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Abstract

Diffusion models have emerged as a powerful tool for

point cloud generation. A key component that drives the

impressive performance for generating high-quality sam-

ples from noise is iteratively denoise for thousands of steps.

While beneficial, the complexity of learning steps has lim-

ited its applications to many 3D real-world. To address this

limitation, we propose Point Straight Flow (PSF), a model

that exhibits impressive performance using one step. Our

idea is based on the reformulation of the standard diffusion

model, which optimizes the curvy learning trajectory into

a straight path. Further, we develop a distillation strategy

to shorten the straight path into one step without a perfor-

mance loss, enabling applications to 3D real-world with

latency constraints. We perform evaluations on multiple

3D tasks and find that our PSF performs comparably to the

standard diffusion model, outperforming other efficient 3D

point cloud generation methods. On real-world applications

such as point cloud completion and training-free text-guided

generation in a low-latency setup, PSF performs favorably.

1. Introduction

3D point cloud generation has many real-world appli-
cations across vision and robotics, including self-driving
and virtual reality. A lot of efforts have been devoted
to realistic 3D point cloud generation, such as VAE [14],
GAN [1, 36], Normalizing Flow [13, 16, 43] and score-based
method [5, 27, 47, 50], and diffusion model [27, 47, 50].
Among them, diffusion models gain increasing popularity
for generating realistic and diverse shapes by separating
the distribution map learning from a noise distribution to a
meaningful shape distribution into thousands of steps.

Despite the foregoing advantages, the transport trajectory
learning from a noise distribution to a meaningful shape
distribution also turns out to be a major efficiency bottle-
neck during inference since a diffusion model requires thou-
sands of generative steps to produce high-quality and diverse
shapes [11, 37, 50]. As a result, it leads to high computa-

tion costs for generating meaningful point cloud in prac-
tice. Notice that the learning transport trajectory follows the
simulation process of solving stochastic differentiable equa-
tion (SDE). A trained neural SDE can have different distri-
bution mappings at each step, which makes the acceleration
challenging even with an advanced ordinary differentiable
equation (ODE) solver.

To address this challenge, several recent works have pro-
posed strategies that avoid using thousands of steps for the
meaningful 3D point cloud generation. For example, [26,35]
suggest distilling the high-quality 3D point cloud generator,
DDIM model [37], into a few-step or one-step generator.
While the computation cost is reduced by applying distilla-
tion to shorten the DDIM trajectory into one-step or few-step
generator. The distillation process learns a direct mapping
between the initial state and the final state of DDIM, which
needs to compress hundreds of irregular steps into one-step.
Empirically it leads to an obvious performance drop. Further,
these distillation techniques are mainly developed for gener-
ating images with the grid structure, which is unsuitable for
applying to point cloud generation since the point cloud is
an unordered set of points with irregular structures.

In this paper, we propose using one-step to generate 3D
point clouds. Our method, Point Straight Flow (PSF), learns
a straight generative transport trajectory from a noisy point
cloud to a desired 3D shape for acceleration. This is achieved
by passing the neural flow model once to estimate the trans-
port trajectory. Specifically, we first formulate an ODE trans-
port flow as the initial 3D generator with a simpler trajectory
compared with the diffusion model formulated in SDE. Then
we optimize the transport flow cost for the initial flow model
to significantly straighten the learning trajectory while main-
taining the model’s performance by adopting the ideas from
recent works [20, 22]. This leads to a straight flow by op-
timizing the curvy learning trajectory into a straight path.
Lastly, with the straight transport trajectory, we further de-
sign a distillation technique to shorten the path into one-step
for 3D point cloud generation.

To evaluate our method, we undertake an extensive set
of experiments on 3D point cloud tasks. We first verify

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9445



Random points
Shape manifold points

(a) (b) (c) (d)

Reflow Distill

PSF (ours)Diffusion

Generate

Train velocity flow model Improving straightness Flow distillation

Figure 1. Trajectories during the generate process for the point cloud generation. (a) The SDE (PVD) trajectory involves random noise in
each step and thus gives a curvy trajectory. (b) The PSF initial flow model removes the random noise term and gets a simulation procedure
trajectories with smaller transport cost. (c) By utilizing the reflow process on the initial flow model, we reduce the transport cost. As a result,
the trajectories are becoming straightened and easy to simulate with one step. (d) The straight path leads to a small time-discrimination error
during the simulation, which makes the model easy to distill into one-step.

that our one-step PSF can generate high-quality point cloud
shapes, performing favorably relative to the diffusion-based
point cloud generator PVD [50] with a more than 700⇥
faster sampling on the unconditional 3D shape generation
task. Further, we demonstrate it is highly important to learn
straight generative transport trajectory for faster sampling by
comparing distillation baselines, including DDIM that are
difficult to generate shapes even with many more generative
steps. Finally, we perform evaluations on 3D real-world
applications, including point cloud completion and training-
free text-guided generation, to show the flexibility of our
one-step PSF generator.

• For the first time, we demonstrate that neural flow
trained with one step can generate high-quality 3D point
clouds by applying distillation strategy.

• We propose a novel 3D point cloud generative model,
Point Straight Flow (PSF). Our proposed PSF optimizes
the curvy transport trajectory between noisy samples
and meaningful point cloud shapes as a straight path.

• We show our PSF can generate 3D shapes with high-
efficiency on standard benchmarks such as uncondi-
tional shape generation and point cloud completion. We
also successfully extend PSF to real-world 3D appli-
cations including large-scene completion and training-
free text-guided generation.

2. Related Works

2.1. Generative model with transport flow

The generative model can be treated as transporting a
distribution to another. Previous works like VAE [15] and
GAN [10] build this transport in one-step using neural net-
works. However, as the data capacity and complexity in-
crease, this one-step mapping takes a lot of effort to train. Re-
cently, the community tries to relieve this issue by decompos-
ing the one-step mapping into several steps in ODE [6,31,37]
or SDE [11, 38–40] fashion. Among these works, denois-

ing diffusion probabilistic models (DDPM) [11] demon-
strate the power and flexibility to generate high-quality sam-
ples on large-scale image benchmarks and other domains
[7, 12, 30, 32, 33, 44], which makes the diffusion model be-
come a mainstream to learn the transport flow.

2.2. Fast sampling for transport model

Despite the huge success of DDPM, a major issue of this
model is that it requires thousands of steps to generate high-
quality desired samples. Previous works propose multiple
strategies to decrease the simulation steps and accelerate the
DDPM to learn transport process. DDIM [37] formulates
the sampling trajectory process as an ODE. FastDPM [17]
bridges the connection between the discrete and continuous
time step. These two methods can help reduce the learning
trajectory to hundreds of steps. Beyond this, to further com-
press the generation process to few-step simulation, [26,35]
apply knowledge distillation to learn a few mappings to re-
cover the multiple DDIM steps. However, these methods are
hard to maintain a good performance with a single step or
even more steps. Recent ODE transport works [2, 20–22]
try to build the ODE transport with a reduced cost for a
faster simulation compared with DDIM. Motivated by the
above ideas, we optimize the transport cost first to learn the
transport trajectory with one step in our PSF model.

2.3. 3D generative model

Generating 3D objects enables various applications. Pre-
vious literature focus on using VAE [3, 14, 19], GAN [1, 8,
18, 41] and Normalizing Flow [13, 16, 24, 42, 43] to generate
the 3D object in point cloud, mesh and voxel representations.
Recently, more dedicated shapes can be generated using the
score-based or diffusion models [5, 27, 28, 45, 47, 49, 50].
While the diffusion model in the point cloud generation ob-
tains state-of-the-art results, it is computationally expensive
to generate even one high-quality shape. This makes the
diffusion generative model difficult to apply to real-world
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3D applications. Our PSF boosts the speed under 0.1s while
maintaining the performance compared with diffusion-based
methods.

3. Point Straight Flow

We now introduce our method, Point Straight Flow (PSF),
one-step transport flow for 3D point cloud generation. Gen-
erating point clouds with transport flow can be viewed as
transporting noise point clouds to target data point clouds
by following a learned trajectory. To consolidate the trans-
port steps as few as one, we propose a three-stage training
pipeline as illustrated in Figure 1: 1) Our first step is to
learn a neural velocity flow network. We construct an ODE
process with the shortest transport path and utilize a neural
network to fit this process. At the end of this step, one can
start with random Gaussian noises and then iteratively apply
the ODE process from the learned network to generate sam-
ples. However, the training object does not exactly match
the generative process. Thus, the trajectory could still be
curvy. 2) Our second step is to optimize the trajectory’s
straightness learned at step 1 via reflow adapted from [22].
This reflow stage encourages the velocity network to flow
straightly while performing sample generation. This allows
us to combine multiple updates into one easily. 3) We further
distill the neural network with the objective such that one
step with a fixed large step size (Figure 1 (c)) makes the
same update as the iteration of multiple small updates as in
Figure 1 (b).

Training initial velocity flow network Our goal is to build
a transport flow to push the point clouds from a Gaussian
distribution to the point cloud data distribution.

Specifically, assume the point cloud in the xyz-
coordinates and denote X0 2 RM⇥3 as Gaussian noise
and X1 2 RM⇥3 as real data samples. We denote v✓ as the
velocity field network by the following ODE process,

dXt|{z}
drift

= v✓(Xt, t)| {z }
velocity

dt|{z}
time interval

, with t 2 [0, 1]. (1)

Here Xt is the intermediate point cloud states at time t and
the velocity filed v✓ : RM⇥3 ! RM⇥3 is a neural network
with ✓ as its parameters.

Given the intermediate point cloud Xt, v✓ defines a ve-
locity field that moves Xt further towards true data X1. Intu-
itively, the optimal direction at any time t is X1 �X0. Thus,
we can encourage our velocity field to directly follow the
optimal ODE process dXt = (X1 �X0)dt by optimizing

min
✓

Z 1

0
E

k(v✓(Xt, t)� (X1 �X0)k2

�
dt,

where Xt = tX1 + (1� t)X0 t 2 [0, 1].

(2)

Before Reflow After Reflow

(a) (b) (c)

Figure 2. We visualize the impact of reflow. (a) and (b) shows
the generation trajectory before and after reflow. (c) shows the
transport and straightness changes during the reflow finetune. We
use value 1 to represent the initial value before the reflow and 0
as the ideal value that represents the optimal transport or strict
straightness.

Empirically, we do not optimize the loss in Eqn. 2 with
the integration on t 2 [0, 1] directly. Instead, for each data
sample X1, we randomly draw a X0 from Gaussian noise,
a t from [0, 1] and minimize the following equivalent loss,

min
✓

E

k(v✓(Xt, t)� (X1 �X0)k2

�
. t ⇠ U(0, 1). (3)

After the neural velocity field is well-trained, samples
can be generated by discretizing the ODE process with Eu-
ler solver in Eqn. 1 into N steps (e.g., N = 1000) as the
following,

X 0
(t̂+1)/N  � X 0

t̂/N +
1

N
v✓(X

0
t̂/N ,

t̂

N
), (4)

the integer time step t̂ is defined as t̂ 2 {0, 1, · · · , N � 1}.
Here X 0

1 denotes our generated samples and X 0
0 = X0.

Intuitively, the solver will be more accurate with a large N .

Improving straightness of the flow In the previous stage,
network v✓ is trained on data pairs (X0, X1), with X1 as
ground truth data points. We empirically found the trajectory
learned in this way is still curvy during the generative pro-
cess. Therefore, a large number N is necessary for accurate
approximation of Eqn. 1 with Euler solver as in Eqn. 4.

Specifically, in Figure 2 (a), we show an example of
unconditional point cloud generation and plot the movement
trajectories of 30 randomly sampled points with a randomly
picked dimension on x/y/z. The update of each point is
guided by Eqn. 4 with N = 1000. See Section 4.1 for more
detailed discussions on experiment settings.

Intuitively, one would prefer a straight trajectory, which
means a smaller N needs to give a similar output as a bigger
N , namely, generating samples with fewer updates. To this
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end, we sample a set of Gaussian noise X 0
0 and generate its

corresponding samples X 0
1 following Eqn. 4 with v✓ fixed.

After that, one can finetune the v✓ using the sampled pairs
(X 0

0, X
0
1) follow Eqn. 2 by replacing the (X0, X1). This is

referred to as the reflow procedure in [22]. Theoretically,
the sampled fixed pairs (X 0

0, X
0
1) always provide a lower

transport cost than pairs (X0, X1). Thus training on the
(X 0

0, X
0
1) can reduce the transport cost and straighten the

trajectory.
In Figure 2 (b), we show the resulting trajectories after

applying reflow procedure by still taking N = 1000. As we
can see from this figure, the trajectories are nearly straight
for all the points. In Figure 2 (c), we quantitatively show
the change of the transport cost and straightness after the
reflow procedure. The transport cost is defined as l2 transport
cost and the straightness of trajectories can be written as the
following,

Straightness =
1

N

N�1X

t̂=0


k (X 0

1�X 0
0)� v✓(Xt̂/N , t̂/N) k2

�
.

(5)
A straight trajectory between X 0

0 and X 0
1 implies a constant

velocity v✓(Xt̂/N , t̂/N) = X 0
1 � X 0

0 at every time t̂ step.
And Eqn. 5 equals 0 in this case.

Flow distillation Our observation above indicates the pos-
sibility to approximate Eqn. 1 with only one discretization
step if the trajectories are straight,

X 0
1 = X 0

0 + v✓(X
0
0, 0). (6)

And our goal is to make sure the update in Eqn. 6 leads to
samples that have similar quality as samples generated by
Eqn. 4 with a large N . See Figure 1 (c) for an illustration.

For this purpose, we introduce a third distillation stage to
summarize the refined ODE process with v✓ in the previous
stage. In particular, we construct the distillation objective as
follows,

min
✓

E

Dist(X 0

0 + v✓(X
0
0, 0)| {z }

one step

, X 0
1|{z}

N step

)

�
, (7)

where Dist(·) is a loss function that measures the difference
between two sets of point clouds. And X 0

1 is generated with
N = 1000 same as the previous reflow step.

In the literature [26, 35], the Dist(·) is typically con-
structed as a `2 loss. However, unlike images which impose
a strict alignment at each pixel location during construction,
the permutation invariant property of point clouds makes `2
loss less suitable. Hence we propose the Chamfer distance
as the objective for distillation. Specifically, assume Xi, Xj

as two point clouds, the Chamfer distance is defined as

CD(Xi, Xj) =
X

p2Xi

min
p̂2Xj

||p� p̂||2 +
X

p̂2Xj

min
p2Xi

||p� p̂||2.

(8)

Summary We summarize the overall algorithm in Algo-
rithm 1, and refer readers to the Appendix for the training
and sampling pseudo-code. Overall, our algorithm gives a
one-step point cloud generation approach. After these three
training stages, one can sample a point cloud in one step
starting from a random noise by following Eqn. 6.

Algorithm 1 Point Straight Flow
Input: Point cloud dataset D, a neural velocity field v✓
with parameter ✓.
1. Training initial velocity flow model: randomly sample
X0 ⇠ N (0, I) and X1 ⇠ D, and train v✓ follows the
objective function Eqn. 3 to convergence.
2. Improving straightness via reflow: Sample a set of
point cloud pairs, with X 0

0 ⇠ N (0, I), and X 0
1 generated

with Eqn. 4. Use (X 0
0, X

0
1) as training data to finetune v✓

by still minimizing Eqn. 3.
3. Flow distillation: Use pairs (X 0

0, X
0
1) to finetune v✓

with the distillation loss Eqn. 7 into one-step generator as
the final PSF model.
Sampling (output): Randomly sample from X 0

0 ⇠
N (0, I), and output the desired point cloud X 0

1 with
X 0

1 = X 0
0 + v✓(X 0

0, 0).

4. Experiment

We empirically demonstrate the effectiveness and effi-
ciency of our method on three tasks, including unconditional
point cloud generation, training-free text-guided point cloud
generation and point cloud completion. Compared with the
prior-art diffusion-based point cloud generalization method
PVD [50], our method reduces the GPU inference time by
75⇥ while still producing realistic samples at a similar qual-
ity level.

General training settings We adopt the PVCNN [25]
styled U-Net [34] proposed in PVD [50] as our velocity filed
model v✓. As we summarize in Algorithm 1, there are three
phases, including 1) training the velocity flow model, 2)
improving straightness via reflow, and 3) flow distillation.
For step 1), we mainly follow the setting in DDPM [11] and
use a batch size of 256 and a learning rate of 2e�4. We train
the model for 200k steps and apply an exponential moving
average (EMA) at a rate of 0.9999. For step 2), we randomly
sample 50k data pairs (X 0

0, X
0
1) using the pretrained network

v✓ and fine-tune it for 10k steps by minimizing Eqn. 2. Here
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Figure 3. Visualization for the unconditional generation for Airplane, Chair, Car and 55-class. We show PSF can generate high-quality point
cloud in one-step with only 0.04 seconds.

X 0
1 is sampled by setting N = 1000 in Eqn. 4 for the best

quality. We use a fixed learning rate of 2e�5 in this step.
For step 3), we use the samples (X 0

0, X
0
1) generated in step

2) and finetune v✓ for another 10k steps with learning rate
2e�5.

4.1. Unconditional point cloud generation

We apply our method PSF for unconditional 3D
point cloud generation. Compared with existing solu-
tions, our method runs as fast as one-shot VAE-based
(e.g.,SetVAE [14]) or GAN-based (e.g., 1-GAN [1]) ap-
proaches, in the meantime, our method generates samples
as high quality as computation expensive diffusion-based
methods like PVD. Additionally, we also compare PSF with
a fast-sampling method DDIM [37] combined with PVD, we
denote this approach as PVD-DDIM. Compared with PVD-
DDIM, our method achieves much better sample quality as
well as sampling efficiency.

Settings We use the same training and testing data split
by following PointFlow [43] and PVD [50]. We choose
one nearest neighbor accuracy (1-NNA) with Chamfer Dis-
tance (CD) and Earth Movement Distance (EMD) as our
metrics to measure the sample quality per the suggestion
in PVD. Please refer Appendix for other common metrics,
including Matching Distance (MMD) and Coverage Score
(COV). We test the sampling time of our method and base-
lines on Nvidia RTX 3090 GPUs with a batch size of 1. All
the time comparisons are averaged on 50 random trials. For
the PVD-DDIM setup, we grid search the time step N in

{1, 20, 50, 100, 500, 1000} and report the N = 100, which
is the smallest step with 1-NNA performance degrate no
larger than 10 % compared with PVD.

Results We first show qualitative comparisons in Figure 3.
Our method generates samples of similar visual quality com-
pared to the samples from the expensive PVD approach with
1000 steps. Compared with PVD-DDIM in 100 steps and
PVD in 500 steps, our PSF produces better samples with
clear shapes and boundaries.

Additionally, we show quantitative comparisons in Ta-
ble 1. Overall, our method PSF achieves similar CD and
EMD scores compared with PVD (N=1000) in all three
categories. The performance is only slightly worse on the
Chair and Car, while the visual quality is almost the same
as demonstrated in Figure 3. Most significantly, the average
sampling time of our method is only 0.04s on a modern GPU,
which is more than 75⇥ faster compared with PVD-DDIM
(N=100) and 700⇥ faster compared with PVD (N=1000).
We provide the additional comparisons for other time-step
setups for PVD, PVD-DDIM and PSF in the ablation study
in Section 4.4.

Initial state linear interpolation leads to interpretable

interpolation for final samples Besides sampling effi-
ciency, we show another benefit of our method: the ability to
generate interpretable point clouds by starting from interpo-
lated noise due to the straightness of the velocity trajectory.
Specifically, we first randomly draw initial point clouds x̃0

and x̃1 from a Gaussian distribution, then we apply the lin-
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Model Sampling Time (s) Airplane Chair Car
CD # EMD # CD # EMD # CD # EMD #

1-GAN [1] 0.03 87.30 93.95 68.58 83.84 66.49 88.78
PointFlow [43] 0.27 75.68 70.74 62.84 60.57 58.10 56.25
DPF-Net [16] 0.33 75.18 65.55 62.00 58.53 62.35 54.48
SoftFlow [13] 0.12 76.05 65.80 59.21 60.05 64.77 60.09
SetVAE [13] 0.03 75.31 77.65 58.76 61.48 59.66 61.48
ShapeGF [5] 0.34 80.00 76.17 68.96 65.48 63.20 56.53
DPM [27] 22.8 76.42 86.91 60.05 74.77 68.89 79.97
PVD [50] (N=1000) 29.9 73.82 64.81 56.26 53.32 54.55 53.83

PVD-DDIM [37] (N=100) 3.15 76.21 69.84 61.54 57.73 60.95 59.35
PSF (ours) 0.04 71.11 61.09 58.92 54.45 57.19 56.07

Table 1. Performance (1-NNA #) and Sampling Time on single class generation. The second block represents the fast simulation methods.
We report the smallest step size of PVD and PVD-DDIM , which do not drop performance. The sampling time is calculated when the batch
size is one.

Figure 4. Training-free text-guided point cloud generation using CLIP loss. We show that our 55-class pretrained PSF can generate the
correct and high-quality shapes following the text prompt.

ear interpolation between x̃0 and x̃1 to generate additional
Gaussian noise,

x̃⌧ =
p
(1� ⌧)x̃0 +

p
⌧ x̃1 ⌧ 2 [0, 1].

We apply both our method and PVD to generate samples
by taking {x̃⌧} as the starting points. We present our find-
ings in Figure 5. As we can see from the Figure, a smooth
change in inputs leads to a smooth change between the final
generated samples for our method. While PVD trained with
diffusion algorithms doesn’t enjoy this property.

4.2. Training-free text-guided shape generation

In this section, we extended our method for training-
free (i.e., with v✓ fixed) text-guided generation [9, 23, 29].
Specifically, given a text input, training-free text-guided
sample generation can be framed as finding the best initial
noise X0 such that the resulting generated sample matches
the text prompt semantically.

We follow the setting in Text2Mesh [29] and Fuse-
Dream [23] for sample optimization,

min
X0

E{Proji}


Sclip

✓
Proji · generator(X0), text

◆�
, (9)

where {Proji} is a set of pre-defined projections that uni-
formly cover different angles and project the point cloud
to 2D space. And Sclip is the CLIP loss that calculates the

distance between image and text by a pretrained CLIP model,
generator is a sampler that transports initial X0 to a mean-
ingful point cloud sample. Note that generator(·) is fixed.
During the optimization, we need to forward then backward
through the generator. Thus a multi-step iterative generator
would largely slow down the optimization.

Settings and Results Given a text prompt, we optimize
Eqn. 9 for 100 iterations. This amounts to 12 seconds for
our method. In contrast, PVD takes about 15 minutes to
generate a text-conditioned sample due to its thousands-step
sampling.

In Figure 4, we show that both the shape and category of
our generated point clouds correlated well with the provided
text prompts. It can correctly match the text prompt about
the object class as well as the basic properties.

4.3. Point Cloud Completion

We further apply our method for point cloud completion
in both synthetic and real-world settings. We follow the
PVD setup and treat the partial point cloud as the conditional
input of the generative model. Our goal is to sample mean-
ingful point clouds conditioned on a partial point cloud as
input. Please refer Appendix for a detailed discussion on our
settings.

9450



Figure 5. Interpolation of two random picked initialization. Our PSF can simulate the interpolated initial status with a continuously changing
shape, while PVD simulation the shapes without a relationship.

PSF (ours)Partial Point PVD

Figure 6. Point Cloud Completion visualization. We show that
given the same partial point cloud, we can construct a similar
quality point cloud as PVD.

Settings We follow PVD and GenRe [48] and use 20-view
depth images rendered from Chair, Airplane, and Car as the
input. We sample 200 points as the partial point cloud input
for each depth image to train our PSF. We use EMD as our
evaluation metrics as PVD shows that EMD is better than
metric compared with CD for the shape completion task.

Results on synthetic shapes We summarize our findings
in Table 2. Our method generates a completed point cloud of
similar quality compared to the results from PVD while re-
ducing the completion latency to only 0.04s. In Figure 6, we
show additional qualitative comparisons with PVD. There
is no quality degradation visually between our method vs.
PVD, further confirming the efficacy of our method on gen-
erating high-quality 3D point clouds while being real-time.

Category Model Time (s) # EMD #

Airplane

SoftFlow [13] 0.12 1.198
PointFlow [43] 0.27 1.180
DPF-Net [16] 0.34 1.105
PVD (N=1000) 29.98 1.030
PSF (ours) 0.04 1.004

Chair

SoftFlow [13] 0.12 3.295
PointFlow [43] 0.27 3.649
DPF-Net [16] 0.34 3.320
PVD (N=1000) 29.98 2.939
PSF (ours) 0.04 2.937

Car

SoftFlow [13] 0.12 2.789
PointFlow [43] 0.27 2.851
DPF-Net [16] 0.34 2.318
PVD (N=1000) 29.98 2.146

PSF (ours) 0.04 2.194

Table 2. Generate quality and latency between PSF and baselines.
CD is multiplied by 103 and EMD is multiplied by 102.

Method Dist Airplane Chair Car
CD EMD CD EMD CD EMD

PVD-DDIM `2 85.5 83.1 82.6 79.3 80.1 77.9
PVD-DDIM CD 79.9 73.1 72.4 68.2 66.3 65.7
PSF (ours) `2 79.5 73.5 68.4 62.0 67.8 67.0
PSF (ours) CD 71.1 65.0 59.9 54.3 57.1 56.0

Table 3. Ablation study on distillation loss configurations in 1-
NNA (#), the CD represents using Chamfer distance as the distance
function of the distillation loss.

Transfer to Lidar point cloud completion With the fast
and high-quality completion result, we are able to apply PSF
completion to real-world applications that require low la-
tency. One of the important areas that the fast completion
benefits are the outdoor 3D detection for autonomous driv-
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Detect cars in camera inputs Extract partial points in LiDAR Complete using PSF

Time cost (s) 0.5 0.1 0.3
Figure 7. We adapt the PSF in real-world point cloud completion procedure in a low-latency pipeline. All images are from nuScenes [4].

Figure 8. Ablation study on sampling in different steps for PVD, PVD-DDIM and PSF.

ing. Usually, the LiDAR scan on the car can only capture a
partial view of the sparse point cloud. This makes learning a
reasonable 3D detector challenging. MVP [46] shows that
completing and densifying the sparse partial point cloud us-
ing nearest neighbor retrieval can lead to better 3D detection
performance. To further enhance the completion and den-
sification qualities, most of the current methods, including
PVD, are too slow to meet the low latency requirement. To
this end, PSF can perform a suitable role by applying this
method to enhance the LiDAR scan.

To demonstrate the possibility of our method to enable
point cloud completion in low latency, in Figure 7, we follow
MVP and first detect the cars using the camera input with a
2D detector and locate the corresponding partial point clouds
in the LiDAR scan. We then apply our model pretrained on
Car to complete the partial point cloud. In this example,
images and sparse point cloud scans are randomly sampled
from nuScenes [4].

Overall, our PSF can generate the completed point clouds
for multiple cars in 0.2s, compared with 2D detector and 3D
detector that usually cost more than 0.8s for a single scene,
our PSF completions is efficient enough for a low-latency
requirement. On the contrary, PVD more than one minute to
complete the point clouds.

4.4. Ablation Study

Different simulation steps We consolidate the sampling
steps to one step by default. In this part, we further study
the performance of the multi-step model without distillation.
We follow the same training settings in Section 4.1. We
only apply distillation on one-step and for other steps, we
only perform reflow process. We see that reflow model

with straight line already gets a well-performed model with
few steps and the distillation mainly works for pushing the
one-step to a similar performance.

Distillation loss Different from the image representation,
which has a well-alignment pixel grid, the point cloud map-
ping from two distributions is randomly permutated. We
study the impact of different distillation loss choices to show
how Chamfer distance better deals with the point cloud rep-
resentation in distillation setup and how the straightness
benefits the distillation. From Table 3, we show that Cham-
fer distance significantly outperforms the naive `2 loss for
distillation.

5. Discussion and Conclusion

In this paper, we present a fast point cloud generator,
Point Straight Flow, which generates high-quality samples
from noise in one step by optimizing the curvy learning
transport trajectory. Extensive experiments on several stan-
dard 3D point cloud benchmarks and real-world applications,
including unconditional generation, training-free text-guided
generation, and point cloud completion consistently validate
PSF’s advantages. We also demonstrate that PSF generates
a high-fidelity 3D point cloud sample much faster than PVD
and the PVD-DDIM.

Our method is easy to formulate and implement, which
can serve as an alternative to standard diffusion-based point
cloud generator. Our preliminary work suggests that PSF
has potential applications beyond complex scene completion
and text-guided generation applications.
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