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Figure 1. OmniObject3D is a large vocabulary 3D object dataset with massive high-quality real-scanned 3D objects and rich
annotations. It supports various research topics, e.g., perception, novel view synthesis, neural surface reconstruction, and 3D generation.

Abstract

Recent advances in modeling 3D objects mostly rely
on synthetic datasets due to the lack of large-scale real-
scanned 3D databases. To facilitate the development of
3D perception, reconstruction, and generation in the real
world, we propose OmniObject3D, a large vocabulary 3D
object dataset with massive high-quality real-scanned 3D
objects. OmniObject3D has several appealing properties:
1) Large Vocabulary: It comprises 6,000 scanned objects
in 190 daily categories, sharing common classes with pop-
ular 2D datasets (e.g., ImageNet and LVIS), benefiting the
pursuit of generalizable 3D representations. 2) Rich An-
notations: Each 3D object is captured with both 2D and

BCorresponding authors. https://omniobject3d.github.io/

3D sensors, providing textured meshes, point clouds, multi-
view rendered images, and multiple real-captured videos. 3)
Realistic Scans: The professional scanners support high-
quality object scans with precise shapes and realistic ap-
pearances. With the vast exploration space offered by Om-
niObject3D, we carefully set up four evaluation tracks: a)
robust 3D perception, b) novel-view synthesis, c) neural sur-
face reconstruction, and d) 3D object generation. Extensive
studies are performed on these four benchmarks, revealing
new observations, challenges, and opportunities for future
research in realistic 3D vision.

1. Introduction

Sensing, understanding, and synthesizing realistic 3D
objects is a long-standing problem in computer vision, with
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rapid progress emerging in recent years. However, a major-
ity of the technical approaches rely on unrealistic synthetic
datasets [6, 19, 64] due to the absence of a large-scale real-
world 3D object database. However, the appearance and
distribution gaps between synthetic and real data cannot be
compensated for trivially, hindering their real-life applica-
tions. Therefore, it is imperative to equip the community
with a large-scale and high-quality 3D object dataset from
the real world, which can facilitate a variety of 3D vision
tasks and downstream applications.

Recent advances partially fulfill the requirements while
still being unsatisfactory. As shown in Table 1, CO3D [48]
contains 19k videos capturing objects from 50 MS-COCO
categories, while only 20% of the videos are annotated
with accurate point clouds reconstructed by COLMAP [50].
Moreover, they do not provide textured meshes. GSO [16]
has 1k scanned objects while covering only 17 household
classes. AKB-48 [33] focuses on robotics manipulation
with 2k articulated object scans in 48 categories, but the
focus on articulation leads to a relatively narrow semantic
distribution, failing to support general 3D object research.

To boost the research on general 3D object understand-
ing and modeling, we present OmniObject3D: a large-
vocabulary 3D object dataset with massive high-quality,
real-scanned 3D objects. Our dataset has several appealing
properties: 1) Large Vocabulary: It contains 6,000 high-
quality textured meshes scanned from real-world objects,
which, to the best of our knowledge, is the largest among
real-world 3D object datasets with accurate 3D meshes. It
comprises 190 daily categories, sharing common classes
with popular 2D and 3D datasets (e.g., ImageNet [15],
LVIS [25], and ShapeNet [6]), incorporating most daily
object realms (See Figure 1 and Figure 2). 2) Rich An-
notations: Each 3D object is captured with both 2D and
3D sensors, providing textured 3D meshes, sampled point
clouds, posed multi-view images rendered by Blender [13],
and real-captured video frames with foreground masks and
COLMAP camera poses. 3) Realistic Scans: The object
scans are of high fidelity thanks to the professional scan-
ners, bearing precise shapes with geometric details and re-
alistic appearance with high-frequency textures.

Taking advantage of the vast exploration space offered
by OmniObject3D, we carefully set up four evaluation
tracks: a) robust 3D perception, b) novel-view synthesis,
c) neural surface reconstruction, and d) 3D object genera-
tion. Extensive studies are performed on these benchmarks:
First, the high-quality, real-world point clouds in OmniOb-
ject3D allow us to perform robust 3D perception analysis
on both out-of-distribution (OOD) styles and corruptions,
two major challenges in point cloud OOD generalization.
Furthermore, we provide massive 3D models with multi-
view images and precise 3D meshes for novel-view syn-
thesis and neural surface reconstruction. The broad diver-

Table 1. A comparison between OmniObject3D and other
commonly-used 3D object datasets. Rlvis denotes the ratio of
the 1.2k LVIS [25] categories being covered.

Dataset Real Full Mesh Video # Objs # Cats Rlvis (%)

ShapeNet [6] ✓ 51k 55 4.1
ModelNet [64] ✓ 12k 40 2.4
3D-Future [19] ✓ 16k 34 1.3
ABO [12] ✓ 8k 63 3.5
Toys4K [53] ✓ 4k 105 7.7
CO3D V1 / V2 [48] ✓ ✓ 19 / 40k 50 4.2
DTU [1] ✓ ✓ 124 NA 0
ScanObjectNN [56] ✓ 15k 15 1.3
GSO [16] ✓ ✓ 1k 17 0.9
AKB-48 [33] ✓ ✓ 2k 48 1.8
Ours ✓ ✓ ✓ 6k 190 10.8

sity in shapes and textures offers a comprehensive training
and evaluation source for both scene-specific and general-
izable algorithms. Finally, we equip the community with a
database for large vocabulary and realistic 3D object gener-
ation, which pushes the boundary of existing state-of-the-
art generation methods to real-world 3D objects. The four
benchmarks reveal new observations, challenges, and op-
portunities for future research in realistic 3D vision.

2. Related Works

3D Object Datasets. The acquisition of a large-scale re-
alistic 3D database is usually expensive and challenging.
Many widely-used 3D datasets prefer to collect synthetic
CAD models from online repositories [6, 53, 64], for ex-
ample, ShapeNet [6] has 51,300 3D CAD models in 55
categories, and ModelNet40 [64] consists of 12,311 mod-
els in 40 categories. Recent works, e.g., 3D-FUTURE [19]
and ABO [12], introduce high-quality CAD models with
rich geometric details and informative textures. However,
due to the inevitable gap between synthetic and real ob-
jects, the community is still eager for a large-scale 3D object
dataset in the real world. DTU [1] and BlendedMVS [69]
are photo-realistic datasets designed for multi-view stereo
benchmarks, while they are small in scale and lack category
annotations. ScanObjectNN [56] is a real-world point cloud
object dataset based on scanned indoor scenes, contain-
ing around 15,000 objects with colored point clouds in 15
categories. However, the point clouds are incomplete and
noisy, and multiple objects usually co-exist in one scene.
GSO [16] has 1,030 scanned objects with fine geometries
and textures in 17 household items, and AKB-48 [33] fo-
cuses on robotics manipulation with 2,037 articulated ob-
ject models in 48 articulated object categories. However,
the relatively narrow semantic scope of GSO and AKB-
48 hinders their applications for more general 3D research.
CO3D v1 [48] contains 19,000 object-centric videos, while
only 20% of them are annotated with accurate point clouds
reconstructed by COLMAP [50], and they do not provide
meshes or textures. In contrast, the proposed OmniOb-
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Visualization of Overlapping
with other datasets:
2D: imagenet (85) coco (47)
lvis (130) openimage (174)
3D: shapenet (18)
modelnet40 (17)
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Figure 2. Semantic distribution of the OmniObject3D dataset. It covers 190 daily categories with a long-tailed distribution, sharing
common classes with popular 2D and 3D datasets.

ject3D dataset comprises 6,000 3D objects scanned by pro-
fessional devices with meshes, textures, and multi-view
photos in 190 categories, fulfilling the requirements of a
wide range of research objectives. A detailed comparison
is presented in Table 1.
Robust 3D Perception. Robustness to out-of-distribution
(OOD) data is important in point cloud perception. Two
main challenges include OOD styles (e.g., differences be-
tween CAD models and real-world objects) and OOD cor-
ruptions (e.g., random point jittering or missing due to sen-
sory inaccuracy). A branch of works [10, 30, 45, 60] stud-
ies the OOD corruptions and proposes standard corrup-
tion test suites [49, 55], while they fail to take account of
OOD styles. Another branch of works [3, 48] evaluates the
sim-to-real domain gap by training models on clean syn-
thetic datasets [64] and testing them on noisy real-world test
sets [56], while OOD styles and corruptions cannot be dis-
entangled under this setting for an independent analysis. In
this work, we leverage high-quality, real-world point clouds
from OmniObject3D to systematically measure the robust-
ness against the OOD style and OOD corruptions, providing
the first benchmark for fine-grained evaluation of the point
cloud perception robustness.
Neural Radiance Field and Neural Surface Reconstruc-
tion. Neural radiance field (NeRF) [40] represents a scene
with a fully-connected deep network (MLPs), which takes
in hundreds of sampled points along each camera ray and
outputs the predicted color and density. We can synthe-
size the image of an unseen view from a trained model via
volume rendering. Inspired by the success of NeRF, mas-
sive follow-up efforts have been made to improve its qual-
ity [4, 5, 39, 57] and efficiency [7, 18, 42, 54]. A branch
of works [8, 27, 35, 48, 59, 71] has also explored the gen-
eralization ability of NeRF-based frameworks, where they
aim to learn priors from deep image features across mul-
tiple scenes. Beyond novel view synthesis, another trend
of approaches [14, 43, 58, 63, 70] proposes to combine neu-
ral radiance field with implicit surface representations like
Signed Distance Function (SDF), and they achieve accurate
and mask-free surface reconstruction from multi-view im-

ages. Since dense camera views of scenes are sometimes
unavailable, recent advances explore surface reconstruction
from sparse views. They address the problem by exploit-
ing generalizable priors cross scenes for a generic surface
prediction [36] or taking advantage of the estimated geom-
etry cues estimated by pre-trained networks [72]. OmniOb-
ject3D can serve as a large-scale benchmark with realistic
photos and accurate meshes for both training and evalua-
tion. The high diversity in shape and appearance offers
an opportunity for pursuing more generalizable and robust
novel view synthesis and surface reconstruction methods.
3D Object Generation. Early approaches [20,26,37,52,62]
extend 2D generation frameworks to 3D voxels with a high
computational cost. Some others adopt different 3D data
formulations, e.g., point cloud [2, 41, 68, 74], octree [29],
and implicit representations [11, 38]. However, it is non-
trivial to generate complex and textured surfaces. Recent
advances [9, 21, 44] explore the generation for textured 3D
meshes, where GET3D [22] is a state-of-the-art approach
that generates diverse meshes with rich geometry and tex-
tures in two branches. It is a promising but challenging task
to train generative models on a large vocabulary and realis-
tic dataset. We evaluate GET3D on our dataset and reveal
several challenges and future opportunities.

In supplementary materials, we present more detailed
discussions on related works for different tracks.

3. The OmniObject3D Dataset
In this section, we describe the data collection, process-

ing, and annotation pipeline of OmniObject3D. We also in-
troduce the statistics and distribution of it.

3.1. Data Collection, Processing, and Annotation

Category List Definition. In order to collect a large
amount of 3D objects that are both commonly-distributed
and highly diverse, we first pre-define a category list ac-
cording to several popular 2D and 3D datasets [6,15,25,31,
32, 51, 64]. We cover most of the categories that lie within
the application scope of the scanners and also dynamically
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expand the list with reasonable new classes that are absent
from the current list during collection. We end up with 190
widely-spread categories, which ensures a library with rich
texture, geometry, and semantic information.
Object Collection Pipeline. We then collect a variety of
objects from each category and use professional 3D scan-
ners to obtain high-resolution textured meshes. Specifi-
cally, we use the Shining 3D scanner 1 and Artec Eva 3D
scanner 2 for objects in different scales. The scanning time
varies with the properties of the object: it takes around 15
minutes to scan a small rigid object with a simple geome-
try (e.g., an apple, a toy), while it takes up to an hour to
obtain a qualified 3D scan for non-rigid, complex, or large
objects (e.g., a bed, a kite). For around 10% of the objects,
we conduct common manipulations (e.g., taking a bite, cut-
ting in pieces) to conform the natural instincts of them. The
3D scans can faithfully retain the real-world scale of each
object, but their poses are not strictly aligned. We thus
pre-define a canonical pose for each category and manu-
ally align the objects within a category. We then check the
quality of each scan, and around 83% high-quality ones out
of the total collection are finally reserved in the dataset.
Image Rendering and Point Cloud Sampling. To sup-
port a variety of research topics like point cloud analysis,
neural radiance fields, and 3D generation, we render multi-
view images and sample point clouds based on the collected
3D models. We use Blender [13] to render object-centric
and photo-realistic multi-view images, together with accu-
rate camera poses. The images are rendered from 100 ran-
dom viewpoints sampled on the upper hemisphere at 800
× 800 pixels. We also produce high-resolution mid-level
cues like depth and normal for more research use. We
then uniformly sample multi-resolution point clouds from
each 3D model using the Open3D toolbox [75], with 2n

(n ∈ {10, 11, 12, 13, 14}) points in each point cloud, re-
spectively. Besides the data existing in the dataset, we also
provide a data generation pipeline. One can easily obtain
new data with self-defined camera distributions, lighting,
and point sampling methods to meet different requirements.
Video Capturing and Annotation. After scanning each
object, we capture its video with an iPhone 12 Pro mo-
bile phone. The object is placed on or beside a calibration
board, and each video covers a full 360◦ range around it.
Square corners on the calibration board can be recognized
by the QR Codes beside it, and we then filter out the blurry
frames whose recognized corners are less than 8. We uni-
formly sample 200 frames, and then COLMAP [50], a well-
known SfM pipeline, is applied to annotate the frames with
camera poses. Finally, we use the scales of the calibration
board in both the SfM coordinate space and the real world
to recover the absolute scale of the SfM coordinate system.

1https://www.einscan.com/
2https://www.artec3d.cn/

ModelNet OmniObject3D-COmniObject3D

OOD Styles OOD Corruptions

Figure 3. OmniObject3D provides the first clean real-world point
cloud object dataset and allows fine-grained analysis on robustness
to OOD styles and OOD corruptions.“-C”: corrupted by common
corruptions described in [49]

We also develop a two-stage matting pipeline based on the
U2Net [47] and FBA [17] matting model to generate the
foreground masks for all the frames. Please refer to supple-
mentary materials for more implementation details.

3.2. Statistics and Distribution

With 6,000 3D models in 190 categories, OmniObject3D
exhibits a long-tailed distribution with an average of around
30 objects in each category, as shown in Figure 2. It
shares many common categories with several famous 2D
and 3D datasets [6, 15, 25, 31, 32, 51, 64]. For example, it
covers 85 categories in ImageNet [15] and 130 categories
in LVIS [25], which leads to the highest Rlvis in Table 1.
Most of the categories are covered by the Open Images [31]
image-level labels. It bears a huge diversity in shapes and
appearances. The vast semantic and geometrical explo-
ration spaces enable a wide range of research objectives.

4. Experiments
4.1. Robust 3D Perception

Object-level point cloud classification is one of the most
fundamental tasks in point cloud perception. In this section,
we show how OmniObject3D boosts robustness analysis of
point cloud classification by disentangling the two critical
out-of-distribution (OOD) challenges introduced in Sec. 2,
i.e., OOD styles and OOD corruptions.

Existing robustness evaluation utilizes clean synthetic
datasets, e.g., ModelNet [64], for training and sets up two
kinds of test sets for evaluation:
1) Noisy real-world datasets, e.g., ScanObjectNN [56],
which are cropped from real-world scenes. They are em-
ployed to measure the robustness of the sim-to-real domain
gap. However, the gap couples both OOD styles and OOD
corruptions simultaneously as the cropped point clouds are
always noisy, making it impossible to analyze the two ro-
bustness challenges independently.
2) Corrupted synthetic datasets, e.g., ModelNet-C [49],
which are artificially perturbed on top of clean synthetic
datasets. The evaluation allows for detailed corruption anal-
ysis, but they do not reflect the robustness to OOD styles.

None of the existing robustness benchmarks allows for
analyzing the robustness to both OOD styles and OOD cor-
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Table 2. Point cloud perception robustness analysis on Om-
niObject3D with different architecture designs. Models are
trained on the ModelNet-40 dataset, with OAClean to be their over-
all accuracy on the standard ModelNet-40 test set. OAStyle on Om-
niObject3D evaluates the robustness to OOD styles. mCE on the
corrupted OmniObject3D-C evaluates the robustness to OOD cor-
ruptions. Blue shadings indicate rankings. †: results on ModelNet-
C [49]. Full results are presented in the supplementary materials.

mCE† ↓ OAClean ↑ OAStyle ↑ mCE ↓

DGCNN [60] 1.000 0.926 0.448 1.000
PointNet [45] 1.422 0.907 0.466 0.969
PointNet++ [46] 1.072 0.930 0.407 1.066
RSCNN [34] 1.130 0.923 0.393 1.076
SimpleView [23] 1.047 0.939 0.476 0.990
GDANet [67] 0.892 0.934 0.497 0.920
PAConv [66] 1.104 0.936 0.403 1.073
CurveNet [65] 0.927 0.938 0.500 0.929
PCT [24] 0.925 0.930 0.459 0.940
RPC [49] 0.863 0.930 0.472 0.936

ruptions in fine granularity. OmniObject3D, on the other
hand, as the first clean real-world point cloud object dataset,
can help to address the issue. For models trained on Mod-
elNet, we first evaluate their performance on OmniOb-
ject3D to examine OOD-style robustness. Then, we create
OmniObject3D-C by corrupting OmniObject3D with com-
mon corruptions described in [49] to examine the OOD-
corruption robustness. We show a complete robustness eval-
uation scheme in Figure 3. For evaluation metrics, we
use the overall accuracy (OA) on OmniObject3D to mea-
sure the OOD-style robustness and use DGCNN normalized
mCE [49] to measure the OOD-corruption robustness.

We benchmark ten state-of-the-art point cloud classifi-
cation models in Table 2. We observe that 1) performance
on a clean test set has little correlation with OOD-style ro-
bustness. For example, SimpleView [23] achieves the best
OAClean but mediocre OAStyle; 2) Advanced point group-
ing, e.g., curve-based point grouping in CurveNet [65] and
frequency-based point grouping in GDANet [67], are ro-
bust not only to OOD corruptions as pointed out in [49],
but also to OOD styles; 3) OOD style + OOD corruption
is a more challenging setting. In particular, RPC, the most
robust architecture to OOD corruptions [49], shows infe-
rior mCE. In summary, robust point cloud perception mod-
els against both OOD styles and OOD corruptions are still
under-explored. Our dataset sheds new light on a compre-
hensive understanding of point cloud perception robustness.
See more results in the supplementary materials.

4.2. Novel View Synthesis

In this section, we study several representative methods
on OmniObject3D for novel view synthesis (NVS) in two
settings: 1) training on a single scene with densely cap-
tured images, which is the standard setting for NeRF [40];
2) learning priors across scenes from our dataset to explore

Table 3. Single-scene novel view synthesis results. Three metrics
and their standard deviation (SD) across the training set.

Method PSNR (↑) / SD SSIM (↑) / SD LPIPS (↓) / SD

NeRF [40] 34.01 / 3.46 0.953 / 0.029 0.068 / 0.061
mip-NeRF [4] 39.86 / 4.58 0.974 / 0.013 0.084 / 0.048
Plenoxels [18] 41.04 / 6.84 0.982 / 0.031 0.030 / 0.031

Table 4. Cross-scene novel view synthesis results on 10 cate-
gories. ‘Cat.’ and ‘All*’ denote training on each category and
training on all categories except the 10 test ones, respectively.

Method Train PSNR (↑) SSIM (↑) LPIPS (↓) Ldepth
1 (↓)

MVSNeRF [8]

All* 17.49 0.544 0.442 0.193
Cat. 17.54 0.542 0.448 0.230

All*-ft. 25.70 0.754 0.251 0.081
Cat.-ft. 25.52 0.750 0.264 0.076

IBRNet [59]

All* 19.39 0.569 0.399 0.423
Cat. 19.03 0.551 0.415 0.290

All*-ft. 26.89 0.792 0.215 0.081
Cat.-ft. 25.67 0.760 0.238 0.099

pixelNeRF [71]
All* 22.16 0.692 0.342 0.109
Cat. 20.65 0.676 0.348 0.195

the generalization ability of NeRF-style models.
Single-Scene NVS. We select three objects in each category
for the experiments, randomly sampling 1/8 images as the
hold-out test set. We involve NeRF [40], mip-NeRF [4], and
a voxel-based system named Plenoxels [18] for comparison.
As in Table 3, we find that Plenoxels achieve the best perfor-
mance on average for PSNR, SSIM [61], and LPIPS [73].
There exists a clear margin for LPIPS between Plenox-
els and the other two methods since voxel-based methods
are especially good at modeling high-frequency appearance.
We also present the standard deviation (SD) of results across
all the training samples, where Plenoxels are relatively un-
stable compared to NeRF and mip-NeRF. We observe that
Plenoxels introduce artifacts when encountering concave
geometry (e.g., bowls, chairs) and suffer from an inaccurate
density field modeling when the foreground object is dark.
MLP-based methods are relatively robust against these dif-
ficult cases. In a nutshell, our dataset provides a library with
a variety of shapes and appearances, allowing a comprehen-
sive evaluation of different NVS methods. See the supple-
mentary for more results with the iPhone videos, detailed
analysis, and visualizations.
Cross-Scene NVS. We conduct extensive experiments on
novel view synthesis from sparse inputs by pixelNeRF [71],
IBRNet [59] and MVSNeRF [8] in Table 4. We se-
lect 10 categories with the most various scenes as the
test set. All metrics are averaged over 300 images. In
the generalization setting, although not trained on the test
category, MVSNeRFAll* is comparable to MVSNeRFCat.,
IBRNetAll* and pixelNeRFAll* even outperforms the corre-
sponding “Cat”s in all terms of visual metrics, especially
on regular-shaped objects such as squash and apple. It
confirms that OmniObject3D serves as an information-rich
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VolSDF Voxurf NeuS MonoSDF SparseNeuS pixelNeRF MVSNeRFNeuS

Dense-view (100) Sparse-view (3)
Multi-view images

case 1

case 2

case 3

Figure 4. Neural surface reconstruction results for both dense-view and sparse-view settings.
Table 5. Dense-view surface reconstruction results.

Method
Chamfer Distance ×103 (↓)

Hard Medium Easy Avg

NeuS [58] 9.26 5.63 3.46 6.09
VolSDF [70] 10.06 4.94 2.86 5.92
Voxurf [63] 9.01 4.98 2.58 5.49

Avg 9.44 5.19 2.97 5.83

dataset that is beneficial for obtaining a strong generaliz-
able prior on unseen scenes. Moreover, it is noteworthy
that MVSNeRF and pixelNeRF with ‘All*’ generate better
underlying depth than those with ‘Cat.’, inferring general-
izable methods can implicitly learn geometric cues though
only trained from appearance in our dataset. It is reason-
able that (1) IBRNet suffers more severely than the others
in geometry under the scarcity of source context (only 3
views) as it is more suitable for dense-view generalization
that complies with its view interpolation module. (2) MVS-
NeRF lags behind pixelNeRF on visual performance as we
take 10 test frames widely distributed around the object in
360◦ by FPS sampling algorithm, where cost volume will
be inaccurate on large-range viewpoint change. After fur-
ther finetuning IBRNet for only around 10 minutes on each
test scene, IBRNetAll*-ft achieves the best view synthesis re-
sults, comparable to test-time optimized NVS methods on
nearby views. It is promising to utilize the large-scale and
category-prosperous OmniObject3D, to build a benchmark
suite for evaluating diverse cross-scene NVS methods.

4.3. Neural Surface Reconstruction

Precise surface reconstruction from multi-view images
enables a broad range of applications. For a single scene
with dense-view images, algorithms are expected to con-
duct accurate, robust, and efficient surface reconstruction.
When only sparse-view images are available, it is crucial to
learn generalizable priors from a set of scenes or use other
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Figure 5. Performance distribution of dense-view surface re-
construction. The averaged results of the three methods is imbal-
anced. The colored area denotes a smoothed range of results.

geometric cues to assist reconstruction. Accordingly, we
study the two settings for surface reconstruction methods.
Dense-View Surface Reconstruction. Under this setting,
we include three representative methods. NeuS [58] and
VolSDF [70] are two well-known approaches that bridge
neural volume rendering with implicit surface representa-
tion. We also involve a voxel-based method called Vox-
urf [63], which leverages a hybrid representation to achieve
acceleration and fine geometry reconstruction.

Previous approaches in this task mainly perform eval-
uations and comparisons on 15 scenes from the DTU [1]
dataset, which is not comprehensive and robust enough to
demonstrate the ability of the methods in different scenar-
ios. In comparison, we select three objects per category
to run each of the three methods above, leading to over
1,500 reconstructions in total. We calculate the Chamfer
Distance (CD) between the reconstructed surface and the
ground truth. The distribution of the results is shown in
Figure 5. The average curve is imbalanced: hard categories
usually include low-textured, concave, or complex shapes
(e.g., bowls, vases, kennels, cabinets, and durians). We thus
split the categories into three levels of “difficulty” based on
the average curve, and the level-wise results are presented
in Table 5. We can observe a clear margin among results in
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Table 6. Sparse-view (3-view) surface reconstruction results.

Method Train
Chamfer Distance ×103 (↓)

Hard Medium Easy Avg

NeuS [58] Single 29.35 27.62 24.79 27.3
MonoSDF [72] Single 35.14 35.35 32.76 34.68

SparseNeuS [36]

1 cat. 34.05 31.32 31.14 32.36
10 cats. 30.75 30.11 28.37 29.87
All cats. 26.13 26.08 22.13 25.00

Easy 28.39 26.65 23.76 26.48
Medium 27.38 26.66 23.08 25.87

Hard 27.42 26.95 24.63 26.47

MVSNeRF [8] All cats. 56.68 48.09 48.70 51.16
pixelNeRF [71] All cats. 63.31 59.91 61.47 61.56

different levels for each method, indicating the split subsets
to be generic and faithful.
Sparse-View Surface Reconstruction. Dense-captured
images of a scene are sometimes not available, so we
also study the sparse-view scenario here. The following
methods are included: NeuS [58] with sparse-view input;
MonoSDF [72], which takes in geometry cues estimated
by pre-trained models; SparseNeuS [36], a generic surface
prediction pipeline that learns generalizable priors; pixel-
NeRF [71] and MVSNeRF [8] from Sec. 4.2, whose ge-
ometries are extracted from the density field. For NeuS,
MonoSDF, and pixelNeRF, we use Farthest Point Sampling
(FPS) to sample views that are most widely distributed; for
SparseNeuS and MVSNeRF, we conduct FPS among the
nearest 30 camera poses from a random reference view. We
sample 3 views in all the experiments.

The quantitative and qualitative comparisons are shown
in Table 6 and Figure 4, respectively. We observe appar-
ent artifacts in all the sparse-view reconstructed results.
Among them, SparseNeuS trained on enough data demon-
strates the best quantitative performance on average, and
the pre-division on the train set does not result in a notice-
able difference across difficulty levels. NeuS with sparse-
view input achieves a surprisingly good performance. As
shown in Figure 4, the FPS sampling equips NeuS with a
coherent global shape for thin structures like case 3, while
it encounters severe local geometry ambiguity like case 1.
MonoSDF, on the contrary, partially overcomes the issue of
ambiguity via the assistance of predicted geometry cues in
case 1. However, it relies heavily on the accuracy of the
estimated depth and normal and thus easily fails when the
estimation is inaccurate (e.g., case 2 and 3). The surfaces
extracted from generalized NeRF models, i.e., pixelNeRF
and MVSNeRF, are of relatively low quality.

In brief, the challenging problem of sparse-view surface
reconstruction has not been solved well currently. OmniOb-
ject3D is a promising database to study generalizable sur-
face reconstruction pipelines as well as strategies for a ro-
bust usage of estimated geometry cues for this track.

(b) Chamfer distances among categories

(c) category groups (d) group-level statistics

(a) category-level statistics

Train set num

Generated num

Group

Figure 6. The category distribution of the generated shapes. (a)
shows a weak positive correlation between the number of gener-
ated shapes and training shapes per category. (b) visualizes the
correlation matrix among different categories by Chamfer Dis-
tance between their mean shapes. (c) visualizes categories be-
ing clustered into eight groups by KMeans. (d) presents a clear
training-generation relation in the group-level statistics.

4.4. 3D Object Generation

In this section, we adopt a state-of-the-art generative
model that directly generates explicit textured 3D meshes,
namely GET3D [22]. GET3D is originally evaluated on six
categories (Car, Chair, Motorbike, Animal, House, and Hu-
man Body) with independent models trained on each cate-
gory. The number of shapes per category ranges from 337 to
7,497. In comparison, OmniObject3D contains many more
categories with fewer objects in each. As a result, it is nat-
ural to train each model with multiple categories.

We first provide some qualitative results in Figure 7,
where we show various generation results: The textures are
rather realistic, and the shapes are coherent, enhanced by
fine geometry details (e.g., the lychee and pineapple). We
explore the latent space of the model and show interpola-
tion results in Figure 8. We can observe a smooth tran-
sition across instances that are semantically different. We
would like to further analyze the performance of the gener-
ative model trained on OmniObject3D from three aspects,
i.e., semantic distribution, diversity, and quality.
Semantic Distribution. We randomly select 100 categories
to train an unconditional model jointly. We randomly gen-
erate 1,000 textured meshes at inference time and ask hu-
man experts to label them. Shapes with ambiguity are not
counted. Figure 6 (a) shows that the generated shapes per
category are highly imbalanced, exhibiting a weak positive
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Figure 7. Examples of the generated textured shapes rendered in Blender. OmniObject3D enables GET3D with realistic generations
across a wide range of categories.

Figure 8. Shape interpolation. We interpolate both geometry and
texture latent codes from left to right.

correlation with the training shape numbers. Actually, the
categories are not independent but rather highly correlated.
We calculate the “mean shape” for each category and vi-
sualize the Chamfer Distance among them in Figure 6 (b),
which indicates that they can be further grouped. Regard-
ing each matrix row as a feature vector, we use KMeans to
cluster them into eight groups (Figure 6 (c)) and carry out
group-level statistics in Figure 6 (d). It demonstrates a clear
trend that the number of generated shapes increases along
with or even faster than the number of training shapes in
the group, revealing an enlarged semantic bias during gen-
eration. However, it also depends on the inner-group diver-
gence. For example, Group 2 (883 shapes in 27 categories)
has the largest number of training samples, while the high
variation among its categories prevents it from dominating
the generated shapes; Group 1 (587 shapes in 18 categories)
has a relatively small divergence, which becomes the most
popular in the generated shapes. We present more details in
the supplementary material.
Diversity and Quality. We select four representative data
subsets for training and evaluation, namely fruits, furni-
ture, toys, and Rand-100. We randomly split each subset
into training (80%) and testing (20%). We leverage three
evaluation metrics: for geometry, we use Chamfer Distance
(CD) to compute the Coverage score (Cov) and Minimum
Matching Distance (MMD), which focus on the diversity
and quality of the shapes, respectively; for texture, we adopt
the widely-used FID [28]. But the FID metrics with differ-
ent test splits are not directly comparable, suffering from a
large variance when the test set is small. We thus introduce
FIDref for reference, which is the FID between the train and
test set. The results are shown in Table 7. Furniture suf-
fers from the lowest quality (MMD) since the small train
set with 17 categories is a difficult training source. Fruits
has the same number of categories while being 2.3 times

Table 7. Quantitative evaluations on different data splits.
Split #Objs #Cats Cov (% ↑) MMD (↓) FID (↓) FIDref

Furniture 265 17 67.92 4.27 87.39 58.40
Fruits 610 17 46.72 3.32 105.31 87.15
Toys 339 7 55.22 2.78 122.77 41.40
Rand-100 2951 100 61.70 3.89 46.57 8.65

larger in scale, and some fruits share a very similar struc-
ture, leading to relatively higher quality and lower diversity
(Cov). Toys achieve the best quality by training on only 7
categories. Rand-100 is the most difficult case, and we can
observe a trade-off between quality and diversity. Both the
FID and FIDref are high for the first three subsets due of the
small testing sets, while only ‘Rand-100’ is relatively low.

In brief, training and evaluating generative models on
a large-vocabulary and realistic dataset is a promising but
challenging task. We reveal crucial problems like the se-
mantic distribution bias and varying exploration difficul-
ties in different groups. OmniObject3D serves as a great
database for further examination in this area.

5. Conclusion and Outlook
We introduce OmniObject3D, a large vocabulary 3D ob-

ject dataset with massive high-quality real-scanned 3D ob-
jects, including 6,000 objects from 190 categories. It pro-
vides rich annotations, including textured 3D meshes, sam-
pled point clouds, posed multi-view images rendered by
Blender, and real-captured video frames with foreground
masks and COLMAP camera poses. We set up four eval-
uation tracks, revealing new observations, challenges, and
opportunities for future research in realistic 3D vision.

We will regulate the usage of our data to avoid potential
negative social impacts.
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