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This is a tall gray trash	can . It is under the 
left side of the counter , to the left of the 

door when you enter.

This is a black trash	can. It is under a 
bathroom counter. The trash	can is white and plastic. It is 

attached to the wall to the left of the toilet.

The door	is rectangular	in 
shape and has a small window 

on the upper portion. 

object
It is a brown wooden object, 
with a cloth seat and back. It 

has multicolored flower 
patterns	on the seat, and back.

(b) Grounding without object name

(a) Regular 3D visual grounding

(b1) (b2) 
This is a black object	. It is 

located next to a tall shelf and 
there is a fan in front of it .

The white refrigerator	is in 
front of the kitchen stove . It 
is to the left side of the room 

as one enters the kitchen.

object (b3) (b4) 

Figure 1. Text-decoupled, dense aligned 3D visual grounding. Different colours in the text correspond to different decoupled components.
(a) Regular 3D visual grounding: locating objects requires comprehensively considering multiple semantic cues such as appearance at-
tributes, object names, and spatial relationships. (b) Grounding without object name: not mentioning object names, avoiding short-cuts
and forcing the model to predict the target based on other attributes.

Abstract

3D visual grounding aims to find the object within point
clouds mentioned by free-form natural language descrip-
tions with rich semantic cues. However, existing methods
either extract the sentence-level features coupling all words
or focus more on object names, which would lose the word-
level information or neglect other attributes. To alleviate
these issues, we present EDA that Explicitly Decouples
the textual attributes in a sentence and conducts Dense
Alignment between such fine-grained language and point
cloud objects. Specifically, we first propose a text decou-
pling module to produce textual features for every seman-
tic component. Then, we design two losses to supervise
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the dense matching between two modalities: position align-
ment loss and semantic alignment loss. On top of that,
we further introduce a new visual grounding task, locat-
ing objects without object names, which can thoroughly
evaluate the model’s dense alignment capacity. Through
experiments, we achieve state-of-the-art performance on
two widely-adopted 3D visual grounding datasets, Scan-
Refer and SR3D/NR3D, and obtain absolute leadership on
our newly-proposed task. The source code is available at
https://github.com/yanmin-wu/EDA.

1. Introduction
Multi-modal cues can highly benefit the 3D environ-

ment perception of an agent, including 2D images, 3D point
clouds, and language. Recently, 3D visual grounding (3D
VG) [8,50], also known as 3D object referencing [3], has at-
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tached much attention as an important 3D cross-modal task.
Its objective is to find the target object in point cloud scenes
by analyzing the descriptive query language, which requires
understanding both 3D visual and linguistic context.

Language utterances typically involve words describ-
ing appearance attributes, object categories, spatial rela-
tionships and other characteristics, as shown by different
colours in Fig. 1(a), requiring that the model integrate multi-
ple cues to locate the mentioned object. Compared with 2D
Visual Grounding [18,19,67,71], the sparseness and incom-
pleteness of point clouds, and the diversity of language de-
scriptions produced by 3D multi-view, make 3D VG more
challenging. Existing works made significant progress from
the following perspectives: improving point cloud features
extraction by sparse convolution [70] or 2D images assis-
tance [68]; generating more discriminative object candi-
dates through instance segmentation [33] or language mod-
ulation [46]; identifying complex spatial relationships be-
tween entities via graph convolution [23] or attention [6].

However, we observe two issues that remain unex-
plored. 1) Imbalance: The object name can exclude most
candidates, and even in some cases, there is only one
name-matched object, as the “door” and “refrigerator” in
Fig. 1(b1, b2). This shortcut may lead to an inductive bias
in the model that pays more attention to object names while
weakening other properties such as appearance and relation-
ships, resulting in imbalanced learning. 2) Ambiguity: Ut-
terances frequently refer to multiple objects and attributes
(such as “black object, tall shelf, fan” in Fig. 1(b4)), while
the model’s objective is to identify only the main object,
leading to an ambiguous understanding of language de-
scriptions. These insufficiencies of existing works stem
from their characteristic of feature coupling and fusing im-
plicitly. They input a sentence with different attribute words
but output only one globally coupled sentence-level fea-
ture that subsequently matches the visual features of can-
didate objects. The coupled feature is ambiguous because
some words may not describe the main object (green text
in Fig. 1) but other auxiliary objects (red text in Fig. 1).
Alternatively, using the cross-modal attention of the Trans-
former [21, 63] automatically and implicitly to fuse visual
and text features. However, this may encourage the model
to take shortcuts, such as focusing on object categories and
ignoring other attributes, as previously discussed.

Instead, we propose a more intuitive decoupled and ex-
plicit strategy. First, we parse the input text to decouple
different semantic components, including the main object
word, pronoun, attributes, relations, and auxiliary object
words. Then, performing dense alignment between point
cloud objects and multiple related decoupled components
achieves fine-grained feature matching, which avoids the
inductive bias resulting from imbalanced learning of differ-
ent textual components. As the final grounding result, we

explicitly select the object with the highest similarity to the
decoupled text components (instead of the entire sentence),
avoiding ambiguity caused by irrelevant components. Ad-
ditionally, to explore the limits of VG and examine the com-
prehensiveness and fine-graininess of visual-language per-
ception of the model, we suggest a challenging new task:
Grounding without object name (VG-w/o-ON), where
the name is replaced by “object” (see Fig. 1(b)), forcing
the model to locate objects based on other attributes and
relationships. This setting makes sense because utterances
that do not mention object names are common expressions
in daily life, and in addition to testing whether the model
takes shortcuts. Benefiting from our text decoupling oper-
ation and the supervision of dense aligned losses, all text
components are aligned with visual features, making it pos-
sible to locate objects independent of object names.

To sum up, the main contributions of this paper are as
follows: 1) We propose a text decoupling module to parse
linguistic descriptions into multiple semantic components,
followed by suggesting two well-designed dense aligned
losses for supervising fine-grained visual-language feature
fusion and preventing imbalance and ambiguity learning.
2) The challenging new 3D VG task of grounding without
object names is proposed to comprehensively examine the
model’s robust performance. 3) We achieve state-of-the-art
performance on two datasets (ScanRefer and SR3D/NR3D)
on the regular 3D VG task and absolute leadership on the
new task evaluated by the same model without retraining.

2. Related Work

2.1. 3D Vision and Language

3D vision [52,53,75] and language are vital manners for
humans to understand the environment, and they are also
important research topics for the evolution of machines to
be like humans. Previously, the two fields evolved inde-
pendently. Due to the advance of multimodality [25, 26,
54, 56, 57, 72–74, 76], many promising works across 3D vi-
sion and language have been introduced recently. In 3D
visual grounding [1, 8–10, 12], the speaker (like a human)
describes an object in language. The listener (such a robot)
needs to understand the language description and the 3D vi-
sual scene to grounding the target object. On the contrary,
the 3D dense caption [9, 13, 14, 36, 65, 69] is analogous to
an inverse process in which the input is a 3D scene, and
the output is textual descriptions of each object. Language-
modulated 3D detection or segmentation [7, 32, 34, 59, 78]
enriches the diversity of text queries by matching visual-
linguistic feature spaces rather than predicting the probabil-
ity of a set number of categories. Furthermore, some studies
explore the application of 3D visual language in agents such
as robot perception [27, 61], vision-and-language naviga-
tion (VLN) [15, 31, 55], and embodied question answering
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(EQA) [4,22,30,45,47,62]. In this paper, we focus on point
clouds-based 3D visual grounding, which is the fundamen-
tal technology for many embodied AI [24, 38, 48] tasks.

2.2. 3D Visual Grounding

The majority of current mainstream techniques are two-
stage. In the first stage, obtain the features of the query
language and candidate point cloud objects independently
by a pre-trained language model [16, 20, 49] and a pre-
trained 3D detector [44, 51] or segmenter [11, 35, 64]. In
the second stage, the researchers focus on fusing the two
modal features and then selecting the best-matched object.
1) The most straightforward solution is to concatenate the
two modal features and then consider it a binary classifica-
tion problem [8, 39], which provides limited performance
because the two features are not sufficiently fused. 2) Tak-
ing advantage of the Transformer’s attention mechanism,
which is naturally suitable for multi-module feature fusion,
He et al. [28] and Zhao et al. [77] achieve remarkable per-
formance by performing self-attention and cross-attention
to features. 3) In contrast, other studies view feature fusion
as a matching problem rather than a classification. Yuan
et al. [70] and Abdelreheem et al. [2], supervised by the
contrastive loss [29], compute the cosine similarity of vi-
sual features and textual features. Inspired by [43], Feng
et al. [23] parses the text to generate a text scene graph,
simultaneously builds a visual scene graph, and then per-
forms graph node matching. 4) Point clouds’ sparse, noisy,
incomplete, and lack of detail make learning objects’ se-
mantic information challenging. Yang et al. [68] and Cai
et al. [6] use 2D images to aid visual-textual feature fusion,
but at the cost of additional 2D-3D alignment and 2D fea-
ture extraction.

However, the two-stage method has a substantial detec-
tion bottleneck: objects overlooked in the first stage can-
not be matched in the second. In contrast, object detection
and feature extraction in the single-stage method is modu-
lated by the query text, making it easier to identify the text-
concerned object. Liu et al. [41] suggest fusing visual and
linguistic features at the bottom level and producing text-
related visual heatmaps. Similarly, Luo et al. [46] present
a single-stage approach that employs textual features to
guide visual keypoint selection and progressively localizes
objects. BUTD-DETR [34] is also a single-stage capable
framework. More importantly, inspired by the 2D image-
language pre-train model (such MDETR [37], GLIP [40]),
BUTD-DETR measures the similarity between each word
and object and then selects the features of the word that cor-
respond to the object’s name to match the candidate object.
However, there are two limitations: 1) Since multiple object
names may be mentioned in a sentence, the ground truth an-
notation is needed to retrieve the target name, which limits
its generalizability. Our text decoupling module separates

 Dependency Trees

chair

blackboard

brown

Itunder

(Main obj.)

(Auxi. obj.)

(Relationship) (Pronoun)

(Attributes)

Component Decoupling

armrests
legs

is

It

chair

a brown
(ROOT)

with armrests

and legs
four

is

It directly

under(ROOT)

blackboard

a

It is a brown chair with 
armrests and four legs . It is 
directly under a blackboard

(a)

(b) (c)

Figure 2. Text component decoupling: (a) The query text. (b)
Dependency tree analysis. (c) Decoupled into five components.

text components and determines the target object name by
grammatical analysis to avoid this restriction. 2) BUTD-
DETR (and MDETR and GLIP in the 2D task) only con-
sider the sparse alignment of main object words or noun
phrases to visual features. Conversely, we align all object-
related decoupled textual semantic components with visual
features, which we refer to dense alignment, significantly
enhancing the discriminability of multimodal features.

3. Proposed Method
The framework is illustrated in Fig. 3. First, the input

text description is decoupled into multiple semantic com-
ponents, and its affiliated text positions and features are
obtained (Sec. 3.1). Concurrently, the Transformer-based
encoder extracts and modulates features from point clouds
and text, then decodes the visual features of candidate ob-
jects (Sec. 3.2). Finally, the dense aligned losses are derived
between the decoupled text features and the decoded visual
features (Sec. 3.3). The grounding result is the object with
visual features most similar to text features (Sec. 3.4).

3.1. Text Decoupling

The text features of the coupled strategy are ambiguous,
where features from multiple objects and attributes are cou-
pled, such as “a brown wooden chair next to the black ta-
ble.” Among them, easy-to-learn clues (such as the cate-
gory “chair ” or the colour “brown”) may predominate,
weakening other attributes (such as material “wooden”);
words of other objects (such as the “black table”) may
cause interference. To produce more discriminative text
features and fine-grained cross-modal feature fusion, we
decouple the query text into different semantic components,
each independently aligned with visual features, avoiding
the ambiguity caused by feature coupling.

Text Component Decoupling. Analyzing grammatical
dependencies between words is a fundamental task in NLP.
We first use the off-the-shelf tool [60, 66] to parse the lan-
guage description grammatically to generate the grammat-
ical dependency trees, as shown in Fig. 2(b). Each sen-
tence contains only one ROOT node, and each remaining
word has a corresponding parent node. Then according to
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Text Label: L_Main	+	L_Modi	+ L_Pron	+ L_Rel

it is a brown	chair with 
armrests	and four legs	. 

It is directly under	a 
blackboard

RoBERTa	

PointNet++	 Visual
Encoder

3D	Object
Detection

Object
Decoder

Text	
Decouple

Main		chair
Attri.		brown, armrests, legs 
Auxi.	 blackboard
Pron.  It
Rel.     under

Position	
Alignment

Semantic	
Alignment

Object 
Feature

Positive term Neg. term

Language
Encoder

Decoupled	Text	Position
L_Main		000010000000000...
L_Attri			000100100100000...
L_Auxi			00000000000...0001
L_Pron			000000000001000…
L_Rel						00000000000...0100

Encoder Decoder Dense	Aligned	Loss

Decoupled	Text	Feature
t_Main
t_Attri
t_Auxi
t_Pron
t_Rel
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0 0 0 1 1 0 1 0 0 1 0 1 …... 0 1 0 0 

Object 
Label

3D Box

(a) (b) (c)

Query proposal

(d)

(e)

(f)

(g)

(h)

Decoupled	Components

√

256 288

1024 288
132 288





256 64t 

1 64

...

× × × ×

Text Feature

√× × × × × × × ××

t_other ...

Top‐k

256 288

256 288

256 288

MLP

MLP 

×

×

√× × × × × × × × × ×

main obj.

other objects

auxi. obj.







√ ×

Prediction Head

MLP

256 256
predL 

256 64o 

256 64t 

1 256L

Box
Pred.

Figure 3. The system framework. (a-c): Decouple the input text into several components to acquire the position label L and features t
of the decoupled text. (d-e): Transformer-based encoders for cross-modal visual-text feature extraction. (f): Decode proposal features O′

and linearly project them as object position labels Lpred and object features o, in addition to a box prediction head for regression of the
bounding box. (g-h): Visual-text feature dense alignment. Note that the additional 3D object detection procedure is optional.

the words’ part-of-speech and dependencies, we decouple
the long text into five semantic components (see Fig. 2(c)):
Main object - the target object mentioned in the utter-
ance; Auxiliary object - the one used to assist in lo-
cating the main object; Attributes - objects’ appear-
ance, shape, etc.; Pronoun - the word instead of the main
object; Relationship - the spatial relation between the
main object and the auxiliary object. Note that attributes
affiliated with pronouns are equivalent to attached with the
main object, thus connecting two sentences in an utterance.

Text Position Decoupling. After decoupling each text
component (Fig. 3(a)), we generate the position label (simi-
lar to a mask) Lmain, Lattri, Lauxi, Lpron, Lrel ∈ R1×l for
the component’s associated word (Fig. 3(b)). Where l=256
is the maximum length of the text, each component’s word
position is set to 1 and the rest to 0. The label will be used to
construct the position alignment loss and supervise the clas-
sification of objects. The classification result, is not one of a
predetermined number of object categories but the position
of the text with the highest semantic similarity.

Text Feature Decoupling. The feature of each word
(token) is produced in the backbone of multimodal feature
extraction (Fig. 3(d)). The text feature of the decoupled
component can be derived by dot-multiplying all words’
features t with its position label L, as shown in Fig. 3(c).
The decoupled text features and visual features will be in-
dependently aligned under the supervision of the semantic
alignment loss. Note that in the decoupled text features,
the semantics of the corresponding components absolutely

predominate, but as a result of the Transformer’s attention
mechanism, it also implicitly contains the global sentence’s
information. In other words, feature decoupling produces
individual features while keeping the global context.

3.2. Multimodal Feature Extraction

We employ BUTD-DETR’s encoder-decoder module for
feature extraction and intermodulation of cross-modal fea-
tures. We strongly recommend the reader to refer to Fig. 3.

Input Modal Tokenlization. The input text and 3D
point clouds are encoded by the pre-trained RoBERTa [42]
and PointNet++ [53] and produce text tokens T ∈ Rl×d and
visual tokens V ∈ Rn×d. Additionally, the GroupFree [44]
detector is used to detect 3D boxes, which are subsequently
encoded as box tokens B ∈ Rb×d. Note that the GroupFree
is optional, the final predicted object of the network is from
the prediction head (see below), and the box token is just to
assist in better regression of the target object.

Encoder-Decoder. Self-attention and cross-attention are
performed in the encoder to update both visual and text
features, obtaining cross-modal features V ′, T ′ while keep-
ing the dimensions. The top-k (k=256) visual features
are selected, linearly projected as query proposal features
O ∈ Rk×d, and updated as O′ in the decoder.

Prediction Head. 1) The decoded proposal features
O′ ∈ Rk×d are fed into an MLP and output the predicted
position labels Lpred ∈ Rk×l, which are then utilized to
calculate the position alignment loss with decoupled text
position labels L ∈ R1×l. 2) Additionally, the proposal fea-
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tures are linearly projected as object features o ∈ Rk×64

by another MLP, which are then utilized to compute the se-
mantic alignment loss with the similarly linearly projected
text feature t ∈ Rl×64. 3) Lastly, a box prediction head [44]
regresses the bounding box of the object.

3.3. Dense Aligned Loss

3.3.1 Dense Position Aligned Loss

The objective of position alignment is to ensure that the
distribution of language-modulated visual features closely
matches that of the query text description, as shown in
Fig. 3(g). This process is similar to standard object detec-
tion’s one-hot label prediction. However, rather than being
limited by the number of categories, we predict the position
of text that is similar to objects.

The constructed ground truth text distribution of the
mentioned main object is obtained by element-wise sum-
ming the position labels of the associated decoupled text
components:

Pmain = λ1Lmain + λ2Lattri + λ3Lpron + λ4Lrel, (1)

where λ is the weight of different parts (refer to the para-
metric search in Supplementary Material.). Pauxi = Lauxi

represents the text distribution of the auxiliary object. The
remaining candidate objects’ text distribution is Poth, with
the final bit set to 1 (see ∅ in Fig. 3(g)). Therefore, all k
candidate objects’ ground truth text distribution is Ptext =
{Pmain, Pauxi, Poth} ∈ Rk×l.

The predicted visual distribution of k objects is produced
by applying softmax to the output Lpred ∈ Rk×l of the
prediction head:

Pobj = Softmax(Lpred). (2)

Their KL divergence is defined as the position-aligned loss:

Lpos =

k∑
i=1

[P i
text log(P

i
text)− P i

text log(P
i
obj)]. (3)

We highlight that “dense alignment” indicates that the
target object is aligned with the positions of multiple com-
ponents (Eq. (1)), significantly different from BUTD-DETR
(and MDETR for 2D tasks), which only sparsely aligns with
the object name’s position Lmain.

3.3.2 Dense Semantic Aligned Loss

Semantic alignment aims to learn the similarity of visual-
text multimodal features through contrastive learning. The
object loss of semantic alignment is defined as follows:

Lsem o=

k∑
i=1

1∣∣T+
i

∣∣ ∑
ti∈T+

i

− log

(
exp

(
w+ ∗ (o⊤

i ti/τ)
)∑l

j=1 exp
(
w− ∗ (o⊤

i tj/τ)
)) ,

(4)

where o and t are the object and text features after linear
projection, and o⊤t/τ is their similarity, as shown in Fig. 3
(h). k and l are the number of objects and words. ti is
the positive text feature of the ith candidate object. Taking
the main object as an example, the positive text feature T+

i

corresponding to it is:

ti ∈ T+
i = {tmain, tattri, tpron, trel} , (5)

and w+ is the weight of each positive term. tj is the feature
of the ith text, but note that the negative similarity weight
w− for auxiliary object term tauxi is 2, while the rest weight
1. The text loss of semantic alignment defined similarly:

Lsem t =

l∑
i=1

w+∣∣O+
i

∣∣ ∑
oi∈O+

i

− log

(
exp

(
t⊤i oi/τ

)∑k
j=1 exp

(
t⊤i oj/τ

)) ,

(6)
where oi ∈ O+

i is the positive object feature of the ith text,
and oj is the feature of the jth object. The final semantic
alignment loss is the mean of the two: Lsem = (Lsem o +
Lsem t)/2.

Similarly, the semantic alignment of multiple text com-
ponents (Eq. (5)) with visual features also illustrates our in-
sight of “dense.” This is intuitive, such as “It is a brown
chair with legs under a blackboard,” where the main ob-
ject’s visual features should be not only similar to “chair”
but also similar to “brown, legs” and distinct to “black-
board” as possible.

The total loss for training also includes the box regres-
sion loss. Refer to Supplementary Material for details.

3.4. Explicit Inference

Because of our text decoupling and dense alignment op-
erations, object features fused multiple related text compo-
nent features, allowing for the computation of the similarity
between individual text components and candidate objects.
For instance, Smain = Softmax(o⊤tmain/τ) indicates
the similarity between objects o and the main text compo-
nent tmain. Therefore, the similarity of objects and related
components can be explicitly combined to obtain the total
score and select the candidate with the highest score:

Sall = Smain + Sattri + Spron + Srel − Sauxi, (7)

where the definition of Sattri, Spron, Srel, and Sauxi is sim-
ilar to Smain. If providing supervision of auxiliary objects
during training, and the auxiliary object can be identified by
solely computing the similarity between the object features
and the auxiliary component’s text features: Sall = Sattri.
Being able to infer the object based on the part of the text is
a significant sign that the network has learned well-aligned
and fine-grained visual-text feature space.
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4. Experiments
First, we conduct comprehensive and fair comparisons

with SOTA methods in the Regular 3D Visual Grounding
setting in Sec. 4.1. Then, in Sec. 4.2, we introduce our
proposed new task, Grounding without Object Name, and
perform comparison and analysis. Implementation details,
additional experiments and more qualitative results are de-
tailed in the supplementary material.

4.1. Regular 3D Visual Grounding

4.1.1 Experiment settings

We keep the same settings as existing works, with ScanRe-
fer [8] and SR3D/NR3D [3] as datasets and Acc@0.25IoU
and Acc@0.5IoU as metrics. Based on the visual data
of ScanNet [17], ScanRefer adds 51,583 manually an-
notated text descriptions about objects. These complex
and free-form descriptions involve object categories and at-
tributes such as colour, shape, size, and spatial relation-
ships. SR3D/NR3D is also proposed based on ScanNet,
with SR3D including 83,572 simple machine-generated de-
scriptions and NR3D containing 41,503 descriptions simi-
lar to ScanRefer’s human annotation. The difference is that
in the ScanRefer configuration, detecting and matching ob-
jects are required, while SR3D/NR3D is simpler. It supplies
GT boxes for all candidate objects and only needs to clas-
sify the classes of the boxes and choose the target object.

4.1.2 Comparison to the state of the art

ScanRefer. Table 1 reports the results on the ScanRe-
fer dataset. i) Our method achieves state-of-the-art perfor-
mance by a substantial margin, with an overall improvement
of 4.2% and 3.7% to 54.59% and 42.26%. ii) Some stud-
ies [6, 8, 9, 46, 68, 77] proved that supplemented 2D images
with detailed and dense semantics could learn better point
cloud features. Surprisingly, we only use sparse 3D point
cloud features and even outperformed 2D assistance meth-
ods. This superiority illustrates that our decoupling and
dense alignment strategies mine more efficient and mean-
ingful visual-text co-representations. iii) Another finding is
that the accuracy of most existing techniques is less than
40% and 30% in the “multiple” setting because multiple
means that the category of the target object mentioned in the
language is not unique, with more interference candidates
with the same category. However, we reached a remarkable
49.13% and 37.64%. To identify similar objects, a finer-
grained understanding of the text and vision is required in
this complex setting. iv) The last three rows in Table 1 com-
pare single-stage methods, where our method’s single-stage
implementation is without the object detection step (B in
Fig. 3) in training and inference. The result illustrates that
while not requiring an additional pre-trained 3D object de-
tector, our approach also can achieve SOTA performance.

v) The qualitative results are depicted in Fig. 4(a-c), which
reveals that our method with an excellent perception of ap-
pearance attributes, spatial relationships, and even ordinal
numbers.

SR3D/NR3D. Table 2 shows the accuracy on the
SR3D/NR3D dataset, where we achieve the best perfor-
mance of 68.1% and 52.1%. In SR3D, since the language
descriptions are concise and the object is easy to identify,
our method and [34, 46] reach an accuracy of over 60%.
Conversely, in NR3D, descriptions are too detailed and
complex, causing additional challenges for text decoupling.
However, we still achieve SOTA accuracy with the 3D-only
data, while other comparable methods [46,68] rely on addi-
tional 2D images for training. Some methods [6, 8, 9] com-
pared in Table 1 are not discussed here because they are not
evaluated on the SR3D/NR3D dataset. In addition, because
GT boxes of candidate objects are provided in this setting,
the single-stage methods are not applicable and discussed.

4.1.3 Ablation studies

Loss ablation. The ablation of the position-aligned loss
and the semantic-aligned loss is shown in Table 3. The per-
formance of the semantic-aligned loss is marginally better
because its contrastive loss not only shortens the distance
between similar text-visual features but also enlarges the
distance between dis-matched features (such as tauxi is a
negative term in Eq. (4)). Whereas position-aligned loss
only considers object-related components (as in Eq. (1)).
When both losses supervise together, the best accuracy is
achieved, demonstrating that they can produce complemen-
tary performance.

Dense components ablation. To demonstrate our in-
sight into dense alignment, we perform ablation analysis on
the different decoupled text components, and the results are
displayed in the “Regular VG” column in Table 4. Anal-
ysis: i) (a) is our baseline implementation of the sparse
concept, using only the “Main object” component decou-
pled from the text. In contrast to BUTD-DETR, the text
decoupling module (Sec. 3.1) is used to obtain text labels
and features during training and inference instead of em-
ploying ground truth labels. ii) Dense-aligned sub-methods
(b)-(h) outperform the sparse alignment (a) because of the
finer-grained visual-linguistic feature fusion. iii) (b)-(e) in-
dicate that adding any other component on top of the “Main
object” improves performance, demonstrating the validity
of each text component. The “Attribute” component aids
in identifying characteristics such as colour, and shape, fre-
quently mentioned in language descriptions. Unexpectedly,
the “Pronoun” component such as “it, that, and which”
have little meaning when used alone but also function in
our method, indicating that the pronoun learned contextual
information from the sentence. The “Relationship” compo-
nent facilitates comprehension of spatial relationships be-
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Unique (∼19%) Multiple (∼81%) Overall
Method Venue Modality

0.25 0.5 0.25 0.5 0.25 0.5

ScanRefer [8] ECCV2020
3D 67.64 46.19 32.06 21.26 38.97 26.10

3D+2D 76.33 53.51 32.73 21.11 41.19 27.40
ReferIt3D [3] ECCV2020 3D 53.8 37.5 21.0 12.8 26.4 16.9
TGNN [33] AAAI2021 3D 68.61 56.80 29.84 23.18 37.37 29.70

InstanceRefer [70] ICCV2021 3D 77.45 66.83 31.27 24.77 40.23 32.93
SAT [68] ICCV2021 3D+2D 73.21 50.83 37.64 25.16 44.54 30.14

FFL-3DOG [23] ICCV2021 3D 78.80 67.94 35.19 25.70 41.33 34.01

3DVG-Transformer [77] ICCV2021
3D 77.16 58.47 38.38 28.70 45.90 34.47

3D+2D 81.93 60.64 39.30 28.42 47.57 34.67
3D-SPS [46] CVPR2022 3D+2D 84.12 66.72 40.32 29.82 48.82 36.98

3DJCG [6] CVPR2022
3D 78.75 61.30 40.13 30.08 47.62 36.14

3D+2D 83.47 64.34 41.39 30.82 49.56 37.33
BUTD-DETR [34] † ECCV2022 3D 82.88 64.98 44.73 33.97 50.42 38.60

D3Net [9] ECCV2022 3D+2D - 70.35 - 30.50 - 37.87
EDA - 3D 85.76 68.57 49.13 37.64 54.59 (+4.2%) 42.26 (+3.7%)

3D-SPS(single-stage) [46] CVPR2022 3D 81.63 64.77 39.48 29.61 47.65 36.43
BUTD-DETR (single-stage) [34]‡ ECCV2022 3D 81.47 61.24 44.20 32.81 49.76 37.05

EDA (single-stage) § - 3D 86.40 69.42 48.11 36.82 53.83 41.70

Table 1. The 3D visual grounding results on ScanRefer, accuracy evaluated by IoU 0.25 and IoU 0.5. † The accuracy is reevaluated using
our parsed text labels because the performance reported by BUTD-DETR used ground truth text labels and ignored some challenging
samples (see supplementary materials for more details). § Our single-stage implementation without the assistance of the additional 3D
object detection step (dotted arrows in Fig. 3). ‡ BUTD-DETR did not provide single-stage results and we retrained the model.

Method Venue Modality SR3D NR3D

ReferIt3D [3] ECCV20 3D 39.8 35.6
TGNN [33] AAAI21 3D 45.0 37.3

TransRefer3D [28] MM21 3D 57.4 42.1
InstanceRefer [70] ICCV21 3D 48.0 38.8

3DVG-Transfor. [77] ICCV21 3D 51.4 40.8
FFL-3DOG [23] ICCV21 3D - 41.7

SAT [68] ICCV21 3D+2D 57.9 49.2
3DReferTrans. [2] WACV22 3D 47.0 39.0

LanguageRefer [58] CoRL22 3D 56.0 43.9
3D-SPS [46] CVPR22 3D+2D 62.6 51.5

BUTD-DETR † [34] ECCV22 3D 65.6 49.1
LAR [5] NeurIPS22 3D 59.6 48.9

EDA (Ours) - 3D 68.1 52.1

Table 2. Performance on SR3D/NR3D datasets by Acc@0.25IoU
as the metric. The detailed results of EDA in four subsets are
provided in the Supplementary Material. † Reevaluated by parsed
text labels (see supp. for more details).

tween objects. The component “Auxiliary object” is a neg-
ative term in the loss (Eq. (4)). During inference (Eq. (7)),
its similarity is subtracted in the hopes that the predicted
main object is as dissimilar to it as possible. iv) (f)-(h) inte-
grate different components to make performance gains and
reach the peak when all are involved, demonstrating that the
functions of each component can be complementary, and
there may be no overlap between the features of each one.
The result reveals that our method effectively decouples and
matches fine-grained multimodal features.

+Lpos +Lsem Acc@0.25 Acc@0.5

(a) ✓ 51.2 39.6
(b) ✓ 52.2 39.9
(c) ✓ ✓ 54.6 42.3

Table 3. Loss ablation on the ScanRefer dataset.

Dense components Regular VG VG-w/o-ON
Main Attri. Pron. Auxi. Rel. @0.25 @0.5 @0.25 @0.5

(a) ✓ 51.5 38.8 21.8 16.7

(b) ✓ ✓ 53.1 41.3 23.2 17.8
(c) ✓ ✓ 52.9 40.8 23.7 18.6
(d) ✓ ✓ 52.9 41.0 23.2 18.4
(e) ✓ ✓ 52.8 40.7 25.7 19.6

(f) ✓ ✓ ✓ 53.8 41.8 24.2 18.5
(g) ✓ ✓ ✓ ✓ 54.2 42.3 24.0 18.8
(h) ✓ ✓ ✓ ✓ ✓ 54.6 42.3 26.5 21.2

Table 4. Ablation studies of different text components on Regular
VG and VG-w/o-ON tasks. Evaluated on the ScanRefer dataset.

4.2. Grounding without Object Name (VG-w/o-ON)

4.2.1 Experiment settings

To evaluate the comprehensive reasoning ability of the
model and avoid inductive biases about object names, we
propose a new and more challenging task: grounding
objects without mentioning object names (VG-w/o-ON).
Specifically, we manually replace the object’s name with
“object” in the ScanRefer validation set. For instance:
“This is a brown wooden chair” becomes “this is a brown
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(a) this is a black leather 
loveseat. if you were 
sitting in it, the long, 

short bookshelf would 
be on the right.

(c) there is a chair	
with it is back to 
the wall. it is the 
fourth chair from 

the left.

(b)	wooden double 
bookcase	filled with books. 
walking into the room it is 

in the right hand most 
corner next to the window.

(e) the object	is in 
the corner next to the 

door, below the 
whiteboard. it is gray, 

tall, and narrow. 

(d) choose the first 
small circular object	
with a metal stand, 
on the right side. it 

has no red stool.

GT
Rendered
Scene

Ours

BUTD
‐DETR

Text

Figure 4. Qualitative results with ScanRefer texts. (a-c): Regular 3D visual grounding. (d-e): Grounding without object name.

wooden object”. A total of 9253 samples were annotated
and discarded another 255 ambiguous samples. We di-
vide this language set into four subsets: only mentioning
object attributes (∼15%), only mentioning spatial relation-
ships (∼20%), mentioning both attributes and relationships
(∼63%), and others (∼2%), as the first row in Table 5. Note
that, without retraining, we perform comparisons using
our best model and comparative approaches’ best models
trained for the regular VG task (Sec. 4.1).

4.2.2 Result and analysis

Table 5 reports the experimental results. i) The performance
of all methods on this challenging task is significantly lower
than that of regular VG (see Table. 1), indicating that object
categories provide rich semantic information, which is also
conducive to classifying features. It’s accessible to produce
the category’s inductive bias, especially in the “unique” set-
ting. ii) Our method achieves absolute lead with the over-
all performance of 26.5% and 21.2%, which is over 10%
higher than other methods. This preponderance demon-
strates that our proposed text decoupling and dense align-
ment enable fine-grained visual-linguistic feature matching,
where the model identifies the visual features most similar
to other text components (e.g. attributes, relations, etc.). iii)
Notably, in subset “Attri+Rel”, our method performs bet-
ter than in the other subsets because additional cues can be
exploited for fine-grained localization. However, the perfor-
mance of the comparison approaches on this subset drops,
revealing that more clues make them suffer from ambiguity.
iv) Column “VG-w/o-ON” in Table 4 shows ablation stud-
ies of text components for this new task. The performance
increase offered by the additional components is more re-
markable than during the regular VG task. Among them, the

Subsets OverallMethod
Attri only Rel only Attri+Rel @0.25 @0.5

ScanRefer [8] 11.17 10.53 10.29 10.51 6.20
TGNN [33] 10.52 13.32 11.35 11.64 9.51

InstanceRefer [70] 14.74 13.71 13.81 13.92 11.47
BUTD-DETR [34] 12.30 12.11 11.86 11.99 8.95

EDA (Ours) 25.40 25.82 26.96 26.50 21.20

Table 5. Performance of grounding without object name. The ac-
curacy of subsets is measured by acc@0.25IoU, where the “other”
subset is not reported due to its small proportion.

“Relationship” component plays the most significant role
because the spatial relationship with other objects may pro-
vide more obvious indications in this setting. v) Fig. 4(d-e)
shows qualitative examples. Even without knowing the tar-
get’s name, our method can infer it by other cues, while
BUTD-DETR’s performance drops catastrophically.

5. Conclusion
We present EDA, an explicit, dense-aligned method for

3D Visual Grounding tasks. By decoupling text into mul-
tiple semantic components and densely aligning it with vi-
sual features under the supervision of position-aligned and
semantic-aligned loss, we enable fine-grained visual-text
feature fusion, avoiding the imbalance and ambiguity of ex-
isting methods. Extensive experiments and ablation demon-
strate the superiority of our method. In addition, we propose
a new challenging 3D VG subtask of grounding without the
object name to evaluate model robustness comprehensively.
However, our limitations are the performance bottlenecks of
multiple modules, such as PointNet++, RoBERTa, and text
parsing modules. Especially when the text is lengthy, text
decoupling may fail, resulting in performance degradation.
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