are not pre-matched, the per-class post-
matching is replaced by the vanilla one-to-one matching

42.0
41.7
415
o 415
£ 413
o .
)
5
Z
41.0
40,6
40.5
0.0 0.1 0.2 0.3

Class dropout probability

Figure 4. Different choices of p for class dropout.

mechanism in DETR. Then, we classify the anchor boxes
and condition the object queries on the class name embed-
dings, but do not set constraint on the post-matching, which
boosts the performance on novel classes by 3.9 AP50. Af-
ter adopting the full anchor pre-matching, the performance
is significantly boosted by 10.8 AP50.

Training Techniques. Class dropout and CLIP-aligned
labeling are two training techniques that help the model
generalize better. In Fig. 4, we examine the effect of dif-
ferent dropout probability. We find that the models trained
with class dropout consistently outperform the baseline, and
p = 0.2 gives the best performance. In Tab. 5, we validate
the effectiveness of CLIP-Aligned Labeling.

5. Conclusion

The core challenge in open-vocabulary detection is how
to effectively transfer the knowledge learned from the base
classes to the unseen novel classes for evaluation. In this
work, we directly adapt the CLIP into a region classifier,
and mitigate the distribution gap between whole-image fea-
ture and regional feature through region prompting, which
successfully generalizes to the novel categories. Differ-
ent from prior works that rely on a fixed RPN for novel
class localization, we achieve efficient class-aware local-
ization by the proposed anchor pre-matching mechanism.
Experiments show that our method can better transfer the
knowledge from base classes to unseen novel classes with a
smaller gap than prior works. We hope our work can help
other researchers gain better insight on the OVD problem
and develop better open-vocabulary detectors.
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