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Abstract

Stereo video inpainting aims to fill the missing regions
on the left and right views of the stereo video with plausi-
ble content simultaneously. Compared with the single video
inpainting that has achieved promising results using deep
convolutional neural networks, inpainting the missing re-
gions of stereo video has not been thoroughly explored. In
essence, apart from the spatial and temporal consistency
that single video inpainting needs to achieve, another key
challenge for stereo video inpainting is to maintain the
stereo consistency between left and right views and hence
alleviate the 3D fatigue for viewers. In this paper, we pro-
pose a novel deep stereo video inpainting network named
SVINet, which is the first attempt for stereo video inpainting
task utilizing deep convolutional neural networks. SVINet
first utilizes a self-supervised flow-guided deformable tem-
poral alignment module to align the features on the left
and right view branches, respectively. Then, the aligned
features are fed into a shared adaptive feature aggrega-
tion module to generate missing contents of their respec-
tive branches. Finally, the parallax attention module (PAM)
that uses the cross-view information to consider the signif-
icant stereo correlation is introduced to fuse the completed
features of left and right views. Furthermore, we develop
a stereo consistency loss to regularize the trained parame-
ters, so that our model is able to yield high-quality stereo
video inpainting results with better stereo consistency. Ex-
perimental results demonstrate that our SVINet outperforms
state-of-the-art single video inpainting models.

1. Introduction

Video inpainting aims to fill in missing region with plau-
sible and coherent contents for all video frames. As a fun-
damental task in computer vision, video inpainting is usu-
ally adopted to enhance visual quality. It has great value
in many practical applications, such as scratch restora-
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Figure 1. An example of visual comparison with state-of-the-art
single video inpainting models (E2FGVI [23] and FGT [48]) on
stereo video inpainting. As shown here, directly using the single
video inpainting method to generate missing contents on the left
view (first row) and right view (second row) will lead to severe
stereo inconsistency. In contrast, the proposed method not only
generates vivid textures, but also the parallax flow (third row) be-
tween two views is closer to the ground-truth (third row of the
input column). The closer the parallax flow is to ground-truth, the
better the stereo consistency is maintained.

tion [2], undesired object removal [34], and autonomous
driving [24]. In recent years, relying on the powerful fea-
tures extraction capabilities of convolutional neural net-
work (CNN), existing deep single video inpainting meth-
ods [6, 13, 15, 18, 20, 23, 42, 46] have shown great success.
With the development of augmented reality (AR), virtual re-
ality (VR) devices, dual-lens smartphones, and autonomous
robots, there is an increasing demand for various stereo
video processing techniques, including stereo video inpaint-
ing. For example, in some scenarios, we not only remove
objects and edit contents, but also expect to recover the
missing regions in the stereo video. Although the traditional
stereo video inpainting methods [31,32] based on patch op-
timization have been preliminarily studied, the stereo video
inpainting based on deep learning has not been explored.

A naive solution of stereo video inpainting is to directly
apply the single video inpainting methods by completing
the missing regions of left and right views, respectively.
However, inpainting an individual video that only considers
the undamaged spatial-temporal statistics of one view will
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ignore the geometric relationship between two views, caus-
ing severe stereo inconsistency as shown in Fig. 1. Besides,
another way to solve this task is process the stereo video
frame-by-frame using the stereo image inpainting methods.
For example, Li et al. [22] designed a Geometry-Aware At-
tention (GAA) module to learn the geometry-aware guid-
ance from one view to another, so as to make the corre-
sponding regions in the inpainted stereo images consistent.
Nevertheless, compared to its image counterpart, stereo
video inpainting still needs to concern the temporal con-
sistency. In this way, satisfactory performance cannot be
achieved by extending stereo image inpainting technique to
stereo video inpainting task. Therefore, to maintain tem-
poral and stereo consistency simultaneously, there are two
key points need to be considered: (i) temporal modeling be-
tween consecutive frames (ii) correlation modeling between
left view and right view.

In fact, on the one hand, the missing contents in one
frame may exist in neighboring (reference) frames of a
video sequence. Thus, the temporal information between
the consecutive frames can be explored to generate miss-
ing contents of the current (target) frame. For example, a
classical technology pipeline is “alignment–aggregation”,
that is, the reference frame is first aligned to eliminate im-
age changes between the reference frame and target frame,
and then the aligned reference frame is aggregated to gener-
ate the missing contents of the target frame. On the other
hand, correlation modeling between two views has been
studied extensively in the stereo image super-resolution
task [3, 39, 44]. For instance, Wang et al. [39] proposed
the parallax attention module (PAM) to tackle the vary-
ing parallax problem in the parallax attention stereo super-
resolution network (PASSRnet). Ying et al. [44] developed
a stereo attention module (SAM) to address the informa-
tion incorporation issue in the stereo image super-resolution
models. More recently, Chen et al. [3] designed a cross-
parallax attention module (CPAM) which can capture the
stereo correspondence of respective additional information.

Motivated by above observation and analysis, in this pa-
per, we propose a stereo video inpainting network, named
SVINet. Specifically, SVINet first utilizes a self-supervised
flow-guided deformable temporal alignment module to
align the reference frames on the left and right view
branches at the feature level, respectively. Such operation
can eliminate the negative effect of image changes caused
by camera or object motion. Then, the aligned reference
frame features are fed into a shared adaptive feature aggre-
gation module to generate missing contents of their respec-
tive branches. Note that the missing contents of one view
may also exist in another view, we also introduce the most
relevant target frame from another view when completing
the missing regions of the current view, which can avoid the
computational complexity problem caused by simply aggre-

gating all video frames. Finally, a modified PAM is used
to model the stereo correlation between the completed fea-
tures of the left and right views. Beyond that, inspired by
the success of end-point error (EPE) [10] in optical flow es-
timation [11], we introduce a new stereo consistency loss to
regularize training parameters, so that our model is able to
yield high-quality stereo video inpainting results with better
stereo consistency. We conduct extensive experiments on
two benchmark datasets, and the experimental results show
that our SVINet surpasses the performance of recent single
video inpainting methods in the stereo video inpainting.

To sum up, our contributions are summarized as follows:

• We propose a novel end-to-end stereo video inpainting
network named SVINet, where the spatially, tempo-
rally, and stereo consistent missing contents for cor-
rupted stereo video are generated. To the best of our
knowledge, this is the first work using deep learning to
solve stereo video inpainting task.

• Inspired by the end-point error (EPE) [10], we design
a stereo consistency loss to regularize training parame-
ters of SVINet, so that the training model can improve
the stereo consistency of the completed results.

• Experiments on two benchmark datasets demonstrate
the superiority of our proposed method in both quanti-
tative and qualitative evaluations. Notably, our method
also shed light on the subsequent research of stereo
video inpainting.

2. Related Works
Single Video Inpainting. With the rapid development of
deep learning, several deep learning-based methods have
been proposed for video inpainting and achieved significant
results in terms of the inpainting quality and speed. These
deep learning-based methods can be roughly classified into
three lines: 3D convolution methods, optical flow meth-
ods, and attention ones. 3D convolution methods [2, 16, 26]
usually reconstruct the missing contents by directly aggre-
gating temporal information from neighbor frames through
3D temporal convolution. For example, Wang et al. [37]
proposed the first deep learning-based video inpainting net-
work, which consists of a 3D CNN for temporal prediction
and a 2D CNN for spatial detail recovering. Further, Kim et
al. [16] adopted a recurrent 3D-2D feed-forward network to
aggregate the temporal information of the neighbor frames
into missing regions of the target frame. However, 3D CNN
has relatively higher computational complexities compared
with 2D CNN, limiting the application of these methods. To
alleviate this problem, some researchers treated the video
inpainting as a pixel propagation problem and designed the
video inpainting approaches [6, 14, 15, 23, 43, 49, 51] based
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Figure 2. Illustration of the proposed stereo video inpainting network (SVINet). Flow-guided deformable temporal alignment module
is used to align reference frame on the left and right view branches at the feature level, which aims to eliminate the effect of image changes
caused by camera or object motion. Then, the aligned reference frame features are fed into adaptive feature aggregation module to generate
missing contents of their respective branches. Finally, the completed features on the two branches are used to model the stereo consistency
between the left and right views through the modified PAM. Furthermore, we also design a stereo consistency loss Lstereo to regularize
the trained parameters, so that our model is able to yield video inpainting results with high-quality stereo consistency.

on optical flow. These methods first introduce a deep flow
completion network to restore the flow sequence and then
use the restored flow sequence to fill the relevant pixels of
the missing regions of the neighbor frames. For instance,
Xu et al. [43] used the flow field completed by a coarse-to-
fine deep flow completion network to guide relevant pixels
into the missing regions. Based on this, Gao et al. [6] fur-
ther improved the performance of video inpainting by ex-
plicitly completing the flow edges. Zou et al. [51] corrected
the spatial misalignment in the temporal feature propaga-
tion stage by the completed optical flow. Although have
shown promising results, these methods fail to capture the
visible contents of long-distance frames, and thus decrease
the inpainting performance in the scene of large objects and
slowly moving objects.

To effectively model the long-distance correspondence,
the state-of-the-art methods [20,21,25,27,33–35,41,45,48]
use the attention mechanism to capture long-term corre-
spondences. In this way, the available content at distant
frames can be globally propagated into missing regions.
For example, Zeng et al. [45] proposed the first transformer
model for video inpainting by learning a multi-layer multi-
head transformers. Further, Liu et al. [25] improved edge
details of missing contents by using soft split and soft com-
position operations in transformer. Ren et al. [33] developed
a novel Discrete Latent Transformer (DLFormer) by formu-
lating video inpainting task into the discrete latent space. In
spite of these methods have achieved unprecedented perfor-
mance in the single video inpainting task, the naive exten-
sion of these methods to stereo video inpainting tasks will
lead to severe stereo inconsistency between two views.
Stereo Image/Video Inpainting. Stereo image inpainting
is a sub-task of image inpainting, and several traditional
methods have been proposed. Wang et al. [38] proposed
a new stereo image inpainting algorithm for simultaneous
color and depth inpainting. Hervieu et al. [9] used the com-

plete disparity maps to fill in missing regions in a way that
avoids the creation of 3D artifacts. However, due to the
common limitation of conventional single image inpainting
methods, they fail to generate meaningful structures when
facing complex semantic scenes in the missing regions. For-
tunately, the development of convolutional neural network
brings new opportunities for stereo image inpainting. Chen
et al. [4] designed the first end-to-end stereo image inpaint-
ing network based on the encoder-decoder structure. How-
ever, this method can only deal with square holes in the
centre. Ma et al. [28] proposed SICNet for stereo image
inpainting, which associates the two views by a feature map
concatenation operation to ensure the stereo consistency of
the completed results. Further, Li et al. [22] designed an
Iterative Geometry-Aware Cross Guidance Network (IGC-
Net), which performs inpainting on the stereo images by
exploring and integrating the stereo geometry in an iterative
manner. While these stereo image inpainting methods have
achieved promising results, naively using these algorithms
on individual stereo video frames to fill missing regions will
lose inter-frame motion continuity, resulting in flicker arti-
facts in the inpainted video.

Compared to stereo image inpainting, stereo video in-
painting presents an additional challenge in preserving tem-
poral consistency. Traditional stereo video inpainting meth-
ods [31, 32] formulate the inpainting process as a patch-
based optimization problem, i.e., searching the similar
patches from the known regions to synthesize missing con-
tents, and using a view consistency constraint to ensure
the stereo consistency of the results. Similar to traditional
stereo image inpainting, these methods fail to complete
scenes with complex semantics. Inspired by the success of
deep learning in single video inpainting task, we propose
the first deep stereo inpainting model in this paper, which
provides a strong benchmark for subsequent research.
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3. Method
3.1. Network Overview

Given a corrupted stereo video sequence (Xl,Xr) =
{(xl1, xr1), (xl

2, xr2), . . . , (xl
T , xrT )} consisting of T frame

pair, where xl
i and xri denote the i-th corrupted frames of

the left and right stereo video Xl and Xr, respectively. Let
(Ml,Mr) = {(ml

1,mr
1), (ml

2,mr
2), . . . , (ml

T ,mr
T )} denote

the corresponding frame-wise masks, which is used to in-
dicate missing or corrupted regions. The goal of stereo
video inpainting is to generate an inpainted stereo video se-

quence pair (Ŷ
l
, Ŷ

r
) = {(ŷl1, ŷr1), (ŷ

l
2, ŷr2), . . . , (ŷ

l
T , ŷrT )},

which should be spatially, temporally, and stereo consis-
tent with the original video sequence pair (Yl,Yr) =
{(yl1, yr1), (yl2, yr2), . . . , (ylT , yrT )}.

To achieve this goal, we propose a stereo video in-
painting network named SVINet. As shown in Fig.2,
SVINet consists of a frame-level encoder, a Flow-guided
Deformable Temporal Alignment Module (FDTAM), an
Adaptive Feature Aggregation Module (AFAM), a Parallax
Attention Module (PAM) and a frame-level decoder. The
frame-level encoder is built by stacking several 2D convolu-
tion layers, which aims at encoding deep features from low-
level pixels of each frame. Similarly, the frame-level de-
coder is designed to decode inpainted features into frames.
Besides, FDTAM, AFAM, and PAM are the core compo-
nents of our proposed model. FDTAM performs reference
frame alignment on the left and right view branches at the
feature level, which aims to eliminate the effect of image
changes caused by camera or object motion. After obtain-
ing the aligned reference frame features, AFAM is used to
generate missing contents of their respective branches. Note
that the missing contents of one view may also exist in an-
other view, so we also introduce video frames of another
view when generating the missing contents of the current
view. Finally, the completed features on the two branches
are used to model the stereo consistency between the left
and right views through PAM. In the following, for simplic-
ity, we take the left view branch as an example to introduce
the three main involved components.

3.2. Flow-guided Deformable Temporal Alignment

Due to the image variation caused by camera and object
motion, it is difficult to directly utilize the temporal infor-
mation of the reference frames to complete missing regions
of the target frame. Therefore, an extra alignment module
is necessary for video inpainting.

Deformable alignment has achieved a significant im-
provement over flow-based alignment thanks to the off-
set learning of the sampling convolution kernels intro-
duced in deformable convolution (DCN). Various forms
of deformable convolutional temporal alignment networks
have been proposed in the past few years, such as DAPC-
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DCN
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v
C

o
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Figure 3. Illustration of the flow-guided deformable temporal
alignment module.

Net [42], EDVR [40], and TDAN [36]. However, these
networks often suffer from offset overflow during training,
deteriorating the final alignment performance. To relieve
the burden of offset learning, Chan et al. [1] used the op-
tical flow field as base offset of deformable convolution.
However, this alignment module has the following disad-
vantages: 1) It uses a heavyweight pre-trained neural net-
work to generate accurate optical flow with video frames as
input, which significantly increases the computational cost,
and limits its practical application. In fact, as the basic off-
set of the deformable convolution, optical flow is more ro-
bust to errors. 2) It is achieved in an unsupervised manner,
which is difficult to train. Based on this, we design a flow-
guided deformable temporal alignment module to perform
reference frame alignment at the feature level (Fig. 3).

Unlike the literature [1], our alignment module uses a
3-layer convolutional stack lightweight motion estimator to
estimate the optical flow with features as input, which not
only reduces the computational cost but also can be trained
from scratch to generate more suitable optical flow for this
task. In addition, we also develop an alignment loss to train
the temporal alignment module in a self-supervised manner
(see Section.3.5).

Specifically, for the reference frame feature f li and the
target feature f lt obtained by frame-level encoder, we first
use the proposed motion estimator to calculate the optical
flow ol

t→i between them, and utilize the calculated optical
flow olt→i to warp the reference frame feature f li,

olt→i = ME(f lt, f li), (1)

f
l

i = W(f li, olt→i), (2)

where ME and W denote the motion estimator and warp-
ing operation, respectively. The optical flow olt→i are then
used to compute the DCN offsets θl. Instead of directly
computing the DCN offsets θl, we compute the residual of
the optical flow as the DCN offsets:

θl = olt→i + Cθ(f li, f lt). (3)

Here, Cθ denotes the regular convolution layer. θl =
{△pn|n = 1, . . . , |R|} denotes the offsets of the convolu-
tion kernels, where R = {(−1,−1), (−1, 0), . . . , (1, 1)}
denotes a regular grid of a 3 × 3 kernel. Next, the aligned
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Figure 4. Illustration of the adaptive feature aggregation module.

features f̃
l

i of the features f li can be computed by the de-
formable convolution:

f̃
l

i = DCN (f li, θ
l), (4)

where DCN (·) denotes deformable convolutional opera-

tion. Finally, to obtain more robust alignment feature, f̃
l

i

and f
l

i are aggregated to generate the final aligned reference
frame feature eli,

eli = A(f̃
l

i, f
l

i), (5)

where A denotes the aggregation function.
In practice, to enhance conversion flexibility and capa-

bility, we cascade two temporal alignment modules to per-
form feature alignment. Section.4.3 contains the ablation
study on cascade operation of alignment module.

3.3. Adaptive Feature Aggregation Module

Due to occlusion, blurry regions and parallax problems,
different aligned reference frames are not equally beneficial
for reconstructing the missing contents in the target frame.
Therefore, an adaptive feature aggregation module is used
to dynamically aggregate aligned reference frames.

Specifically, as shown in Fig. 4, we first compute the
similarity between each aligned reference frame feature eli
and the target frame feature f lt, and then utilize softmax
function to automatically assign aggregate weight for each
aligned reference frame feature eli,

sli =
exp

(
(f lt)T · eli

)
∑

r exp
(
(f lt)T · elr

) , (6)

where r is the number of reference frames. After obtaining
the aggregated weights sl for all aligned reference frames,
the attention maps sli are multiplied by the aligned reference
frame feature eli in a pixel-wise manner to obtain attention-
modulated feature ali,

ali = sli ⊙ eli, (7)

where ⊙ denotes the element-wise multiplication. Finally,
the aggregated features êt are obtained by a fusion convolu-
tional layer. Note that the missing contents in the left video

1×1

1×1

Softmax

Softmax

Generate

Valid Mask

Conv

Conv

1×1

1×1

q

Figure 5. Illustration of the modified PAM architecture.

may exist in the right video for the stereo video inpainting
task, so it is necessary to aggregate the relevant contents in
the right video to generate the missing contents in the left
video. However, the direct aggregation of all right video
features will increase heavy computing costs, which is not
conducive to the practical application of stereo video in-
painting. Therefore, when generating the missing contents
of the target frame xlt of the left video, we only aggregate
the most relevant frame xr

t in the right video.

êlt = F([alt−n, . . . , al
t+n, ar→l

t , f lt,ml
t]), (8)

where F is a 1 × 1 convolution layer. ⊙ and [·, ·, ·] denote
the element-wise multiplication and concatenation opera-
tion. ar→l

t denotes the attention-modulated features of the
target frame xrt in the right view.

3.4. Modified PAM Architecture

In stereo image super-resolution task, Wang et al. [39]
proposed the parallax attention module to estimate global
matching in stereo images based on self-attention tech-
niques [5, 47]. Since PAM can gradually focus on the fea-
tures at accurate disparity using feature similarity, stereo
correspondence between left and right views can then be
captured. Fig. 5 depicts the structure of the redesigned
PAM. For the completed feature êlt and êrt of left and right
view branches, they are fed to the 1 × 1 convolution layer
to produce the four basic elements, including q , k, v, and
z. Batch-wise matrix multiplication is then performed be-
tween q and v as well as between k and z, and a softmax
layer is applied to generate the corresponding disparity at-
tention maps ul→r and ur→l, respectively. Next, the dis-
parity attention maps ul→r and ur→l are respectively mul-
tiplied by v and k to produce feature dl and dr. Note that,
once ul→r and ur→l are ready, the valid masks pl→r and
pr→l can be obtained by the mask generation method in
reference [39]. The value of each element in the valid mask
pl→r (pr→l) is “0” or “1”, where, “0” indicates that the pix-
els in the left (right) view cannot find their correspondences
in the right (left) view, while “1” denotes that the pixels in
the left (right) view can find their correspondences in the
right (left) view. Finally, stacked feature and a valid mask
are fed into a 1 × 1 convolution layer to generate the fused
feature glt and grt , respectively.
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Table 1. Quantitative results of video inpainting on KITTI2012 and KITTI2015 datasets.

Methods
KITTI2012 KITTI2015

PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓ EPE↓ PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓ EPE↓
FGVC [6] 26.0814 0.8894 1.0046 0.8365 0.8832 25.8381 0.8896 0.6062 0.7296 0.8013

CPVINet [20] 26.0464 0.8729 0.8845 0.7914 0.6987 26.7131 0.8813 0.5665 0.7091 0.5502
OPN [34] 28.0218 0.9105 0.8419 0.4469 0.4586 28.7632 0.9160 0.5385 0.4092 0.3618
STTN [45] 27.6418 0.9053 0.9301 0.4750 0.4438 28.5488 0.9127 0.5942 0.4273 0.3398

FuseFormer [25] 27.4688 0.9015 0.8735 0.4090 0.4907 28.1938 0.9084 0.5667 0.5289 0.3915
E2FGVI [23] 29.3312 0.9289 0.8441 0.3557 0.5181 29.5729 0.9317 0.5407 0.3669 0.4084

FGT [48] 28.7636 0.9267 0.8073 0.3491 0.4837 29.2331 0.9304 0.5425 0.3494 0.4055

Ours 29.6236 0.9303 0.7299 0.3257 0.3657 30.8191 0.9321 0.5350 0.2927 0.2668

3.5. Loss Functions

We employ three loss functions to train the proposed
network, including reconstruction loss, alignment loss, and
stereo consistency loss.
Reconstruction Loss. It is used to measure pixel-level
reconstruction accuracy in the whole inpainted result. In
video inpainting tasks, reconstruction loss usually consists
of reconstruction loss of missing regions and reconstruction
loss of valid regions. The reconstruction loss of missing
regions are denoted as,

Lhole =
∥ ml

t ⊙ (ŷlt − ylt) ∥1
∥ ml

t ∥1
+

∥ mr
t ⊙ (ŷrt − yrt ) ∥1
∥ mr

t ∥1
, (9)

and corresponding reconstruction loss of valid regions are
denoted as,

Lvalid =
∥ (1− ml

t)⊙ (ŷlt − ylt) ∥1
∥ (1− ml

t) ∥1

+
∥ (1− mr

t )⊙ (ŷrt − yrt ) ∥1
∥ (1− mr

t ) ∥1
,

(10)

where ⊙ indicates element-wise multiplication.
Alignment Loss. Although the proposed temporal align-
ment module has the potential to capture motion cues and
align the reference frame and the target frame at the feature
level, the implicit alignment is very difficult to learn with-
out a supervision. To make the implicit alignment possible,
we propose a self-supervised alignment loss Lalign using
target frame features as labels.

Lalign =
1

2n

t+n∑
i=t−n,i̸=t

(∥ eli − f lt ∥1+∥ eri − f rt ∥1), (11)

where eli and eri denote the aligned reference frame feature
of left and right views, respectively.
Stereo Consistency Loss. Compared with single video in-
painting task, stereo video inpainting presents an additional
challenge in preserving stereo consistency between left and
right views. Inspired by the end-point error (EPE) [10], we
propose a stereo consistency loss to measure differences be-
tween the disparity of the left and right views for ground
truth and the disparity of the left and right views for the

completed results. Specifically, we first calculate the opti-
cal flow ol→r

y between the left view ylt and the right view
yrt of the ground truth and optical flow ol→r

ŷ between the

left view ŷlt and the right view ŷrt of the completed results.
Then, the L2-norm between ol→r

y and ol→r
ŷ is regarded as

the stereo difference between the ground truth and the com-
pleted results. The calculation formula of proposed stereo
consistency loss is as follows,

Lstereo =
1

H ×W × C
∥ ol→r

y − ol→r
ŷ ∥

2
, (12)

where H ×W × C denotes the size of the video frame ylt.
Total Loss. The overall optimization objectives are con-
cluded as below,

L = Lhole+λvalidLvalid+λalignLalign+λstereoLstereo,
(13)

where λvalid, λalign,and λstereo are the trade-off parame-
ters. In real implementation, we empirically set the weights
of different losses as: λvalid = 2, λalign = 0.2, and
λstereo = 0.05.

4. Experiments
4.1. Experimental Setting

Datasets. For stereo video inpainting task, there is no
public dataset at present. Based on this, we designed a
new stereo video inpainting (SVI) dataset using two public
stereo video datasets KITTI2012 [7] and KITTI2015 [29].
Specifically, SVI includes 450 training video pairs, 135 ver-
ification video pairs and 200 test video pairs. Note that
the SVI test set is divided into two parts: KITTI2012 and
KITTI2015, and each part contains 100 video pairs from
their original test set. The length of each video in SVI is 20
frames, which is consistent with the original KITTI dataset.
As for masks, we generated two types of masks to simu-
late real-world applications, including stationary masks and
moving masks. Stationary masks are used to simulate ap-
plications like watermark removal. The shapes and loca-
tions of these masks are arbitrary, and its generation pro-
cess follows works [2, 48]. moving masks are used to sim-
ulate applications like undesired object removal and scratch
restoration. Following previous single video inpainting
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Figure 6. Qualitative results compared with single video inpainting models CPVINet [20], STTN [45], E2FGVI [23], and FGT [48]. The
first and fourth lines are the left view, the second and fifth lines are the right view, and the third and sixth lines are the parallax flow between
the left and right views. Better viewed at zoom level 400%.

works [21, 23, 25, 45, 51], we use the foreground object an-
notations in the [30] dataset as object masks, which have
continuous motion and a realistic appearance. To the best
of our knowledge, SVI is the first dataset for stereo video
inpainting, which will be published to facilitate subsequent
research and benefit other researchers.

Implementation Details. We use PyTorch to implement
our model. In our experiments, an Adam optimizer with
the initial learning rate of 1e-4 is used to train the pro-
posed network, and we set β1 = 0.9, β2 = 0.999 as its
exponential decay rates. During the training, the video
sequences are resized to 256 × 256 as inputs. Further-
more, in our implementation, we follow the setting of
signal video inpainting works [2, 17, 18, 42] to treat the
{xl

t−6, xlt−4, xlt−2, xl
t+2, xlt+4, xlt+6} as the reference frames

of the target frame xlt in the left view. The settings in the
right view are similar to those in the left view.

Baselines and Evaluation Metrics. Note that there was
no work focusing on stereo video inpainting task before, so
seven state-of-the-art single video inpainting methods are
used as our baselines to evaluate the stereo video inpainting
ability of our model, including: FGVC [6], CPVINet [20],
OPN [34], STTN [45], FuseFormer [25], E2FGVI [23], and
FGT [48]. To ensure the comparability of experimental re-
sults, these baselines are fine-tuned multiple by their re-
leased models and codes, and report their best results in this
paper. Furthermore, we choose five metrics to report quan-
titative results of inpainted videos, including PSNR [8],
SSIM [34], LPIPS [50], flow warping error (Ewarp) [19],
and EPE [10]. Specifically, PSNR and SSIM are frequently
used metrics for distortion-oriented image and video assess-
ment. LPIPS is a recently proposed metric to imitate hu-
man perception of image similarity. Ewarp is employed to

measure the temporal consistency. Furthermore, similar to
portraying the stereo consistency in the stereo video super-
resolution [12], we also compute the EPE by calculating the
Euclidean distance between the disparity of the inpainted
stereo frames and ground-truth frames to measure the stereo
correlation of the inpainted results.

4.2. Experimental Results and Analysis

Quantitative Results. We report quantitative results of
our method and other baselines on KITTI2012 [7] and
KITTI2015 [29] in Tab. 1. As shown in this table, our pro-
posed method achieves state-of-the-art results in all four
evaluation metrics on two datasets compared to the sin-
gle video inapinting methods. The superior results demon-
strate that our method can generate videos with less dis-
tortion (PSNR and SSIM), more visually plausible contents
(LPIPS), better temporal coherence (Ewarp), and more con-
sistent stereo correlation (EPE), which further verifies the
necessity of developing stereo video inpainting model.
Qualitative Results. To further evaluate the visual qual-
ity of the inpainted stereo video, we show two examples
of our model compared with four competitive single video
inpainting models (including CPVINet [20], STTN [45],
E2FGVI [23], and FGT [48]) in Fig. 6. As can be observed,
inpainted results of the stereo video obtained by the sin-
gle video inpainting model can generate specious missing
contents on a single view, but fail to effectively explore the
stereo cues between the left and right views. In contrast,
our proposed model can not only generate vivid textures but
also produce stereo consistent contents.
User Study. We conduct a user study for a more compre-
hensive comparison. We select three state-of-the-art single
video inpainting methods as the baseline for our user study,
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Figure 7. User preference results of four methods.

Table 2. Ablation study of alignment manner.

Index alignment manner PSNR↑ SSIM↑ E warp↓ LPIPS↓ EPE↓
1 without align 25.7103 0.8786 0.6573 0.7809 0.8196
2 flow warping 29.4325 0.9277 0.5498 0.3315 0.3104
3 DCN 30.1276 0.9283 0.5474 0.3136 0.2917
4 flow + DCN 30.2413 0.9302 0.5425 0.3056 0.2798
5 ME + DCN 30.2206 0.9293 0.5432 0.3071 0.2805
6 ME + DCN + agg 30.3427 0.9308 0.5413 0.2998 0.2794
7 ME + DCN + agg + cas 30.5876 0.9315 0.5397 0.2989 0.2733
8 ME + DCN + agg + cas + Lalign 30.8191 0.9321 0.5350 0.2927 0.2668

including CPVINet [20], E2FGVI [23], and FGT [48]. 30
participants were invited to conduct a questionnaire survey
for the inpainted results of 10 videos. Every volunteer is
shown randomly sampled 5 video triplets and asked to se-
lect a visually better inpainting video. To ensure reliable
subjective evaluation, the inpainting results obtained by the
four methods are scrambled during each interrogation, and
each video can be played multiple times. As shown in
Fig. 7, we collected 150 votes from 30 volunteers and show
the percentage of votes for each method in the form of his-
togram chart. The comparison results show that the pro-
posed method can generate more visually pleasing results.

4.3. Ablation Study

Effectiveness of alignment manner. In this section, we
conducted ablation research on the alignment manner of the
reference frames. From Tab.2, we can obtain following con-
clusions: 1) The alignment module significantly improves
the quality of inpainted videos; 2) The flow-guided de-
formable alignment manner (4th and 5th rows) achieves su-
perior results compared to flow-based alignment (2th row)
and traditional deformable alignment (3th row); 3) Using
the optical flow calculated by the lightweight motion esti-
mator (ME) to guide the deformable convolution alignment
will not significantly reduce the result of video inpainting

(5th row); 4) Aggregating f̃
l

i and f
l

i by Eq.5 can further im-
prove the alignment performance of reference frames (6th
row); 5) The strategy of expanding the receptive field by
cascading operation to improve the inpainting effect in large
motion scenes can effectively (7th row); 6) Using the self-
supervised alignment loss Lalign during training can im-
prove the performance of the alignment module (8th row).
Effectiveness of PAM. As described in Section.3.4, PAM
is used to model the stereo correspondence between the left
and right views. In this section, we investigate the effec-
tiveness of this module in the stereo video inpainting task

Table 3. Effectiveness of PAM and Lstereo.

PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓ EPE↓
CPVINet 26.7131 0.8813 0.5665 0.7091 0.5502

CPVINet+PAM 26.9352 0.8896 0.5580 0.6914 0.5399
CPVINet+PAM+Lstereo 27.0583 0.8909 0.5501 0.6877 0.5273

OPN 28.7632 0.9160 0.5385 0.4092 0.3618
OPN+PAM 28.9103 0.9202 0.5269 0.4003 0.3489

OPN+PAM+Lstereo 29.0562 0.9288 0.5205 0.3913 0.3235
STTN 28.5488 0.9127 0.5942 0.4273 0.3398

STTN+PAM 28.7209 0.9196 0.5817 0.4139 0.3209
STTN+PAM+Lstereo 28.9897 0.9205 0.5786 0.4057 0.3077

w/o Lstereo 30.5691 0.9306 0.5394 0.3019 0.3065
Full model 30.8191 0.9321 0.5350 0.2927 0.2668

Table 4. Ablation study of cross view aggregation strategy.

Index Method PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓ EPE↓
1 w/o across views 30.6875 0.9316 0.5385 0.3006 0.2714
2 Full model 30.8191 0.9321 0.5350 0.2927 0.2668

by adding PAM to the single video inpainting network. As
shown in Tab. 3, compared with the original single video
inpainting model, the stereo video inpainting performance
of the model with PAM is improved, especially the stereo
correlation (EPE) between the left and right views.
Effectiveness of Lstereo. Lstereo is used to regularize the
trained parameters, so that the trained model is able to
yield high-quality stereo video inpainting results with bet-
ter stereo consistency. In Tab. 3, we conducted an abla-
tion study on Lstereo. As we can see, models with Lstereo

participating in training can obtain smaller EPE indicators.
This shows that the designed Lstereo is effective in preserv-
ing the stereo consistency of stereo video inpainting results.
Necessity of aggregate across views. As mentioned in Sec-
tion.3.3, we used the relevant information from the right
view when generating the missing contents of the left view
branch. Tab. 4 studies the effectiveness of this cross view
aggregation strategy. From Tab. 4, we can observe that the
model using cross view aggregation strategy has better in-
painting results. This indicates that it is necessary to ag-
gregate information across views in stereo video inpainting.

5. Conclusion
In this work, we studied stereo video inpainting, at-

tempting to inpaint the missing regions of the left and right
video, while maintaining their temporal and stereo consis-
tency. To achieve this, we propose a novel deep network
architecture for stereo video inpainting, named SVINet.
SVINet first generates missing contents on the left and right
view branches through the classic “alignment–aggregation”
pipeline. Then the completed results of the left and right
view branches are fed into the PAM to model the stereo
correlation between views. Furthermore, we also design a
stereo consistency loss to regularize the trained parameters,
so that our model is able to yield high-quality stereo video
inpainting results with better stereo consistency. Experi-
mental results show that the proposed method is effective
in stereo video inpainting.
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