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Abstract

Synthesizing high-quality 3D face models from natural
language descriptions is very valuable for many applica-
tions, including avatar creation, virtual reality, and telep-
resence. However, little research ever tapped into this task.
We argue the major obstacle lies in 1) the lack of high-
quality 3D face data with descriptive text annotation, and
2) the complex mapping relationship between descriptive
language space and shape/appearance space. To solve
these problems, we build DESCRIBE3D dataset, the first
large-scale dataset with fine-grained text descriptions for
text-to-3D face generation task. Then we propose a two-
stage framework to first generate a 3D face that matches
the concrete descriptions, then optimize the parameters in
the 3D shape and texture space with abstract description
to refine the 3D face model. Extensive experimental re-
sults show that our method can produce a faithful 3D face
that conforms to the input descriptions with higher accu-
racy and quality than previous methods. The code and DE-
SCRIBE3D dataset are released at https://github.
com/zhuhao-nju/describe3d.

1. Introduction
3D faces are highly required in many cutting-edge tech-

nologies like digital humans, telepresence, and movie spe-
cial effects, while creating a high-fidelity 3D face is very
complex and requires vast time from an experienced mod-
eler. Recently, many efforts are devoted to the synthesis of
text-to-image and image-to-3D, but they lack the ability to
synthesize 3D faces given an abstract description. However,
there is still no reliable solution to synthesize high-quality
3D faces from descriptive texts in natural language.

We consider the difficulties of synthesizing high-quality
3D face models from natural language descriptions lie in
two folds. Firstly, there is still no available fine-grained
dataset that contains 3D face models and corresponding text
descriptions in the research community, which is crucial for
training learning-based 3D generators. Beyond that, it is
difficult to leverage massive 2D Internet images to learn

Figure 1. Given a text describing the appearance (left), our method
can synthesize high-quality 3D faces (middle) containing 3D mesh
and textures. The resulting model can be easily processed into a
rigged face with hair and accessories (right). The dark blue texts
indicate concrete descriptions and the brown texts indicate abstract
descriptions, and similarly hereinafter.

high-quality text-to-3D mapping. Secondly, cross-modal
mapping from texts to 3D models is non-trivial. Though
the progress made in text-to-image synthesis is instructive,
the problem of mapping texts to 3D faces is even more chal-
lenging due to the complexity of 3D representation.

In this work, we aim at tackling the task of high-fidelity
3D face generation from natural text descriptions from
the above two perspectives. We first build a 3D-face-text
dataset (named DESCRIBE3D), which contains 1, 627 high-
quality 3D faces from HeadSpace dataset [6] and FaceScape
dataset [48, 55], and fine-grained manually-labeled facial
features. The provided annotations include 25 facial at-
tributes, each of which contains 3 to 8 options describing
the facial feature. Our dataset covers various races and ages
and is delicate in 3D shape and texture. We then propose
a two-stage synthesis pipeline, which consists of a concrete
synthesis stage mapping the text space to the 3D shape and
texture space, and an abstract synthesis stage refining the
3D face with a prompt learning strategy. The mapping for
different facial features is disentangled and the diversity of
the generative model can be controlled by the additional
input of random seeds. As shown in Figure 1, our pro-
posed model can take any word description or combination
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of phrases as input, and then generate an output of a fine-
textured 3D face with appearances matching the descrip-
tion. Extensive experiments further validate that the con-
crete synthesis can generate a detailed 3D face that matches
the fine-grained descriptive texts well, and the abstract syn-
thesis enables the network to synthesize abstract features
like “wearing makeup” or “looks like Tony Stark”.

In summary, our contributions are as follows:

• We explore a new topic of constructing a high-quality
3D face model from natural descriptive texts and pro-
pose a baseline method to achieve such a goal.

• A new dataset - DESCRIBE3D is established with de-
tailed 3D faces and corresponding fine-grained de-
scriptive annotations. The dataset will be released to
the public for research purposes.

• The reliable mapping from the text embedding space
to the 3D face parametric space is learned by intro-
ducing the descriptive code space as an intermediary,
which forms the core of our concrete synthesis mod-
ule. Region-specific triplet loss and weighted ℓ1 loss
further boost the performance.

• Abstract learning based on CLIP is introduced to fur-
ther optimize the parametric 3D face, enabling our re-
sults to conform with abstract descriptions.

2. Related Work
To the best of our knowledge, work that directly studies

text-to-3D-face generation is quite limited. In this section,
we review three relevant topics and discuss the connections
along with differences with our proposed task and method.
Text-to-shape. Chen et al. [5] proposed to generate colored
3D shapes from natural language by learning implicit cross-
modal connections between language and physical prop-
erties of 3D shapes. In further research, Liu et al. [28]
proposed to decouple the shape and color predictions for
learning features in both texts and shapes and propose the
word-level spatial transformer to correlate word features
from text with spatial features from shape. In several sub-
sequent studies [4, 20, 30], CLIP [34] played an important
role which is a large pre-trained vision-language model, and
prompt learning is leveraged to harness the powerful rep-
resentation of the CLIP model. Jain et al. [23] proposed
to combine neural rendering with multi-modal image and
text representations to synthesize diverse 3D objects from
natural language descriptions, and Poole et al. [32] further
leverage a pre-trained 2D text-to-image diffusion model and
NeRF [31] to perform text-to-3D synthesis with more plau-
sible synthesis.

It is worth noting that among the above researches, only
Canfes et al. [4] attempted to generate a 3D face, but their
model relies on an unconstrained initial 3D face and only
work for short phrases. Leveraging facial priors to achieve

fine-grained and high-quality 3D face generation from texts
in natural language is still an open problem.
Text-to-image. The study of text-to-2D-image started ear-
lier than that of text-to-3D-shape, most of which are based
on the generative adversarial network (GAN) [15]. In
earlier research, Reed et al. [35, 36] developed a GAN-
based deep architecture to generate plausible images of
birds and flowers from detailed text descriptions. Zhang
et al. [51, 52] proposed stacked generative adversarial net-
works, which leverage a sketch-refinement process to en-
hance the resolution of text-driven image generation.Dong
et al. [8] proposed a way of synthesizing realistic images
given a source image and natural language description and
verifying its effectiveness on birds and flowers datasets.
In recent years, GAN-based text-to-image methods have
come a long way. The progresses include attention-driven
multi-stage refinement [47], hierarchical semantic inferring
layout [21], global-local attentive and semantic-preserving
framework [33], semantic decomposing [50], StyleGAN
inversion module [45]. Sun et al. [40] proposed the di-
verse triplet loss to learn an accurate mapping from the em-
bedding space of CLIP [34] to parametric space of style-
GAN [24]. Very recently, diffusion model [19] shows pow-
erful performance in this task [7] and synthesizes impres-
sive images reflecting a high-level understanding of the in-
put description.

The above research works have an enlightening effect
on the research of synthesizing a 3D face from descriptive
texts, such as the use of the CLIP model, but the two tasks
are still very different. Firstly, the representation of 3D
faces is much more complex than that of 2D images. Sec-
ondly, unlike 2D images that can be easily obtained from
the Internet in large quantities, there are very few available
3D face models. These factors determine that text-to-image
methods cannot be directly applied to the task of text-to-3D.
3D Face Generation. Early in 1999, Blanz et al. [3] pro-
pose a 3D morphable model (3DMM) that is a statistical
model built upon a set of 3D faces. Since then, 3DMM
has evolved considerably, and we recommend reading Eg-
ger et al.’s survey [9] for a comprehensive understanding
of these advances. With the breakthrough development of
deep learning algorithms, 3DMM is widely used in the task
of recovering 3D faces from single image [11,17,38,48,56]
or multiple images [2, 46], but the research on generating
face models from natural text descriptions is very limited.
In recent years, some new attempts have been made to use
implicit models such as neural radiation field [22, 29, 57],
signed distance field (SDF) [18, 49] and other implicit rep-
resentations [53, 54] to represent 3D faces.

3D face generation is one of the key components of our
task and defines the parametric space for 3D faces, while
our work further studies the mapping problem from the text
description space to the parametric space of 3D faces.
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Figure 2. The overall pipeline consists of three stages: text parsing (Section 3.2), concrete synthesis (Section 3.3), and abstract synthesis
(Section 3.4). The dark blue texts indicate concrete descriptions and the brown texts indicate abstract descriptions, and similarly hereinafter.

3. Method
In this work, we aim to synthesize a high-quality and

faithful 3D head from natural text descriptions. To this
end, a three-stage learning-based pipeline is proposed as
shown in Figure 2. The text encoder (Section 3.2) first
parses the input natural texts and generates a descriptive
vector, which is then fed into the module of concrete synthe-
sis (Section 3.3) to predict 3D shape and texture separately.
The generated 3D shape and texture are then optimized by
abstract synthesis (Section 3.4), then the result 3D face is
generated. Our results can be easily processed into a rig-
gable 3D face with full assets. We now explain these sub-
modules in detail.

3.1. DESCRIBE3D Dataset

To establish an accurate mapping from natural language
to 3D faces, we first need pairs of the 3D model and its
matching text description. However, to the best of our
knowledge, there is no 3D face model dataset with detailed
textual descriptions available. In this work, we build the
first fine-grained descriptive 3D face dataset (referred to as
DESCRIBE3D dataset) to train our text-to-3D-face model.

Our dataset contains 1, 627 3D face models collected
from HeadSpace [6] and FaceScape [48,55] datasets, cover-
ing the four major races: Mongoloid, Caucasoid, Negroid,
Australoid, and with the range of ages from 16 to 69. We
process the raw scanned 3D faces from HeadSpace and
FaceScape to uniform their mesh topology. For 3D shape
representation, we align all 3D faces into a canonical space
with Procrustes analysis [16] and non-rigid iterative clos-
est point (NICP) algorithm [1]. These aligned 3D faces
are assigned with a uniform mesh topologically containing
26, 369 vertices and 52, 536 triangle faces. For texture rep-
resentation, we align all texture maps into a uniform UV
coordinate that is attached to the uniform mesh topology.

We then manually annotate these 3D faces to obtain de-

Figure 3. Our annotations of the 3D faces contain 25 single-choice
questions regarding to the attributes shown above and a free-
style text description. These attributes are categorized into shape-
related, color-related, and general-related attributes. A complete
questionnaire will be provided in the supplementary material.

tailed facial shapes and appearance features. As shown in
Figure 3, our annotations of the 3D faces contain 25 la-
bels from single-choice questions and a free-style text de-
scription, covering features including facial shape, appear-
ance, and free-style descriptions. Then, we generate a con-
crete descriptive text by filling all features into multiple
pre-designed sentence templates, such as “His [eyes] are
[medium-sized]” and “He has [wide mouth with
thick lips]” (an example shown in Figure 2). A de-
tailed list of sentence patterns will be shown in the sup-
plementary material. These generated sentences are finally
combined with the collected text written by human annota-
tors to form a complete description of a human face, which
we refer to as concrete descriptions (as opposed to abstract
descriptions to be defined in Section 3.4). The average
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length of concrete descriptions is 79 tokens.

3.2. Text Parser

The text parser aims at encoding the input natural lan-
guage into a descriptive code d that can be mapped into the
3D facial model space. In this work, we adopt CLIP [34], a
large language–image pre-training model, to encode the de-
scription texts into a CLIP embedding. In pilot studies, we
observed that directly predicting 3D faces from such em-
bedding did badly in mapping performance, partly because
of the high complexity of the text descriptions.We thus pro-
pose to first predict a descriptive code derived from our la-
beled data from the CLIP embedding, and then synthesize
the 3D faces from such descriptive code. Specifically, the
descriptive code is a p × q matrix, with p rows represent-
ing p different annotated facial attributes, and each column
is an q-dimension one-hot vector describing this attribute.
The motivation behind such design is simple – the introduc-
tion of the descriptive code decomposes a complex mapping
task into two simpler tasks: to predict the descriptive code
from the text and to synthesize 3D faces from the descrip-
tive code.

Our text parser is an 8-layer MLP, which takes the CLIP
embedding as input and predicts the descriptive code. Given
the predicted code ŷ and ground-truth y, the loss function to
train the text parser is formulated as:

Lparse = −1

p

p∑
i=1

q∑
j=1

yij log softmax(ŷij), (1)

where i is the index of the annotated facial attributes, and j
is the index of the feature option to describe this attribute.
As 3D registration loses most features about the ear in the
DESCRIBE3D dataset, the descriptive code doesn’t contain
the annotation of ear shape. So we set p = 24 and q = 8 in
all the experiments.

3.3. Concrete Synthesis

The network of concrete synthesis takes the predicted
descriptive code as input and aims at generating a set of
diverse 3D faces that faithfully match the concrete text de-
scriptions. Considering that a 3D face model contains 3D
shapes and textures, we first separate the descriptive code
d into shape-related code dS and texture-related code dT
according to our annotation, then use two sub-networks to
synthesize 3D shapes and textures, respectively.
Shape Generation Network. We leverage a 3D morphable
model (3DMM) to represent the 3D facial shape in a S-
space, and an MLP is used to predict 3DMM parameters
s ∈ V from the shape-related descriptive code dS , re-
ferred to as ShapePred Net in Figure 2. Other than pre-
dicting 3DMM parameters, another approach to generate
3D shapes is to directly predict a 3D polygon mesh [12]

or a position map [14]. In essence, the introduction of
3DMM is equivalent to converting large-scale 3D shapes
into low-dimensional parametric space, which provides a
strong prior to reducing the difficulty of the shape gener-
ation task. Through the experiments (4.4), we found that
predicting 3DMM parameters leads to more accurate map-
ping than directly predicting position maps in our task.

Following FaceScape [48, 55], we generate the 3DMM
model from the 3D polygon mesh models in the training set
with Principle Components Analysis (PCA) [44]. Specifi-
cally, given m facial mesh models and each of which con-
tains n vertices, a m × n tensor is built representing all
these vertices in the training set. We use Tucker decompo-
sition [42] to decompose the m × n tensor to a small PCA
basis matrix B and a lower m′-dimensional factor repre-
senting facial identity. A new set of vertices v representing
3D face shape can be generated given an arbitrary 3DMM
parameter s as:

v = B × s. (2)

In this way, large-scale data of 3D facial shapes are
mapped into an m′-dimensional parameter space, referred
to as S-space. In all our experiments, we set m = 1, 627,
m′ = 300, and n = 26, 369.

In this work, we experiment with the following two types
of losses to train the ShapePred Net: weighted ℓ1 loss and
region-specific triplet (RST) loss.
Weighted ℓ1 loss. Through a differentiable 3DMM map-
ping module, the predicted 3DMM parameters can be trans-
formed into the 3D positions of the vertices. We found
that applying ℓ1 loss directly to all vertices resulted in an
overall average result. We use a weighted mask similar to
PRNet [13] to calculate the loss for different regions. The
weighted ℓ1 loss function is formulated as:

Lwℓ1 =
∑
i

αi × ∥v̂i − vi∥1, (3)

where vi represents the vertices of i-th region, and αi repre-
sents the corresponding weight. Here we divide the whole
head mesh model into four regions: (1) 68 facial landmarks;
(2) eyes, nose, and mouth; (3) the other facial regions; and
(4) the back of the head with ears. The weights for these
regions are set as 16 : 4 : 3 : 0.
Region-specific Triplet (RST) Loss. To enhance the di-
versity of the generated 3D shape, we propose RST loss
to train the 3DMM regressor. Triplet loss was firstly pro-
posed in FaceNet [39] and widely used in the task of face
recognition, then was introduced into the task of image gen-
eration [40, 43]. The key idea behind this is to make the
difference between prediction and positive examples minor,
and the difference between prediction and negative exam-
ples greater.
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Figure 4. Region-Specific Triplet loss (RST loss). For a specific
region like the nose, RST loss pushes the prediction away from the
negative sample and close to the positive sample.

Different from previous works that measure the differ-
ence of the samples in the parametric space, we propose
to measure the difference with mean Euclidean distance
and apply weights for different regions. Specifically, we
divide the human face into eyes, nose, mouth and others,
and treat them separately in the training phase. As shown
in Figure 4, in each training iteration, we randomly select
positive-negative pairs for a random region and compute
RST loss, which is formulated as:

LRST = max(∥v̂i − vi∥1 − ∥v̂i − v∗i ∥1 +mi, 0) · λi,
(4)

where v̂i is the predicted vertices of i-th region, vi is the cor-
responding ground-truth, and v∗i is its counter example. mi

and λi represent corresponding region margin and weight
respectively.
Texture Generation Network. We represent the color of
3D faces with UV texture maps that are attached to the tri-
angle mesh generated by our 3DMM. As shown in Figure 2,
we adopt a mapping net to map the shape-related descrip-
tive code dS into a 3DMM code s, and a texture genera-
tor network to synthesize a UV texture map from the pa-
rameter in T space. Here we use StyleGAN2 [25, 37, 41]
as the backbone, which is an alternative generator architec-
ture for generative adversarial networks. The input of Style-
GAN is a random latent code together with a condition code
representing facial features, then these codes are mapped
into a W space where different facial features are disen-
tangled, and the 2D images are synthesized from w ∈ W
by a convolutional neural network. In our implementation,
our mapping net, texture generator, and T space are corre-
sponding to the mapping network, synthesis network, and
W space of StyleGAN, respectively. In the training phase,
the StyleGAN2 is re-trained with the UV texture maps in
our DESCRIBE3D dataset as images, and the descriptive
code dT as the condition input. The loss function and hyper-
parameters are the same as the StyleGAN2.

Figure 5. Relationship of the involved parametric spaces.

3.4. Abstract Synthesis

After a full 3D head model with color is produced from
the concrete descriptions, we can further improve the model
with the abstract descriptions in the input texts, which we
refer to as abstract synthesis. Abstract descriptions are in
free-style describing a certain non-objective characteristic,
such as “looks like Tony Stark” or “wearing makeup”. As
shown in Figure 5, the key idea behind is to leverage prompt
learning based on CLIP [34], a large language-vision pre-
trained model, to optimize the parameters in T texture space
and S 3DMM space. Specifically, with the trained and fixed
model of the concrete synthesis network, both input abstract
descriptions texts and the predicted 3D faces (rendered into
image) are encoded into the CLIP latent space. Then the
texture parameter t and 3DMM parameter s are optimized
to minimize the difference between the predicted 3D face
and abstract text descriptions in the CLIP latent space.

Considering that the CLIP model is trained on real-world
images, a differentiable renderer is indispensable which
renders the generated 3D mesh and UV texture into a por-
trait. Specifically, we use redner [27] to render textured
mesh as real images at three viewpoints ranging from −30◦

to +30◦ and calculate the cosine similarity between the ren-
dered image and the input prompt. The loss function for
refining s and t is formulated as:

LCLIP = 1− ⟨ET (t), EI(i)⟩ , (5)

where ET and EI represent the CLIP text encoder and im-
age encoder respectively, t and i represent the input descrip-
tion and the rendered image, and ⟨·, ·⟩ represents the cosine
similarity.

We propose to use CLIP Loss to optimize the parameters
in the S space and T space generated by the pre-trained
model and predict a textured mesh that better matches our
prompt description. We set the number of iterations to 200
by default.

We also add two regularization losses to constrain S
space and T space. Our complete loss function is:

Labstract = LCLIP + β1∥ŝ− so∥2 + β2∥t̂− to∥2, (6)
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Figure 6. Qualitative evaluations of our method for text-to-3D face generation. Our pipeline can synthesize 3D faces from concrete (dark
blue text) and abstract descriptions (brown text). The hairs and additional accessories can be easily added in the post-process phase.

where so and to represent the initial value from the con-
crete synthesis module. It is worth noting that the abstract
synthesis is optional and can be conducted multiple times
if more than one prompt text is provided. We set β1=3 and
β2=0.003 by default.

4. Experiments
4.1. Implementation Details

Training of Text Parser. We randomly generate 1 mil-
lion pieces of text descriptions and corresponding descrip-
tive codes d according to our face attribute correspondences,
where the text is generated by preset sentence patterns and
each text description randomly contains 3 to all 24 at-
tributes. The detailed templates and samples will be shown
in the supplementary material. We use the CLIP model
to encode the concrete descriptions into 512-dimensional
latent code c and train an 8-layer MLP through a cross-
entropy loss to map CLIP code c to descriptive code d. We
use Adam [26] optimizer with a learning rate beginning at
0.001 and decaying after 10 epochs until 20 epochs. We set
the batch size to 128.
Training of Shape Generator. We use our DESCRIBE3D
dataset to form our training sets. We use PCA to convert
the model into a 300-dimensional vector and generate cor-
responding one-hot code from text annotations to form data
pairs. For all data, we randomly select 80% for training and
the other 20% for testing. We use weighted ℓ1 Loss and
RST Loss to train our shape generator, an 8-layer MLP. In

the first layer, we concatenate the input one-hot code and
a 512-dimensional normally distributed noise into the net-
work to generate diverse results. We use ReLU as our acti-
vation function.
Training of Texture Synthesis Networks. We follow the
hyper-parameters and training settings of StyleGAN to train
the mapping network and texture generator. The resolution
of the UV texture maps for training and testing is 512×512.

4.2. Qualitative Evaluation

We present our main experimental results in Figure 6.
We observe that our proposed method can synthesize 3D
faces that exactly match the input concrete descriptions
(text in dark blue in Figure 6), then these generated 3D
faces can be improved to reflect abstract descriptions (text
in brown), including “look likes Anthony Hopkins”, “be
wearing makeup”, etc. The hairs and additional accessories
can also be easily added via 3D modeling software like
MetaHuman Creator [10] (right column of Figure 6). More
results will be shown in the supplementary material.

4.3. Comparison Experiments

We compare our method with the two most relative pre-
vious works. We use Chamfer Distance (CD), Complete
Rate (CR) to measure the accuracy of the generated 3D
shape, and use Relative Face Recognition Rate (RFRR) [40]
to measure the identity similarity of the textured 3D face.
The precise definition of these metrics will be explained in
the supplementary material.
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Figure 7. Comparison with TediGAN [45]+DECA [11]. The red
texts indicate the descriptions that the results of TediGAN+DECA
do not match.

Figure 8. Comparison with Latent3D [4].

Text-Image-Shape. The task of generating a 3D face from
descriptive texts can be achieved by cascading the Text-to-
Image model and Image-to-Shape model in an end-to-end
manner. Here we choose TediGAN [45], a SOTA Text-to-
Image model, and DECA [11], a SOTA single-view face
reconstruction model to compose the Text-to-Shape model.
As shown in Figure 7, the Text-Image-Shape strategy fails
to match many input descriptions (red texts), and Table 1
shows that our method outperforms Text-Image-Shape in
all three metrics. We believe this is due to the fact that the
TediGAN and DECA cannot be optimized end-to-end. Be-
sides, depth ambiguity commonly exists in the in-the-wild
image datasets, which leads to inaccurate shape generation
of the Text-Image-Shape strategy.
Latent3D [4]. Latent3D can synthesize a 3D face using

Table 1. Quantitative comparison with Text-Image-Shape.

Method CD (mm) ↓ CR (%) ↑ RFRR ↑
Text-Image-Shape 2.78 83.9 0.471
Ours 2.26 96.7 0.788

Table 2. Quantitative comparison with Latent3D (only the front
face error is calculated due to the generative form of Latent3D).

Method CD (mm) ↓ CR (%) ↑ RFRR ↑
Latent3d [4] 2.40 94.3 0.542
Ours 1.53 99.1 0.778

text or image-based prompts. As Latent3D can only work
for short sentence input, while the performance degraded
severely for a long paragraph, we only fed a short descrip-
tive sentence into Latent3D for comparison. Besides, La-
tent3D set a random face as an initial face for refinement,
and we select a random seed to generate the initial face in
the comparison experiment. As shown in Figure 8, the re-
sult generated by Latent3D fail to recover fine-grained fa-
cial features like “round face” and “slender eyes”. Besides,
Latent3D relies on an initial guess, and the descriptions can
not be matched if the initial guess if the initial value devi-
ates too much from the description. By contrast, our method
synthesizes a 3D face that conforms to the description and
also supports more detailed descriptions as input. The quan-
titative evaluation shown in Table 2 also demonstrates the
superior performance of our model.

4.4. Ablation Study

Effect of Text Parser and Concrete Synthesis. To validate
the effectiveness of the introduction of descriptive code,
3DMM representation, RST loss, and the weights for ℓ1
loss, we conduct the experiments with the following set-
tings:
• (a) Without Descriptive Code: The descriptive code is not
used and the embedding vector generated from the input
text by the CLIP encoder is directly fed into the concrete
synthesis module.
• (b) Without 3DMM: The network of 3DMM parameter
regressing is replaced by a position map generator, of which
the backbone is StyleGAN2 [25].
• (c) Without RST loss: The RST loss is removed from the
loss function of the shape generation network.
• (d) Without weights of ℓ1 loss: The weights in the ℓ1 loss
to train the shape generation network are set to 1.

The visualized results of the ablation study are shown
in Figure 9. We can see that our full method generates
a detailed faithful 3D face. Comparing (a) with (h), we
find the results of (a) failed to match the input descrip-
tions, which verified that the introduction of parsed supervi-
sion improves the effectiveness of our model. We consider
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"Her eyes are big, round and 
black with single eyelids. Her 
eye distance is medium.  She 

has a small, wide and 
upturned nose with a high 

nose bridge. She has round 
and black eyebrows. She has a 
wide mouth and bow-shaped, 
thick lips. This young woman 

is Asian. Her face is round and 
fat. She is wearing makeup."

“This middle-aged woman is 
a westerner. Her face is 

diamond and thin. She has 
big and round eyes. Her 
nose is medium-sized, 

narrow and upturned with a 
high nose bridge. She has a 
wide mouth with thin lips.

She has wrinkles."

(h) Full(f) w/o Opti(b) w/o 3DMM (c) w/o RST(a) w/o Parser (e) w/o Abstract (g) w/o Render(d) w/o WeightInput Text

Figure 9. Generated 3D faces when removing or replacing a certain module in our proposed pipeline for ablation study.

the reason is that the introduction of descriptive code de-
couples the complex text-to-3D problem into two simpler
problems: 1) parsing text to explicitly categorized facial
features in the form of one-hot code and 2) generating 3D
face from this one-hot code. Comparing (b) with (h), we
find the directly predicted shape is distorted, which demon-
strates that 3DMM based shape generator is superior to a
non-parametric generator in our task. Comparing (c) and
(d) with (h), we find the facial features in (c) and (d) are
not obvious, though most of the features match the input
description. It demonstrates that the recognition of the re-
sulting facial features is enhanced after the RST loss and the
weights for ℓ1 loss is implemented.
Effect of Abstract Synthesis. To validate the effectiveness
of the abstract synthesis, optimization method, and differ-
entiable render, we conduct the experiments with the fol-
lowing settings:
• (e) without abstract synthesis: The phase of abstract syn-
thesis is removed.
• (f) prompt: optimization → train : In the abstract syn-
thesis phase, the strategy to optimize s and t is changed to
adding CLIP loss to the loss function and fine-tuning the
model of the concrete synthesis network.
• (g) without differentiable renderer: In the abstract synthe-
sis phase, the differentiable renderer is removed, and only
UV texture is updated through CLIP loss.

We draw the following observations. Comparing (e) with
(h), we can see that the abstract descriptions of “makeup”
and “wrinkles” appear in (h) while the other facial features
are consistent with (e), which demonstrates the effective-
ness of abstract synthesis. Comparing (f) with (e), we find
the training with clip loss failed to synthesize abstract fea-
tures while the other facial features in (e) are not main-

tained. By contrast, the prompt learning strategy in (h) syn-
thesizes more plausible results. Comparing (g) with (h), we
find that our method without differentiable render may hal-
lucinate unnatural features. For example, in the first line,
the lipstick color in (g) is painted beyond the lips. We con-
sider the reason is that the CLIP model is trained using real-
world images, but the UV texture space is distorted com-
pared to the real space, so a differentiable renderer is a req-
uisite to transform the facial appearance from UV texture
space to real-world space.

5. Conclusion
In this work, we investigate the problem of generating a

3D face from descriptive texts in natural language. To this
end, a DESCRIBE3D dataset is developed by annotating de-
scriptions to large-scale 3D face datasets. We first train neu-
ral networks to generate a 3D face matching the concrete de-
scription and random coding, then optimize the parameters
of 3DMM and StyleGAN space with abstract description to
further refine the 3D face model. Experiments show that
our method can produce a faithful 3D face that conforms to
the input description.

There are some drawbacks to our approach. First, our
method requires a pre-distinction between concrete and ab-
stract descriptions, and the performance degrades when the
input sentences are significantly different from the template
sentences we adopt. Besides, as the number of races in the
dataset is not balanced, the modeling effect of the facial fea-
tures of some ethnic minorities is poor.
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