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Abstract

Existing referring understanding tasks tend to involve

the detection of a single text-referred object. In this paper,

we propose a new and general referring understanding task,

termed referring multi-object tracking (RMOT). Its core

idea is to employ a language expression as a semantic cue

to guide the prediction of multi-object tracking. To the best

of our knowledge, it is the first work to achieve an arbitrary

number of referent object predictions in videos. To push

forward RMOT, we construct one benchmark with scalable

expressions based on KITTI, named Refer-KITTI. Specifi-

cally, it provides 18 videos with 818 expressions, and each

expression in a video is annotated with an average of 10.7

objects. Further, we develop a transformer-based architec-

ture TransRMOT to tackle the new task in an online manner,

which achieves impressive detection performance and out-

performs other counterparts. The Refer-KITTI dataset and

the code are released at https://referringmot.github.io.

1. Introduction

Recently, referring understanding [5, 17, 33, 55], inte-

grating natural language processing into scene perception,

has raised great attention in computer vision community.

It aims to localize regions of interest in images or videos

under the instruction of human language, which has many

applications, such as video editing and autonomous driving.

For referring understanding, several significant benchmarks

have been published. Flickr30k [53], ReferIt [15], and Re-

fCOCO/+/g [55] have greatly encouraged the development

of image-based referring tasks. More datasets (e.g., Lin-

gual OTB99 [19], Cityscapes-Ref [42], Talk2Car [5], Refer-

DAVIS17 [17], and Refer-Youtube-VOS [38]) are further
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(a) Query: the cars in the right

(b) Query: the cars which are turning

Figure 1. Representative examples from RMOT. The expression

query can refer to multiple objects of interest (a), and captures the

short-term status with accurate labels (b).

proposed to cover the application in videos.

Despite these advanced progress, previous benchmarks

have two typical limitations. First, each expression tends

to correspond to only one target. However, many objects

have the same semantics in an open world, i.e., one sin-

gle expression could refer to multiple objects. From this

side, existing datasets lack flexible simulation on the multi-

object scenarios, causing referring understanding tasks far

from satisfactory. Second, the given expression may only

describe part of frames for the video referring task, mak-

ing the correspondence inaccurate. For example, given the

expression ‘the car which is turning’, we have to predict

the overall trajectory even if the car has finished the turn-

ing action. Obviously, a single expression cannot cover all

short-term status of one target. Overall, existing datasets

fail to provide an accurate evaluation under the situations of

multiple referent targets and temporal status variances.

To address these problems, we propose a novel video un-

derstanding task guided by the language description, named

referring multi-object tracking (RMOT). Given a language

expression as a reference, it targets to ground all semanti-

cally matched objects in a video. Unlike previous tasks, our

proposed RMOT is much closer to the real environment,

as each expression can involve multiple objects. For in-

stance, the expression query ‘the cars in the right’ corre-

sponds to one object at the 20th frame but two objects at the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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The red cars

The pedestrian The persons in the right

The cars which are turning

The black cars which are moving

The cars which are slower than ours

The parking cars

The cars in the counter direction of ours The cars in left

Figure 2. More examples of Refer-KITTI. It provides high-diversity scenes and high-quality annotations referred to by expressions.

40th frame (see Fig. 1 (a)). The phenomenon indicates that

RMOT focuses more on finding the matched targets so that

the referent number can be flexibly changed. In addition,

the temporal status variances are also considered in RMOT.

As shown in Fig. 1(b), the given example shows the cars can

be detected only when they start the turning action, and the

tracking will be ended if they finish the activity.

To speed up the development of RMOT, we construct

a new benchmark, i.e., Refer-KITTI, concerning the traffic

scenes. It is developed from the public KITTI [9] dataset.

Compared to existing referring understanding datasets, it

has three distinguishing characteristics: i) High flexibility

with referent objects. The number of objects described by

each expression range from 0 to 105, with 10.7 on average.

ii) High temporal dynamics. The temporal status of targets

covers a longer time with more frames (varying in 0∼400

frames), and the temporal variance of targets is accurately

captured using our labeling tool. iii) Low labeling cost with

identification spread. We provide an effortless tool to anno-

tate a target tracklet using only two clicks.

Although RMOT has a more flexible referring setting,

it brings additional challenges: multi-object prediction and

cross-frame association. Towards this end, we propose an

end-to-end differentiable framework for RMOT. Our model

builds upon the recent DETR framework [3], enhanced by

powerful cross-modal reasoning and cross-frame conjunc-

tion. It has an encoder-decoder architecture. Specifically,

we design an early-fusion module in the encoder to densely

integrate visual and linguistic features, followed by a stack

of deformable attention layers for further refining the cross-

modal representations. In the decoder, query-based embed-

dings interact with the cross-modal features to predict ref-

erent boxes. To track multi-objects, similar to MOTR [57],

we decouple the object queries into track query for tracking

objects of previous frames and detect query for predicting

the bounding boxes of new-born objects.

In summary, our contributions are three-fold. First, we

propose a new task for referring multi-objects, called re-

Dataset Video Images
Instances

per-expression
Temporal ratio

per-expression

RefCOCO [55] - 26,711 1 1

RefCOCO+ [55] - 19,992 1 1

RefCOCOg [55] - 26,711 1 1

Talk2Car [5] ✓ 9,217 1 -

VID-Sentence [4] ✓ 59,238 1 1

Refer-DAVIS17 [17] ✓ 4,219 1 1

Refer-YV [38] ✓ 93,869 1 1

Refer-KITTI ✓ 6,650 10.7 0.49

Table 1. Comparison of Refer-KITTI with existing datasets.

Refer-YV is short for Refer-Youtube-VOS. The temporal ratio rep-

resents the average ratio of referent frames covering the entire

video sequence. ‘-’ means unavailable.

ferring multi-object tracking (RMOT). It tackles limitations

in the existing referring understanding tasks and provides

multi-object and temporally status-variant circumstances.

Second, we formulate a new benchmark, Refer-KITTI, to

help the community to explore this new field in depth. As

far as we know, it is the first dataset specializing in an ar-

bitrary number of object predictions. Third, we propose

an end-to-end framework built upon Transformer, termed

as TransRMOT. With powerful cross-modal learning, it pro-

vides impressive RMOT performance on Refer-KITTI com-

pared to hand-crafted RMOT methods.

2. Related Work

Referring Understanding Datasets. Many advanced

datasets have greatly contributed to the progress of referring

understanding. Pioneering attempts (e.g., Flickr30k [53],

ReferIt [15], RefCOCO/+/g [55]) propose to employ a

succinct yet unambiguous language expression to ground

corresponding visual region within an image. However,

these datasets are fully image-based and do not fit well

with common and practical video scenes. Therefore, more

efforts have been devoted to video-based benchmarks in

recent years, such as Lingual OTB99 [19], Cityscapes-

Ref [42], VID-Sentence [4], and Talk2Car [5]. In ad-
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...
40 frames

Automatical labeling

Query: the cars which are turning

Figure 3. Labeling exemplar of our datasets. The turning action is labeled with only two clicks on bounding boxes at the starting and

ending frames. The intermediate frames are automatically and efficiently labeled with the help of unique identities.

(a) Word Cloud (b) Distribution of object number
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Figure 4. Statistics of Refer-KITTI on (a) word cloud and (b)

distribution of object number per expression.

dition to grounding objects using bounding boxes, re-

ferring understanding is also involved in the video seg-

mentation to formulate referring video object segmenta-

tion (RVOS). The mainstream of datasets include A2D-

Sentences [8], JHMDB-Sentences [8], Refer-DAVIS17 [17],

Refer-Youtube-VOS [38]. Although these datasets have un-

doubtedly promoted this field, they are still subject to two

limitations, i.e., expressions referring to a single object and

ignoring temporal variants. To alleviate them, we introduce

RMOT, which targets multi-object and temporally-dynamic

referring understanding. A thorough comparison between

existing datasets and ours is summarized in Table 1. As

seen, our proposed Refer-KITTI has a more flexible refer-

ent range (i.e., more boxes and fewer temporal ratios per

expression). Although it has slightly fewer images than oth-

ers, its performance stability can be guaranteed (see §5.2).

Referring Understanding Methods. The core challenge of

referring understanding is how to model the semantic align-

ment of cross-modal sources, i.e., vision and language. Ear-

lier algorithms mainly employed two separate stages [17,

25, 29, 30, 33, 36, 44, 54, 60]: 1) the object detection stage

that produces numerous object proposals using off-the-shelf

detector; and 2) the object matching stage that learns the

similarity between proposals and language expression to

find the best-matched proposal as the final target. How-

ever, the performance of these methods relies heavily on the

quality of the object detection. Later methods focus more

on designing a one-stage pipeline [20, 22, 28, 39, 41, 52].

They fuse visual and linguistic modalities on early fea-

tures instead of proposals, whereas the fusion strategies

concentrate on employing a cross-modal attention mech-

anism. Additionally, some works provide better seman-

tic alignment interpretability via graph modeling [49, 50],
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(a) Distribution of frame  (b) Temporal ratio per expression

Figure 5. Temporal statistics. (a) Distribution of frame lengths.

(b) Distribution of the ratio of referent frames covering video.

progressive reasoning [11, 16, 51], or multi-temporal-range

learning [7, 12, 46]. More recently, the Transformer-based

models [2, 14, 18, 47, 48] are becoming popular due to their

powerful representation ability in cross-modal understand-

ing. Despite their progress, current referring understanding

methods cannot process real-world and multi-object scenar-

ios. In contrast, our proposed Transformer-based model,

TransRMOT, can deal well with these complex scenes.

3. Benchmark

To facilitate referring understanding, we construct the

new dataset Refer-KITTI based on public KITTI [9]. There

are two primary reasons why we choose it as our base. First,

KITTI contains various scenes, including pedestrian streets,

public roads, highways, and so on, enriching the diversity of

videos. Second, it provides a unique identification number

for each instance, which helps annotators improve labeling

efficiency using our proposed tool. We illustrate some rep-

resentative examples in Fig. 2. In the following, we provide

more details about Refer-KITTI.

3.1. Dataset Annotation with Low Human Cost

In KITTI, each video has instance-level box annotations,

and the same instance across frames has the same identi-

fication number. We make full use of them and design an

efficient labeling tool. Fig. 3 shows an exemplar under the

instruction of the cars which are turning. To be specific,

all bounding boxes are printed during annotation. At the

action-starting frame, we choose the turning car by clicking

its box boundary. Then we click the box boundary of the

target again when it ends the turning action. Instead of la-

beling the target objects frame by frame, our labeling tool
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Figure 6. The overall architecture of TransRMOT. It is an online cross-modal tracker and includes four essential parts: feature extractors,

cross-modal encoder, decoder, and referent head. The feature extractors embed the input video and the corresponding language query into

feature maps/vectors. The cross-modal encoder models comprehensive visual-linguistic representation via efficient fusion. The decoder

takes the visual-linguistic features, detect queries and the track queries as inputs and updates the representation of queries. The updated

queries are further used to predict the referred objects by the referent head.

can automatically propagate these labels to the intermediate

frames according to their identification number. Finally, the

labeled information (i.e., frame ID, object ID, and box co-

ordinates) and the corresponding expression are saved for

training and testing. The annotation procedure produces

lower human costs than the frame-by-frame manner.

Dataset Split. KITTI provides 21 high-resolution and long-

temporal videos, but we abandon three over-complex videos

and use the remaining 18 videos to formulate Refer-KITTI.

We create a total of 818 expressions for Refer-KITTI us-

ing our labeling tool. The word cloud of the expressions is

shown in Fig. 4 (a). Refer-KITTI is randomly split into sep-

arate train, and test sets, yielding a unique split consisting

of 15 training videos and 3 testing videos.

3.2. Dataset Features and Statistics

To offer deeper insights into Refer-KITTI, we next dis-

cuss the discriminative features and descriptive statistics.

High Flexibility with Referent Objects. Different from

previous datasets that contain just one referent object for

each language expression, RMOT is designed to involve an

arbitrary number of predicted objects in videos. Quantita-

tively, the expressions of Refer-KITTI mostly describe 0-

25 objects, and the maximum number can be up to 105.

On average, each expression in a video corresponds to10.7

objects. The per-expression object number distribution is

shown in Fig. 4 (b). These statistics are more representative

of high-flexibility applications with referent objects.

High Temporal Dynamic. Another real-world complexity

is reflected in the temporal dimension of referent objects.

Fig. 5 (a) shows the length distribution of frames per expres-

sion. Most expressions of Refer-KITTI cover 0-400 frames,

while the longest sequence has more than 600 frames. Ad-

ditionally, we show the per-expression temporal ratio cover-

ing the entire video in Fig. 5 (b). It indicates many referent

objects enter or exit from visible scenes. The long time and

undetermined ratio bring an additional challenge compared

to existing works, i.e., cross-frame object association.

3.3. Evaluation Metrics

We adopt Higher Order Tracking Accuracy (HOTA) [27]

as standard metrics to evaluate the new benchmark. Its core

idea is calculating the similarity between the predicted and

ground-truth tracklet. Unlike MOT using HOTA to evalu-

ate all visible objects, when those non-referent yet visible

objects are predicted, they are viewed as false positives in

our evaluation. As the HOTA score is obtained by combin-

ing Detection Accuracy (DetA) and Association Accuracy

(AssA), i.e., HOTA =
√

DetA · AssA, it performs a great

balance between measuring frame-level detection and tem-

poral association performance. Here, DetA defines the de-

tection IoU score, and AssA is the association IoU score.

4. Method

4.1. Network Architecture

The overall pipeline of our method is illustrated in Fig. 6.

Taking the video stream as well as a language query as in-

puts, the goal is to output the track boxes of the correspond-

ing query. Similar to MOTR [57], our model mainly follows

the Deformable DETR [61], and we make several modifica-

tions on it to adapt the cross-modal inputs. It consists of

four key components: feature extractors, cross-modal en-

coder, decoder and referent head. The feature extractor first
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produces visual and linguistic features for the raw video

and text. Then, the cross-modal encoder fuses the features

of two modalities. Next, the decoder is used to update the

representation of object queries. Finally, the referent head

predicts the target sequences based on the predicted classi-

fication, bounding box and referent scores.

Feature Extractor. Given a T -frame video, a CNN back-

bone model is used to extract the frame-wise pyramid fea-

ture maps, e.g., the tth frame for features I l
t ∈ R

Cl×Hl×Wl ,

where Cl, Hl,Wl represents the channel, height, width of

the lth level feature map, respectively. At the same time,

we employ a pre-trained linguistic model to embed the text

with L words into 2D vectors S ∈ R
L×D, where D is the

feature dimension of word vectors.

Cross-modal Encoder. The cross-modal encoder is respon-

sible for accepting the visual and linguistic features and fus-

ing them. The common strategy is to concatenate two kinds

of features and feed them into the encoder to model dense

connections via self-attention, like MDETR [14]. However,

the computation cost of self-attention is enormous due to the

large token number of images. To address this problem, we

propose an early-fusion module to integrate the visual and

linguistic features before deformable encoder layers. Our

early-fusion module is illustrated in Fig. 7.

Specifically, given the lth level feature maps I l
t , we use

a 1×1 convolution to reduce its channel number to d=256,

and flatten it into a 2D tensor I l
t ∈ R

HlWl×d. To keep the

same channels with visual features, the linguistic features

are projected into S ∈ R
L×d using a fully-connected layer.

Three independent full-connected layers transform the vi-

sual and linguistic features as Q, K, and V :

Q = Wq(I
l
t + P

V ) ∈ R
HlWl×d

,

K = Wk(S + P
L) ∈ R

L×d
,

V = WvS ∈ R
L×d

,

(1)

where W s are weights. PV and PL are position embedding

of visual and linguistic features following [3, 43]. We make

matrix product on K and V , and use the generated similar-

ity matrix to weight linguistic features, i.e., (QK⊤/
√
d)V .

Here, d is the feature dimension. The original visual fea-

tures are then added with the vision-conditioned linguistic

features to produce the fused features Î l
t:

Î
l
t =

QK⊤

√
d

V + I
l
t ∈ R

HlWl×d
. (2)

After fusing two modalities, a stack of deformable encoder

layers is used to promote cross-modal interaction:

E
l
t = DeformEnc(Îl

t) ∈ R
HlWl×d

, (3)

where El
t is encoded cross-modal embedding, which will

facilitate referring prediction in the following decoder.

Decoder. The original decoder in the DETR framework

uses learnable queries to probe encoded features for yield-

ing instance embedding, further producing instance boxes

𝑰tl  
𝑆 

𝑰 tl  

Matrix Product Addition Linear Transform

𝑃V  𝑃L  

𝑸 

𝑲 

𝑽 

Figure 7. The early-fusion module in our cross-modal encoder.

They achieve efficient visual-linguistic fusion followed by a stack

of deformable encoder layers for further interaction.

and classes. To associate objects between adjacent frames,

we make full use of the decoder embedding from the last

frame, which is updated as track query of the current frame

to track the same instance. For new-born objects in the cur-

rent frame, we adapt the original query from DETR, named

detect query. The tracking process is shown in Fig. 6.

Formally, let Dt−1∈R
Nt−1×d denote the decoder embed-

ding from the (t−1)th frame, which is further transformed

into track query of the tth frame, i.e., Qtra
t ∈R

N ′

t−1
×d, using

self-attention and feed-forward network (FFN). Note that

part of the Nt−1 decoder embeddings correspond to empty

or exit objects, so we filter out them and only keep N ′
t−1 true

embeddings to generate track query Qtra
t in terms of their

class score. Let Qdet ∈ R
N×d denote detect query, which

is randomly initialized for detecting new-born objects. In

practice, the two kinds of queries are concatenated together

and fed into the decoder to learn target representation Dt:

Dt = Decoder(El
t, concat(Qdet

, Q
tra
t )) ∈ R

Nt×d, (4)

where the number of output embedding is Nt=N ′
t−1 + N ,

including track objects and detect objects.

Referent Head. After a set of decoder layers, we add a

referent head on top of the decoder. The referent head in-

cludes class, box and referring branches. The class branch is

a linear projection, which outputs a binary probability that

indicates whether the output embedding represents a true

or empty object. The box branch is a 3-layer feed-forward

network with ReLU activation except for the last layer. It

predicts the box location of all visible instances. Another

linear projection acts as the referring branch to produce ref-

erent scores with binary values. It refers to the likelihood of

whether the instance matches the expression.

4.2. Instance Matching and Loss

To train the model, we decouple the final loss as track

loss and detect loss. As described before, our method pre-

dicts a flexible-size set of Nt predictions for the tth frame,

including N ′
t−1 tracking objects and N detection objects.

The N ′
t−1 tracking objects and their ground-truth are one-to-

one matched, while the detection objects are set predictions
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Method HOTA (△HOTA) DetA AssA DetRe DetPr AssRe AssPr LocA

FairMOT [59] 22.78(± 0.87) 14.43 39.11 16.44 45.48 43.05 71.65 74.77

DeepSORT [45] 25.59(± 0.79) 19.76 34.31 26.38 36.93 39.55 61.05 71.34

ByteTrack [58] 24.95(± 0.84) 15.50 43.11 18.25 43.48 48.64 70.72 73.90

CStrack [21] 27.91(± 0.73) 20.65 39.10 33.76 32.61 43.12 71.82 79.51

TransTrack [40] 32.77(± 0.68) 23.31 45.71 32.33 42.23 49.99 78.74 79.48

TrackFormer [31] 33.26(± 0.65) 25.44 45.87 35.21 42.19 50.26 78.92 79.63

TransRMOT (Ours) 35.54(± 0.71) 28.25 46.25 39.22 45.94 50.69 80.67 79.79

Table 2. Quantitative results on Refer-KITTI. HOTA scores are reported, and △HOTA presents score variance over three runnings.

(i.e., the number of predictions N is larger than the number

of true new-born objects).

Therefore, we first calculate the track loss using tracking

prediction set {ctrat,i , b
tra
t,i , r

tra
t,i }

N ′

t−1

i=1 and the ground-truth

set {ĉtrat,i , b̂
tra
t,i , r̂

tra
t,i }

N ′

t−1

i=1 directly. Here, ctrat,i ∈R
1 is a prob-

ability scalar indicating whether this object is visible in the

current frame. btrat,i ∈R
4 is a normalized vector that repre-

sents the center coordinates and relative height and width of

the predicted box. rtrat,i ∈ R
1 is a referring probability be-

tween the instance and the language description. The track

loss Ltra
t is obtained via one-to-one computation:

Ltra
t =

N ′

t−1
∑

i=1

[

λclsLcls(c
tra
t,i , ĉ

tra
t,i ) + Lbox(b

tra
t,i , b̂

tra
t,i )

+λrefLref (r
tra
t,i , r̂

tra
t,i ) ] ,

(5)

where Lbox weights the L1 loss LL1
and the generalized

IoU loss Lgiou [35], i.e., Lbox = λL1
LL1

+ λgiouLgiou.

Lcls and Lref are the focal loss [23]. λL1
, λgiou, λcls, and

λref are the corresponding weight coefficients.

Next, for detection objects, we need to find a bipartite

graph matching which of the predicted objects fits the true

new-born objects. Let ydet
t = {cdett,i , b

det
t,i , r

det
t,i }Ni=1 denote

detection set, and ŷdet
t denote the new-born ground-truth.

Then we search for a permutation of N predictions δ ∈ Pn

by minimizing matching cost:

δ̂ = argmin
δ∈Pn

Lmatch(y
det
t,δ(i), ŷ

det
t ), (6)

where Lmatch = Lbox+λclsLcls. After obtaining the best

permutation δ̂ with the lowest matching cost, we use it as a

new index of predictions {ydet

t,δ̂(i)
}Ni=1 to compute the detect

loss with ground-truth set ŷdet
t , as similar to Eq. 5:

Ldet
t =

N
∑

i=1

[λclsLcls + 1Lbox+1λrefLref ] , (7)

where 1 refers to 1{ĉdet
t,i

̸=∅}. Eventually, the final loss

Lfinal is the summation of track loss and detect loss:

Lfinal =

T∑

t=1

(Ltra
t + Ldet

t ). (8)

As the first frame has no previous frames, its track query is

set to empty. In other words, we only use the detect query

to predict all new objects in the first frame.

5. Experiments

5.1. Experimental Setup

Model Details. We adopt visual backbone ResNet-50 [10]

and text encoder RoBERTa [26] in our TransRMOT. Simi-

lar to Deformable DETR [61], the last three stage features

{I3
t , I

4
t , I

5
t } from the visual backbone are used for further

cross-modal learning. Besides, the lowest resolution feature

map I6
t is added via a 3×3 convolution with spatial stride

2 on the I5
t . Each of the multi-scale feature maps is in-

dependently performed the cross-modal fusion. After that,

deformable attention in the encoder and decoder integrates

the multi-scale features. The architecture and number of the

encoder and decoder layer follow the setting of [61]. The

number of detect query is set as N=300.

Training. The parameters in the cross-modal module are

randomly initialized for training, while the parameters in

the text encoder are frozen during training. The remained

parameters are initialized from the official Deformable

DETR weights [61] pre-trained on the COCO dataset [24].

Random crop is used for data augmentation. The short-

est side ranges from 800 to 1536 for multi-scale learning.

Moreover, object erasing and inserting are added to simu-

late object exit and entrance following [57]. The loss coef-

ficients are set as λcls = 5, λL1
= 2, λgiou = 2, λref = 2.

AdamW optimizer is employed to train TransRMOT with

base learning rate of 1e−4. The learning rates of the back-

bone are set to 1e−5. The model is trained for 100 epochs,

and the learning rate decays by a factor of 10 at the 50th

epoch. The overall training is deployed on 8 Nvidia 2080Ti

GPUs with batch size of 1.

Testing. TransRMOT is able to handle the arbitrary length

of videos without post-process. At the tth frame, it pro-

duces Nt instance embeddings, each corresponding to true

or empty objects. We choose these embeddings whose class

score exceeds 0.7 to yield true object boxes. Further, the fi-

nal referent objects are determined from these true objects

by a referring threshold βref =0.4.

5.2. Quantitative Results

On top of Refer-KITTI, we examine the proposed Tran-

sRMOT and several competitors in Table 2. Most previous

approaches in referring understanding tasks are designed for
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Query: the black cars in the left

Query: the cars which are faster than ours

Query: the pedestrian in the right

Figure 8. Qualitative examples on Refer-KITTI. TransRMOT successfully predicts referent objects according to the given expression.

Query: the cars in front of ours

Figure 9. Qualitative comparison between all visible objects (top) and the referent objects (bottom). TransRMOT can capture all

visible objects and highlight the referent ones. Please zoom in on the figures for more details.

single-object scenarios, which fail to predict boxes of mul-

tiple referent objects. Therefore, we construct a series of

CNN-based competitors by integrating our cross-modal fu-

sion module into the detection part of multi-object track-

ing models, such as FairMOT [59], DeepSORT [45], Byte-

Track [58], and CStrack [21]. These competitors follow

a tracking-by-detection paradigm and employ independent

trackers to associate each referent box. More model details

can be found in supplementary materials. From Table 2,

we can see that our TransRMOT outperforms other CNN

counterparts by a large margin.

In addition, we compare with Transformer-based works,

such as TransTrack [40] and TrackFormer [31], by adding

the cross-modal learning parts. As shown in Table 2, both

two methods perform worse than our TransRMOT across all

metrics but achieve better scores than CNN-based models.

Overall, these experiments indicate the model priority of

our proposed TransRMOT. Moreover, the stability of Refer-

KITTI is also evaluated by training all models three times

with different seeds. The slight performance variance (i.e.,

△HOTA<0.87) shows great benchmark stability.

5.3. Qualitative Results

We visualize several typical referent results in Fig. 8. As

seen, TransRMOT is able to detect and track targets accu-

rately under various challenging situations, including mul-

tiple objects, status variance, and varying object numbers.

Besides, we provide a qualitative comparison between all

predicted objects and the referent objects from TransRMOT

in Fig. 9. As observed, all visible objects in the video are

detected, and the referent objects are also highlighted based

on the given expression query. More qualitative results can

be found in supplementary materials.

5.4. Ablation Study

To study the effect of core components in our model, we

conduct extensive ablation studies on Refer-KITTI.

Cross-modal Fusion. As described before, the separate

early-fusion module is used to model cross-modal repre-

sentation. To explore its effect, we remove this module to

formulate a new model without expressions as input, which

will predict all visible objects. As shown in Table 3 (a), the

lack of our cross-modal fusion causes a large performance

degradation under all metrics (e.g., HOTA: 34.29→17.01,

DetA: 28.25→19.05, AssA: 46.25→15.26). We also inves-

tigate two different variants. As depicted in Table 3 (a),

the first type is to concatenate and input visual and linguis-

tic features into an encoder, as identical with MDETR [14].

The outputted visual part is split and fed into the decoder.

The second type (i.e., language as query) sums up sentence-

level language embedding with decoder query to probe the

corresponding objects. Our method achieves better results

than both, demonstrating the effectiveness of our early-

fusion cross-modal module.
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Fusion Way HOTA DetA AssA DetRe DetPr

w/o fusion 17.01 19.05 15.26 22.00 56.07

Concatenation 28.61 22.48 37.69 27.16 51.16

Language as query 33.29 26.15 43.80 35.94 44.83

Ours 35.54 28.25 46.25 39.22 45.94

(a) Comparison on cross-modal fusion way.

Association Way HOTA DetA AssA AssRe AssPr

w/o track query - 26.95 - - -

SORT [1] 31.63 24.32 41.50 46.97 79.85

ByteTrack [58] 32.12 24.40 42.33 50.55 75.07

Ours 35.54 28.25 46.25 50.69 80.67

(b) Comparison on cross-frame association way.

Linguistic Extractor HOTA DetA AssA DetRe DetPr

FastText [32] 32.39 23.40 46.03 37.03 36.11

Glove [34] 32.45 23.71 46.18 39.02 35.03

Distill-BERT [37] 33.56 26.60 44.01 38.21 43.09

BERT [6] 35.28 28.14 45.73 38.32 47.07

RoBERTa [26] 35.54 28.25 46.25 39.22 45.94

(c) Comparison on linguistic extractor.

Referring threshold HOTA DetA AssA DetRe DetPr

0.2 35.10 26.98 47.15 41.77 39.91

0.3 35.07 27.82 45.63 41.74 41.82

0.4 35.54 28.25 46.25 39.22 45.94

0.5 34.73 26.45 47.11 34.16 49.20

0.6 31.09 23.18 43.27 27.47 54.07

0.7 31.63 23.20 44.66 27.75 52.84

(d) Comparison on referring threshold βref .

Table 3. Ablation studies of different components in TransRMOT. HOTA scores are reported, and ‘-’ means unavailable.

Cross-frame Association. It is also of interest to analyze

the impact of cross-frame association using the track query.

Removing track query (i.e., w/o track query) causes TransR-

MOT to be a fully image-based model. Table 3 (b) shows

that it results in numerous IDs and unavailable associations

in terms of metrics AssA, AssRe and AssPr. We associate

the referent boxes predicted from the image-based model

using state-of-art IoU-matching methods SORT [1] and

ByteTrack [58]. Despite achieving association, they have

lower HOTA scores than our track query. These experi-

ments approve the necessity of our decoupled query.

Linguistic Extractor. Next, we study different linguis-

tic extractors, including the widely-used Transformer-based

text encoders (e.g., BERT [6] and Distill-BERT [37]) and

the simple word embedding methods (e.g., Glove [34] and

FastText [32]). As shown in Table 3 (c), these Transformer-

based encoders achieve comparable performance in com-

parison to the RoBERTa [26], while the simple embedding

methods are insufficient in our cross-modal learning.

Referring Threshold. At last, we investigate the effect

of referring threshold βref . As reported in Table 3 (d),

the HOTA score is marginal at around 0.2∼0.5 and begins

to have a slight reduction when βref gets larger. Overall,

the referring performance is robust to the varying referring

threshold. In this work, we choose βref =0.4 as default.

5.5. Generalization Analysis

As reported in previous works [13, 14, 56], language de-

scriptions have a significant advantage in recognition gen-

eralization. Even if a new expression does not exist in

the dataset, the referring understanding model can reason

the referent objects by learning existing language knowl-

edge. To verify this point, we employ a new expression,

‘the left persons in black’, to test TransRMOT. Although

Refer-KITTI contains some succinct expressions, e.g., ‘the

left persons’ and ‘the persons in black’, the new expression

is not included in the whole dataset. In Fig. 10, TransR-

MOT can correctly recognize the referent objects, showing

(a) Query: the left persons

(b) Query: the persons in black

(c) New query: the left persons in black

Figure 10. Generalization analysis of TransRMOT. The new

query (c) is not included in dataset, but our model can still infer

the referent objects according to the existing knowledge (a) (b).

the powerful generalization ability of TransRMOT.

6. Conclusion

In this paper, we proposed a novel referring understand-

ing task, called Referring Multi-Object Tracking (RMOT).

It addressed the single-object limitation of referring under-

standing tasks and provided a more flexible multi-object set-

ting. Additionally, it leveraged the essential temporal status

variant into referring understanding. Both two new settings

make RMOT more general, which is appropriate for evalu-

ating real-world requirements. To promote RMOT, we de-

veloped a new benchmark, named Refer-KITTI. The bench-

mark provided high flexibility with referent objects and high

temporal dynamics but yielded low labeling costs. Further-

more, we proposed a Transformer-based method, TransR-

MOT, to tackle the new task. The framework is fully end-

to-end optimized during training, and predicts referent ob-

jects frame by frame. We validated TransRMOT on Refer-

KITTI, and it achieved state-of-art performance.
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