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Abstract

Face attribute research has so far used only simple bi-
nary attributes for facial hair; e.g., beard / no beard. We
have created a new, more descriptive facial hair annotation
scheme and applied it to create a new facial hair attribute
dataset, FH37K. Face attribute research also so far has not
dealt with logical consistency and completeness. For ex-
ample, in prior research, an image might be classified as
both having no beard and also having a goatee (a type of
beard). We show that the test accuracy of previous classifi-
cation methods on facial hair attribute classification drops
significantly if logical consistency of classifications is en-
forced. We propose a logically consistent prediction loss,
LCPLoss, to aid learning of logical consistency across at-
tributes, and also a label compensation training strategy
to eliminate the problem of no positive prediction across
a set of related attributes. Using an attribute classifier
trained on FH37K, we investigate how facial hair affects
face recognition accuracy, including variation across de-
mographics. Results show that similarity and difference in
facial hairstyle have important effects on the impostor and
genuine score distributions in face recognition. The code is
at https://github.com/HaiyuWu/LogicalConsistency.

1. Introduction

Facial attributes have been widely used in face match-
ing/recognition [8, 14, 30, 31, 37, 43], face image retrieval
[34, 39], re-identification [42, 44, 45], training GANs [15,
16, 25, 33] for generation of synthetic images, and other ar-
eas. As an important feature of the face, facial hairstyle
does not attract enough attention as a research area. One
reason is that current datasets have only simple binary at-
tributes to describe facial hair, and this does not support
deeper investigation. This paper introduces a more descrip-
tive set of facial hair attributes, representing dimensions of
the area of face covered, the length of the hair, and con-
nectedness of beard/mustache/sideburns. We also propose
a logically consistent predictions loss function, LCPLoss,
and label compensation strategy to enhance the logical con-

Figure 1. (1) What is the best way to define the facial hair styles?
(2) How does the facial hair classifier perform in the real-world
cases? (3) How does the face matcher treat the same (different)
person with different (same) beard styles? This paper presents our
approaches and answers for these questions.

sistency of the predictions. We illustrate the use of this new,
richer set of facial hair annotations by investigating the ef-
fect of beard area on face recognition accuracy across de-
mographic groups. Contributions of this work include:

• A richer scheme of facial hair attributes is defined and
annotations are created for the FH37K dataset. The at-
tributes describe facial hair features along dimensions
of area of the face covered, length of hair and connect-
edness of elements of the hair (See Sec. 2 and 4.1).

• The logical consistency of classifications of the facial
hair attribute classifier is analyzed. We show that the
proposed LCPLoss and label compensation strategy
can significantly reduce the number of logically incon-
sistent predictions (See Section 5 and Section 6.1).

• We analyze the effect of the beard area on face recogni-
tion accuracy. Larger difference in beard area between
a pair of images matched for recognition decreases the
similarity value of both impostor and genuine image
pairs. Interestingly, the face matchers perform dif-
ferently across demographic groups when image pairs
have the same beard area. (See Section 6.2)

2. Facial Hair In Face Attribute Datasets
For a broad discussion of face attribute classification re-

search, see the recent survey by Zheng et al [55]. Here, we
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# of images # of ids # of facial hair attributes Area Length CNDN Ec

Berkeley Human 8,053 - 0 0 0 0 ✗Attributes [10]⋆

Attributes 25K [54] 24,963 24,963 0 0 0 0 ✗

FaceTracer [29]⋆ 15,000 15,000 1 (Mustache) 0 0 0 ✗

Ego-Humans [49] 2,714 - 1 (Facial hair) 0 0 0 ✗

CelebA [36]⋆ 202,599 10,177 5 (5 o’Clock, Goatee, ...) 1 1 0 ✗

LFWA [36]⋆ 13,233 5,749 5 (5 o’Clock, Goatee, ...) 1 1 0 ✗

PubFig [32]⋆ 58,797 200 5 (5 o’Clock, Goatee, ...) 1 1 0 ✗

LFW [26]⋆ 13,233 5,749 5 (5 o’Clock, Goatee, ...) 1 1 0 ✗

UMD-AED [22] 2,800 - 5 (5 o’Clock, Goatee, ...) 1 1 0 ✗

YouTube Faces Dataset 3,425 1,595 5 (5 o’Clock, Goatee, ...) 1 1 0 ✗(with attribute labels [23])
CelebV-HQ [56]⋆ 35,666 video clips 15,653 5 (5 o’Clock, Goatee, ...) 1 1 0 ✗

MAAD-Face [47]⋆ 3.3M 9,131 5 (5 o’Clock, Goatee, ...) 1 1 0 ✓

FH37K (this paper) 37,565 5,216 17 (Chin area, Short...) 4 4 4 ✓

Table 1. Comparison of facial hair descriptions in face attribute datasets. CNDN and Ec stand for connectedness and estimating the
consistency rate of the annotations. Datasets with ⋆ are available online. FH37K has richer annotations that can cover the area, length, and
connectedness of the facial hair.

briefly summarize selected details of existing facial attribute
datasets, focusing on attributes describing facial hair.

Bourdev et al [10] assembled 8,053 images from the
H3D dataset [11] and the PASCAL VOC 2010 dataset [50]
to create the Berkeley Human Attributes (BHA) dataset.
They use Mechanical Turk to create 9 attributes, merging
values from 5 independent annotators. Zhang et al [54] col-
lect the Attribute 25K dataset, which contains 24,963 im-
ages from 24,963 people on Facebook. They provide 8 at-
tributes for each image. This work, unlike most previous
work in face attributes, acknowledges that some attributes
may not be able to be inferred from some images. However,
how they use the ”uncertain” label is not mentioned in the
original paper and the dataset is not available for use. We
have an attribute called “Info Not Vis” and this attribute
is used in our training and testing. Neither of [10, 54] in-
cludes any attribute to describe facial hair.

Kumar et al [29] collected 15,000 in-the-wild face im-
ages to build the FaceTracer dataset. The images have 10
groups of attributes including gender, age, race, environ-
ment, etc. The only attribute related to facial hair is mus-
tache / no mustache. Similarly, Wang et al [49] collect five
million images from videos by using the OpenCV frontal
face detector to create the Ego-Humans dataset. There are
annotations for 17 face attributes, including facial hair / no
facial hair. These two works [29,49] each have only a single
binary attribute related to facial hair.

The Labeled Faces in the Wild [26] (LFW) dataset has
13,233 images of cropped, aligned faces. There are 1,680
identities in LFW that have two or more images. Kumar et
al [32] collected 65 attributes through Mechanical Turk [1]
and added 8 more [30] for a total of 73 attributes. Kumar et

al [32] also collect 58,797 images from 200 people to build
the PubFig dataset. All the images are from the internet
with varied pose, lighting, expression, etc. This dataset pro-
vides 73 facial attributes. Liu et al [36] collect the largest
facial attribute dataset to date, CelebA, which has 202,599
images from 10,177 identities. It has 40 facial attributes and
all the annotations are generated by a professional labeling
company. They also provide the annotations of the same
attributes on the LFW dataset. The University of Maryland
Attribute Evaluation Dataset (UMD-AED) [22] serves as an
evaluation dataset. It consists of 2,800 images and each at-
tribute has 50 positive and 50 negative samples. They use
the same 40 facial attributes as the LFWA and the CelebA
datasets. Hand et al [23] collect 3,425 frames from the orig-
inal YouTube Faces Dataset. They also use the same 40 at-
tributes. Terhörst et al [47] created MAADFace by training
a network to apply the 47 attributes across LFW and CelebA
to the images from VGGFace2 [13]. An interesting element
of this work is that the network estimates its confidence in
assigning attribute values, and about 20% of MAADFace
attribute values are left unassigned due to uncertainty. A
recent facial attributes related dataset [56] contains 35,666
high quality video clips. There are 83 manually labeled fa-
cial attributes covering appearance, action, and emotion.

The facial hair attributes used in existing datasets are
summarized in Table 1. The same five attributes have been
used is nearly all previous work. A richer description of
facial hairstyles is needed to enable research into how fa-
cial hairstyle affects face recognition accuracy. Our FH37K
dataset has attributes to describe dimensions of area of the
face covered by facial hair, length of facial hair and con-
nectedness of parts of facial hair. No previous work has this
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level of descriptive power for facial hair, or considers the
logical consistency of the set of facial hair attributes.

3. Overview of the FH37K Dataset
3.1. Dataset statistics

FH37K contains 37,565 images, coming from a subset
of CelebA [36] and a subset of WebFace260M [57]. There
are 5,216 identities (3,318 identities from CelebA and 1,898
from WebFace260M). The 3,318 identities of FH37K com-
ing from the CelebA dataset are split into train/val/test as
they were in CelebA. The identities from WebFace260M
were randomly split 40%/30%/30% to train/val/test. The
resulting FH37K has 28,485 images for training, 4,829 for
validation, and 4,251 for testing.

All the images are manually annotated with respect to a
detailed definition for each annotation, and examples and
strategies for marking challenging images. The annotations
of each image follow the logical relationship among the at-
tributes. Because subjectivity and ambiguity in assigning
annotation values can only be controlled and not eliminated,
we also estimate the level of consistency expected between
a new annotator re-annotating the FH37K images and the
annotations distributed as part of FH37K.

3.2. Dimensions of facial hair properties

FH37K has a larger and richer set of facial hair attributes
that can be grouped into three dimensions: facial hair area,
length, connectedness.

• Beard Area: Three levels of beard area are Clean
Shaven (no beard), Chin Area (beard limited to chin
area) and Side to Side (extending to sides of face).

• Beard Length: The five levels of length are Clean
Shaven, 5 O’clock Shadow, Short, Medium and Long.
The Clean Shaven attribute can be seen as an element
of description for both area and length.

• Mustache: Mustache-related values are Mustache-
None, Mustache Isolated (meaning not connected to
beard) and Mustache Connected to Beard.

• Sideburns: Sideburns-related attribute values are
Sideburns-None, Sideburns-Present (not connected to
beard) and Sideburns Connected to Beard.

• Bald: Bald describes scalp hair rather than facial hair,
but is included in FH37K to support possible future re-
search without needing to annotate images again. Val-
ues include Bald False, Bald Top Only, Bald Sides
Only and Bald Top and Sides.

• Information is not visible: With in-the-wild imagery,
it is common that information is not visible in the im-
age to assign a value for some attribute [53]. Most

previous face attribute datasets ignore this issue. In
FH37K, we use attribute values (Beard Area Info Not
Vis, Beard Length Info Not Vis, Mustache Info Not Vis,
Sideburns Info Not Vis, Bald Info Not Vis).

More details of these 22 attributes are in Sec. 4.1 and the
number of positive samples for each attribute is in Table 1
of the Supplementary Material. Examples of each attribute
can be found in Figure 1 to 6 of Supplementary material.

4. FH37K Data Collection

Images in FH37K are cropped and aligned. For
CelebA, images with distributed CelebA annotations of
No beard=false were reviewed for possible inclusion in
FH37K and new annotations. A large fraction of CelebA
images with a No beard=false annotation actually did not
have facial hair and were dropped from FH37K, and 253
images with a No beard=false annotation actually did not
contain a face and were dropped. CelebA images kept for
FH37K were manually annotated. Annotators read a doc-
ument containing definitions and examples of the FH37K
annotations before annotating and were encouraged to re-
fer to the document as needed. Images from CelebA had a
low number of positive examples of some FH37K attributes.
A classifier was trained using this data and run on Web-
Face260M to generate images of additional identities, with
a focus on increasing the initially under-represented positive
examples. The 4,274 images selected from WebFace260M
resulted in all attributes except bald only on sides and long
beard having at least 1,000 images. The images from Web-
Face260M were then manually assigned attribute values in
the same way as for CelebA. The result is FH37K, 37,565
images with an aggregate total of 0.8M annotations.

4.1. Complications for Consistent Annotation

Consistent annotations that align the content of the im-
ages and the concept to be learned is an important element
of any machine learning dataset. To ensure that each an-
notator is oriented to the same concept for each attribute,
we provided a document with detailed definition and exam-
ples for each attribute. However, there are still difficulties to
mark annotations consistently on these in-the-wild images.

Figure 2 shows four main complications: ambiguous
definition of “chin area”, varying beard length, beard area
information partially visible, and beard length information
partially visible. Without an explicit definition, “chin area”
is subjective and can be interpreted differently by different
annotators. To address this, we gave annotators the spe-
cific definition that the chin area is within parallel vertical
lines extending from the outer eye corners, as shown in Fig-
ure 2a. Images in Figure 2b show that the beard length can
vary over the area of the beard. To address this, annota-
tors were asked to select the length value representing the
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(a) Ambiguity on Chin Area (b) Multiple Beard Length (c) Area Info Partially Visible (d) Length Info partially visible

Figure 2. Example complications for marking images consistently. More examples are in Figure 7 of Supplementary Material.

longest length of the beard. Head pose, occlusion, and light-
ing angle varies broadly in any in-the-wild dataset, giving
rise to complications illustrated in Figures 2c and 2d. A
single attribute is not sufficient to describe these circum-
stances, and so we use the visible part plus the Info Not Vis
attribute to describe these images.

To evaluate the consistency of our annotations, a fresh
annotator independently annotated a random set of 1,000
images from FH37K. This annotator had the same training
documentation as the original annotators, but did not know
the initial annotation values. This annotator’s results were
compared to the FH37K annotations to estimate the level
of agreement that a different annotator would have with the
FH37K annotations. The estimated consistency is 94.05%.
(Analysis is in Table 2 of Supplementary Material).

5. Logically Consistent Prediction
For facial attribute classification tasks, some papers

group attributes based on position [12, 18] or correla-
tion [21,46] to improve the accuracy on benchmarks. How-
ever, to our best knowledge, no previous work considers
the logical relationship between attributes on predictions.
For example, in CelebA, (no-beard=true) and (goatee=true)
would be logically inconsistent; so would (bald=true) and
any of the hairstyles=true or hair colors=true, male=false
and any of beard related attributes=true. In FH37K, where
groups of facial hair attributes are defined to cover the range
of possibilities, there is another logical constraint, where the
model should give exactly one positive prediction across a
set of related attributes. We formulate these issues into three
categories and introduce a solution in this section.

5.1. Logically Consistent Prediction Loss

Consider a set of N 2D image X = {x1, x2, ..., xN}
and their ground truth labels Y = {y1, y2, ..., yN}, where
X ∈ RD×H×W as the D-dimension batch input and Y ∈
RD×K as the D-dimension batch output with K predicted
labels for each dimension. To train a multi-label classifier
f(X,W ), Binary Cross Entropy Loss (BCELoss) is used:

LBCE = − 1

N

N∑
i=1

yilog(p(yi)) + (1− yi)log(1− p(yi))

(1)

The relative sparsity of positive labels in the multi-label
classification tasks means that BCELoss guides the model
to over-predict negative labels, which increases the accu-
racy on the benchmarks but reduces real-world utilty. Our
approach is to force the model to consider the logical rela-
tionships - mutually exclusive, collectively exhaustive, de-
pendency - among groups of attributes:

• mutually exclusive: For some attribute groups, logical
consistency requites that at most one can be positive.

• dependency: If attribute A is true, the attribute B must
be true, otherwise the predictions are impossible.

• collectively exhaustive: For some attribute groups, log-
ical consistency requites exactly one must be positive.

Failure cases of these three relationships are in Algo-
rithm 1 of Supplementary Material. Based on these three
relationships, we propose the LCPLoss to force the model
to make logically consistent predictions.

For mutually exclusive, we formulate the sets Aex =
{attr1, attr2, ..., attrN} and Lex = {l1, l2, ..., lN}, where
lN is the list of attributes that are mutually exclusive to the
attrN . Then, the probability of the mutually exclusive at-
tributes happening at the same time is:

Pex = P(Lex|Aex)P (Aex) (2)

For the dependency relation, we formulate the set Ad =
{attr1, attr2, ..., attrN} and Ld = {l1, l2, ..., lN}, where
attrN is the sufficient condition to the attributes in lN . The
function is:

Pd = P(Ld|Ad) (3)

We formulate the calculation of Pex and Pd as:

P =
1

N

N∑
i=0

P(
∑

li > 0|attri == 1) (4)

Where li and attri are from the binary predicted results af-
ter thresholding. Since Pex ∈ [0, 1] and Pd ∈ [0, 1], in
order to minimize Pex and maximize Pd, the LCPLoss is
as:

LLCP = ||αPex + β(1− Pd)||2 (5)
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Where α and β are the coefficients to balance the ratio of
Pex and Pd, we choose α = 1 and β = 24. The final
loss function is the combination of the BCELoss 1 and the
LCPLoss 5:

Ltotal = (1− λ)LBCE + λLLCP (6)

Where λ is the coefficient to adjust the weights of the loss,
and λ = 0.5 is our choice.

5.2. Label Compensation

The proposed LCPLoss is a solution to the impossible
predictions, but it cannot handle the incomplete predic-
tions. Hence, we propose the label compensation strategy
which chooses the attribute that has the maximum confi-
dence value in the incomplete portion as the positive pre-
diction. For example, if none of the attributes that are re-
lated to beard area [Clean Shaven = 0.3, Chin Area =
−2, Side to Side = 0.1, Beard Area Info Not V is =
−1.5] has the confidence higher than the threshold value
0.5, then the attribute that has the highest confidence value
among these attributes Clean Shaven is the positive pre-
diction. This strategy can eliminate all the incomplete pre-
dictions but increases the number of impossible predictions.
In order to reduce this negative effect, we implement the la-
bel compensation strategy during both training and testing
process. Code 1 and Code 2 in the Supplementary Material
show the part of the training and testing code.

6. Experiments
In this section, we train a facial hair attribute classifier

with FH37K, and evaluate accuracy and logical consistency.
We propose LCPLoss, and combine it with a label compen-
sation strategy to improve the performance of logically con-
sistent predictions on a subset of WebFace260M. We ana-
lyze accuracy of ArcFace [17,20] and MagFace [38] across
demographics in two in-the-wild datasets.

6.1. Facial hair attribute classifier

We train facial hair attribute classifiers with the
ResNet50 [24] backbone, both from scratch (BCELoss and
LCPLoss only) and with pretrained ImageNet [41] weights
for transfer learning (all methods). We resize images to
224×224 and use random horizontal flip for augmentation.
Batch size is 256 and the learning rate is 0.001.

We evaluate model performance both without consid-
ering the logical consistency, as traditionally done in face
attribute research, and also with logical consistency. We
compare the baseline BCEloss, two loss functions - Binary
Focal (BF) Loss [35], BCE-MOON [40] - that handle the
imbalanced dataset problem, and the proposed LCPLoss.

Table 2 shows that, before considering the logical
consistency on predictions, BCE-MOON outperforms the

model training ACCavg ACCn
avg ACCp

avg

Not considering logical consistency ...
BCE 88.82 93.72 54.97
BCE∗ 90.22 94.72 63.73
BCE-MOON∗ 88.96 90.67 81.75
BF∗ 89.84 95.43 58.41
BCE + LCP 88.90 95.55 46.13
BCE + LCP∗ 90.63 95.87 58.15
BCE + LCP + LC 89.11 95.06 52.17
BCE + LCP + LC∗ 90.90 95.98 63.30
Considering logical consistency ...
BCE 45.10 46.02 32.62
BCE∗ 53.29 54.59 42.40
BCE-MOON∗ 46.46 47.54 32.95
BF∗ 39.96 40.95 31.45
BCE + LCP 27.66 28.19 18.80
BCE + LCP∗ 42.86 43.70 33.67
Label compensation on test ...
BCE + LC 87.47 90.08 61.55
BCE + LC∗ 88.83 91.49 68.78
BCE-MOON + LC∗ 49.39 50.55 34.62
BF + LC∗ 88.10 90.91 66.05
BCE + LCP + LC 87.82 90.37 59.05
BCE + LCP + LC∗ 89.46 92.02 66.71
Label compensation on train and test ...
BCE + LCP + LC 88.30 91.10 62.44
BCE + LCP + LC∗ 89.89 92.65 70.23

Table 2. Accuracy of models trained with different strategies.
ACCavg is the average accuracy for all attributes, ACCp

avg on pos-
itive samples, ACCn

avg on the negative samples. LC is the label
compensation strategy. ∗ means using the transfer learning.

other methods on predicting positive labels. The proposed
method has the best overall accuracy 90.78% on average.
However, after considering the logical consistency on
predictions, the accuracy of previous methods drops sig-
nificantly, 43.26% decrease on average. The accuracy of
the proposed method decreases from 90.90% to 89.89%
for transfer learning training strategy, and from 89.11% to
88.30% for training from scratch.

To further investigate the effect of LCPLoss, we use the
label compensation strategy to complete those incomplete
portions of the predictions of BCELoss scratch, BCELoss
transfer learning, BCE-MOON, and BF, the accuracy in-
creases to 87.47%, 88.83%, 49.39%, 88.10% respectively.
It reflects that labeling images in a logically consistent way
can guide the model learning to a consistent pattern on-the-
fly. In addition, the methods for handling the imbalanced
data could make a high-accuracy illusion without consider-
ing the logical consistency on prediction, e.g. the accuracy
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model training Ninp Nimp Rfailed

BCE 331,870 1,038 55.13
BCE∗ 240,761 6,001 40.86
BCE-MOON∗ 31,512 313,044 57.05
BF∗ 339,136 1,295 56.37
BCE + LCP 470,806 117 77.98
BCE + LCP∗ 307,576 300 50.98
Label compensation on test ...
BCE + LC 0 10,215 1.69
BCE + LC∗ 0 11,134 1.84
BCE-MOON + LC∗ 0 330,115 54.66
BF + LC∗ 0 14,007 2.32
BCE + LCP + LC 0 14,097 2.33
BCE + LCP + LC∗ 0 6,083 1.01
Label compensation on train and test ...
BCE + LCP + LC 0 7,693 1.27
BCE + LCP + LC∗ 0 5,595 0.93

Table 3. Results of logically consistent prediction test on a sub-
set of WebFace260M which has 603,910 images. LC is the label
compensation strategy. ∗ means using transfer learning. Ninp is
the number of the incomplete predictions. Nimp is the number of
the impossible predictions. Rfailed is the ratio of the failed cases.

of BCE-MOON decreases from 81.75% to 34.62% on pos-
itive side. The performance of our model on each attribute
is in Table 3 of the Supplementary Material.

To show the importance of logically consistent predic-
tion of the model, we use the images of the first 30,000 iden-
tities in the sub-folder 0 from the WebFace260M dataset as
a test set. Table 3 shows that, on average, 52.35% of the pre-
dictions generated by the BCE, BCE-MOON, and BF meth-
ods are logically inconsistent. After adding the label com-
pensation strategy, the failure rates decrease dramatically.
The proposed LCPLoss has the lowest fail rate 0.93%. Note
that, more incomplete predictions will reduce the number of
the impossible predictions, so comparison should consider
these two numbers together rather than separately.

These results show that adding LCPLoss and label com-
pensation strategy can significantly increase the usability of
the model in real-world cases while improving accuracy.

6.2. Annotations and Recognition Accuracy

Experiments presented in this section show the poten-
tial value of accurate facial hair annotations in adaptive
thresholding for recognition accuracy. ArcFace and Mag-
Face are used to extract the feature vectors. Previous work
[2,3,5–7,9,28,48,52] shows that biases exist across gender,
age, and race. In order to reduce the impact of these fac-
tors, the BUPT-Balancedface (BUPT-B) [51] and BA-test
datasets are used. BUPT-B has 1.3M images from Asian
(A), Black (B), Indian (I), White (W). Each ethnicity has

Demographic CS/% CA/% S2S/% Total

Asian Male
21,374
/ 75.17

6,336
/ 22.28

726
/ 2.55 28,436

15,378
/ 84.38

1,922
/ 10.54

925
/ 5.08 18,225

Black Male
5,529

/ 21.63
11,784
/ 46.10

8,247
/ 32.27 25,560

3,539
/ 33.64

3,322
/ 31.58

3,658
/ 34.78 10,519

Indian Male
12,697
/ 51.07

3,368
/ 13.55

8,795
/ 35.38 24,860

7,654
/ 48.47

1,781
/ 11.28

6,356
/ 40.25 15,791

White Male
13,265
/ 54.7

4,823
/ 19.89

6,162
/ 25.41 24,250

25,980
/ 63.47

3,668
/ 8.96

11,287
/ 27.57 40,935

Table 4. High-confidence (≥ 0.9) beard area predictions for
BUPT-B (top number) and BA-test (bottom number) images, bro-
ken out by prediction and demographic.

7,000 identities. Since it does not have gender information,
we use FairFace [27] to predict the gender for each iden-
tity. BA-test is a bias-aware test set we assembled on VG-
GFace2 [13], which has 665,562 face images from 8,870
identities. It groups the people into A, B, I, W, and by
gender (M,F). Images from BA-test are samples from VG-
GFace2 [13] with the head pose, image quality, brightness
balanced. The gender and ethnicity labels are predicted by
FairFace. The images in these two datasets are cropped and
aligned by using img2pose [4].

For each matcher, we compute the impostor distribution
separately for each demographic, and then select the thresh-
old for a 1-in-10,000 FMR for the Caucasian male demo-
graphic as the threshold for all demographics. This follows
the NIST report on demographic effects in face recognition
accuracy [19]. Also, this method makes the cross demo-
graphic differences in FMR more readily apparent.

Facial hair is a male characteristic in general. To inves-
tigate how beard area affects accuracy across demographic
groups, we first select images with Clean Shaven (CS), Chin
Area (CA), or Side to Side (S2S) beard area, using 0.9 as the
threshold to pick the high-confidence samples. There are six
categories of image pairs based on beard area: (CA,CA),
(CA,CS), (CA,S2S), (CS,CS), (CS,S2S), and (S2S,S2S).
The number of image pairs varies greatly across facial hair
categories and demographic. The number of images se-
lected from each demographic group is in Table 4.

Figure 3 (and Figures 1, 2, 3 of Supplementary Mate-
rial) shows the impostor and genuine distributions of WM,
BM, IM, and AM from BA-test and BUPT-B. As a gen-
eral conclusion for both matchers and both datasets, beard
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Figure 3. Facial hair attribute based genuine and impostor distributions for WM, BM, IM, AM in BA-test dataset. First row is CS focused
plots, second is CA focused plots, third is S2S focused, and last row is same-beard-area focused plots. The feature extractor is MagFace.

area has more effect on the genuine distribution than the
impostor. Image pairs with larger difference in beard area
have lower similarity, and image pairs with the same beard
area attribute have higher similarity. For instance, in the CS
focused plots, (CS,CS) has highest similarity and (CS,S2S)
has lowest similarity. For the image pairs that have the same
beard area, the matchers perform differently for WM, BM,
IM, and IM across the datasets. (CS,CS) has highest simi-
larity in general. However, (CA,CA) and (S2S,S2S) have a
larger difference on WM and AM than BM and IM in the
BUPT-B dataset for both matchers. (S2S,S2S) has highest
similarity and (CS,CS) has lowest similarity for AM in BA-
test dataset for both matchers.

On the impostor side, the difference is not visually ob-
vious in Figure 3 (and Figures 1, 2, 3 of Supplementary
Material), so we compare false match rate (FMR) to study
the effect, shown in Table 5 and Table 4 of Supplementary
Material. In general, images pairs with the same beard area
have the highest similarity, and image pairs in the having

beard vs. clean shaven pattern have the lowest similarity.
For instance, the pattern of FMR of WM is: (CA,CA) >
(CA,S2S) > (CA,CS); (CS,CS) > (CS,CA) > (CS,S2S);
(S2S,S2S) > (CA,S2S) > (CS,S2S). It is interesting that,
for AM, (CA,CS) has higher FMR than (CA,S2S) and, for
IM, (CA,S2S) has higher FMR than (CA,CA) in BA-test
dataset. For the impostor pairs that have the same beard
area, (CA,CA) > (S2S, S2S) > (CS,CS) is the pattern for
AM, (S2S,S2S) > (CS,CS) > (CA,CA) is the pattern for
IM, (S2S,S2S) > (CA,CA) > (CS,CS) is the pattern for
both BM and WM. It is interesting that beard area causes
different trends across demographics. Explaining these phe-
nomena is one of our future works.

The analyses above indicates that: (1) the fraction of
each type of facial hair area varies largely across demo-
graphics; for AM, over 75% of images are clean shaven and
less than 6% of them have side to side beard area, (2) im-
age pairs with larger difference in beard area have lower
similarity, and image pairs with the same beard area have
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BA-test Npairs AM Npairs IM Npairs BM Npairs WM

(CA,CA) 1,833,490 0.0558 1,575,614 0.0567 5,492,657 0.0571 6,716,047 0.0142
0.0892 0.0849 0.0742 0.0176

(CA,CS) 29,508,374 0.0307 13,610,147 0.0368 11,743,810 0.0238 95,253,307 0.0073
0.0435 0.0467 0.0298 0.0101

(CA,S2S) 1,773,388 0.0277 11,290,041 0.0745 12,133,642 0.0418 41,378,314 0.0116
0.0447 0.1111 0.0557 0.0165

(CS,CS) 117,910,749 0.043 29,190,869 0.0603 6,238,358 0.0309 337,299,241 0.012
0.0544 0.0705 0.0378 0.0153

(CS,S2S) 14,217,616 0.0143 48,596,378 0.0434 12,932,207 0.0224 293,188,100 0.0071
0.0207 0.0609 0.0291 0.0111

(S2S,S2S) 424,161 0.0691 20,097,880 0.1455 6,663,160 0.0549 63,635,960 0.0219
0.0861 0.2103 0.0749 0.0318

Table 5. False match rate and corresponding fraction of each beard area comparison group in BA-test. For the false match rate and fraction
of each category, top number is ArcFace model, bottom is MagFace.

higher similarity, (3) matchers do not all have the same rel-
ative accuracy differences across demographics, and (4) the
different demographics AM, IM, and WM do not follow the
same relative accuracy differences across hairstyles. In par-
ticular, the fraction of images with facial hair varies greatly
across demographics. We speculate the number of training
samples of each facial hair area attribute are unbalanced and
the beard length can cause this phenomenon.

7. Conclusions and Discussion

We introduce a more detailed scheme of facial hair de-
scription and create a dataset, FH37K, with these annota-
tions. FH37K contains a threshold number of positive ex-
amples of as many of our new attributes as possible. The
introduction of a fundamentally better dataset for exploring
facial hair attributes is one contribution of this work.

We illustrate that the classifiers trained with the baseline
BCELoss and the methods that handle the imbalance data
have difficulty predicting logically consistent labels. As a
novel approach to logical consistency in attribute learning,
we introduce LCPLoss and a label compensation strategy to
cause models to learn more logically consistent predictions
and enforce consistency on predictions. To our best knowl-
edge, this is the first work investigating the logical consis-
tency on predictions in facial attribute area. Highlighting
the issues of logical consistency across attributes and intro-
ducing an approach to solve them is another contribution of
this work. Our approach is not specific to facial hair, and
should be generally applicable in attribute prediction.

Using our attribute model trained on FH37K, we clas-
sify images from BUPT-B and BA-test datasets, and explore
how recognition accuracy is affected by facial hair. One
general conclusion is that image pairs with the same beard
area attribute have, on average, a higher similarity score, for
both impostor pairs and genuine pairs. (Two different per-

sons look more alike to the face matcher when they have
a similar beard area.) Similarly, image pairs with a larger
difference in the beard area attribute have a lower similarity
score. Interestingly, the pattern of change in similarity score
for image pairs that are both clean-shaven, both chin-only
or both side-to-side beards shows a different trend between
Asian males, Indian males, Black males, and White males.
This suggests that facial hairstyle plays a subtle causal role
in the widely-commented-on demographic differences in
face recognition accuracy. Additional factors beyond the
effects of facial hair may be needed to better understand de-
mographic accuracy differences.

Possibilities for future research include improving both
accuracy and logical consistency of predictions, extending
experiments on logical consistency of predictions to other
multi-label classification tasks, investigating the effects of
the other attributes of the facial hair on the face recognition
accuracy, and exploring the explanation of demographic dif-
ferences in face recognition accuracy.
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