
STMixer: A One-Stage Sparse Action Detector

Tao Wu1,* Mengqi Cao1,* Ziteng Gao1 Gangshan Wu1 Limin Wang1,2,�

1State Key Laboratory for Novel Software Technology, Nanjing University 2Shanghai AI Lab
{wt,mg20370004}@smail.nju.edu.cn, gzt@outlook.com, {gswu, lmwang}@nju.edu.cn

Abstract

Traditional video action detectors typically adopt the
two-stage pipeline, where a person detector is first em-
ployed to generate actor boxes and then 3D RoIAlign is
used to extract actor-specific features for classification.
This detection paradigm requires multi-stage training and
inference, and cannot capture context information outside
the bounding box. Recently, a few query-based action de-
tectors are proposed to predict action instances in an end-
to-end manner. However, they still lack adaptability in fea-
ture sampling and decoding, thus suffering from the issues
of inferior performance or slower convergence. In this pa-
per, we propose a new one-stage sparse action detector,
termed STMixer. STMixer is based on two core designs.
First, we present a query-based adaptive feature sampling
module, which endows our STMixer with the flexibility of
mining a set of discriminative features from the entire spa-
tiotemporal domain. Second, we devise a dual-branch fea-
ture mixing module, which allows our STMixer to dynami-
cally attend to and mix video features along the spatial and
the temporal dimension respectively for better feature de-
coding. Coupling these two designs with a video backbone
yields an efficient end-to-end action detector. Without bells
and whistles, our STMixer obtains the state-of-the-art re-
sults on the datasets of AVA, UCF101-24, and JHMDB.

1. Introduction

Video action detection [14,18,20,30,32,44,46] is an im-
portant problem in video understanding, which aims to rec-
ognize all action instances present in a video and also local-
ize them in both space and time. It has drawn a significant
amount of research attention, due to its wide applications in
many areas like security and sports analysis.

Since the proposal of large-scale action detection bench-
marks [16, 22], action detection has made remarkable
progress. This progress is partially due to the advances
of video representation learning such as video convolution

*: Equal contribution. �: Corresponding author.

150 200 250 300 350 400
GFLOPs

28

30

32

34

36

m
AP

SlowFast,SF-R101-NL

WOO,SF-R101-NL

STMixer,SF-R101-NL

CSN,CSN-152

TubeR,CSN-152

STMixer,CSN-152

VideoMAE,ViT-B

STMixer,ViT-B (from VideoMAE)

STMixer,ViT-B (from VideoMAE V2)

Figure 1. Comparion of mAP versus GFLOPs. We report
detection mAP on AVA v2.2. The GFLOPs of CSN, SlowFast,
and VideoMAE are the sum of Faster RCNN-R101-FPN detector
GFLOPs and classifier GFLOPs. Different methods are marked by
different makers and models with the same backbone are marked
in the same color. The results of CSN are from [53]. Our STMixer
achieves the best effectiveness and efficiency balance.

neural networks [5, 11, 39–41, 45, 50] and video transform-
ers [1, 3, 9, 27, 38, 43, 52].

Most current action detectors adopt the two-stage Faster
R-CNN-alike detection paradigm [31]. They share two ba-
sic designs. First, they use an auxiliary human detector to
generate actor bounding boxes in advance. The training of
the human detector is decoupled from the action classifica-
tion network. Second, in order to predict the action category
for each actor box, the RoIAlign [17] operation is applied on
video feature maps to extract actor-specific features. How-
ever, these two-stage action detection pipeline has several
critical issues. First, it requires multi-stage training of per-
son detector and action classifier, which requires large com-
puting resources. Furthermore, the RoIAlign [17] opera-
tion constrains the video feature sampling inside the actor
bounding box and lacks the flexibility of capturing context
information in its surroundings. To enhance RoI features,
recent works use an extra heavy module that introduces in-
teraction features of context or other actors [29, 36].

Recently sparse query-based object detector [4, 35, 54]
has brought a new perspective on detection tasks. Several

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14720

query-based sparse action detectors [6, 53] are proposed.
The key idea is that action instances can be represented as
a set of learnable queries, and detection can be formulated
as a set prediction task, which could be trained by a match-
ing loss. These query-based methods detect action instances
in an end-to-end manner, thus saving computing resources.
However, the current sparse action detectors still lack adapt-
ability in feature sampling or feature decoding, thus suffer-
ing from inferior accuracy or slow convergence issues. For
example, building on the DETR [4] framework, TubeR [53]
adaptively attends action-specific features from single-scale
feature maps but perform feature transformation in a static
mannner. On the contrary, though decoding sampled fea-
tures with dynamic interaction heads, WOO [6] still uses
the 3D RoIAlign [17] operator for feature sampling, which
constrains feature sampling inside the actor bounding box
and fails to take advantage of other useful information in
the entire spatiotemporal feature space.

Following the success of adaptive sparse object detector
AdaMixer [12] in images, we present a new query-based
one-stage sparse action detector, named STMixer. Our goal
is to create a simple action detection framework that can
sample and decode features from the complete spatiotem-
poral video domain in a more flexible manner, while re-
taining the benefits of sparse action detectors, such as end-
to-end training and reduced computational cost. Specifi-
cally, we come up with two core designs. First, to over-
come the aforementioned fixed feature sampling issue, we
present a query-guided adaptive feature sampling module.
This new sampling mechanism endows our STMixer with
the flexibility of mining a set of discriminative features from
the entire spatiotemporal domain and capturing context and
interaction information. Second, we devise a dual-branch
feature mixing module to extract discriminative represen-
tations for action detection. It is composed of an adaptive
spatial mixer and an adaptive temporal mixer in parallel to
focus on appearance and motion information, respectively.
Coupling these two designs with a video backbone yields a
simple, neat, and efficient end-to-end actor detector, which
obtains a new state-of-the-art performance on the datasets
of AVA [16], UCF101-24 [33], and JHMDB [19]. In sum-
mary, our contribution is threefold:

• We present a new one-stage sparse action detection
framework in videos (STMixer). Our STMixer is easy
to train in an end-to-end manner and efficient to deploy
for action detection in a single stage.

• We devise two flexible designs to yield a powerful ac-
tion detector. The adaptive sampling can select the
discriminative feature points and the adaptive feature
mixing can enhance spatiotemporal representations.

• STMixer achieves a new state-of-the-art performance
on three challenging action detection benchmarks.

2. Related Work
Action detectors using an extra human detector. Most
current action detectors [9–11,29,36,38,47] rely on an aux-
iliary human detector to perform actor localization on the
keyframes. Typically, the powerful Faster RCNN-R101-
FPN [31] detector is used as the human detector, which
is first pre-trained on the COCO [26] dataset and then
fine-tuned on the AVA [16] dataset. With actor bounding
boxes predicted in advance, the action detection problem
is reduced to a pure action classification problem. The
RoIAlign [17] operation is applied on the 3D feature maps
extracted by a video backbone to generate actor-specific
features. SlowFast [11] and MViT [9] directly use the RoI
features for action classification. However, RoI features
only contain the information inside the bounding box but
overlook context and interaction information outside the
box. To remedy this inherent flaw of RoI features, AIA [36]
and ACARN [29] resort to using an extra heavy module
that models the interaction between the actor and context or
other actors. The models with an extra human detector re-
quire two-stage training and reference, which is computing
resources unfriendly. Besides, they suffer from the afore-
mentioned issue of fixed RoI feature sampling.
End-to-end action detectors. Methods of another research
line use a single model to perform action detection. Most
of them [6,13,21,34] still follow the two-stage pipeline but
simplify the training process by jointly training the actor
proposal network and action classification network in an
end-to-end manner. These methods still have the issue of
fixed RoI feature sampling. To remedy this, VTr [13] at-
tends RoI features to full feature maps while ACRN [34]
introduces an actor-centric relation network for interac-
tion modeling. Recently, several one-stage action detec-
tors [24,53] are proposed. MOC [24] is a point-based dense
action detector, which uses an image backbone for frame
feature extraction. It concatenates frame features along the
temporal axis to form the video feature maps. Each point
on the feature maps is regarded as an action instance pro-
posal. The bounding box and action scores of each point are
predicted by convolution. MOC [24] relies more on appear-
ance features, lacks temporal and interaction modeling and
requires post-process. Building on DETR [4] framework,
TubeR [53] is a query-based action detector. TubeR [53]
adaptively samples features from single-scale feature maps,
neglecting multi-scale information which is important for
detection tasks. As DETR [4], TubeR [53] transforms fea-
tures in a static manner, resulting in slower convergence.

Inspired by AdaMixer [12], we propose a new one-stage
query-based detector for video action detection. Different
from former query-based action detectors [6, 53], we adap-
tively sample discriminative features from a multi-scale
spatiotemporal feature space and decode them with a more
flexible scheme under the guidance of queries.

14721

Linear Layer

Channel & Point Mixing
4D Feature Space

Construction

SP

FFN

Concatenation

Element-wise Addition

𝑴×

𝑸𝒔" 𝑸𝒕"

Video Clip t

Positional Queries 𝑸𝒑

𝑸𝒑"

Offset Generator

Temporal Propagating

Interpolation
Parameter Generator

Channel & Point Mixing

Parameter Generator

SP

TP

TP Temporal Pooling

Spatial Pooling

Spatial Queries 𝑸% Temporal Queries 𝑸𝒕

C

Action Scores

Self AttentionSelf Attention

FFN

Human ScoresHuman boxes

Linear Layer

C

Height, WidthCenter Points

Offline STMixer
for Query Generation

Cross Attention

C

Action Scores

FFN

… …

… …
C

𝑸𝒕"

Clip t Clip t+1Clip t-1

Long-term
Query Bank𝑸𝒔"

Video
Backbone

Short/Long-term Classifier

C

𝑸𝒕"

𝑸𝒔"

FFN

Action Scores

Long-term Classifier

Short-term Classifier

4D Feature Space

Sampling Points

Sampled
Features

ASAM Module

Figure 2. Pipeline of STMixer. In the left, we present the overall STMixer framework. A video clip is input to the video backbone for
feature extraction and a 4D feature space is constructed based on the feature maps (see Section 3.1). Then, a decoder containing M ASAM
modules iteratively performs adaptive feature sampling (see Section 3.3) from the 4D feature space and adaptive mixing (see Section 3.4)
on the sampled features under the guidance of a set of learnable queries. Inversely, the queries are updated with mixed features. Optionally,
a short-term or long-term classifier can be used for action scores prediction, whose detailed structures are illustrated in the right. The
long-term classifier refers to the long-term query bank produced by an offline STMixer for long-term information (see Section 3.5).

3. Method

This section presents our one-stage sparse action detec-
tor, called STMixer. The overall pipeline of STMixer is
shown in Figure 2. Our STMixer comprises a video back-
bone for feature extraction, a feature space construction
module, and a sparse action decoder composed of M adap-
tive sampling and adaptive mixing (ASAM) modules fol-
lowed by prediction heads. As a common practice, we set
the middle frame of an input clip as the keyframe. We first
use the video backbone to extract feature maps for the video
and a 4D feature space is constructed based on the feature
maps. Then, we develop the sparse action decoder with a set
of learnable queries. Under the guidance of these queries,
we perform adaptive feature sampling and feature mixing
in the 4D feature space. The queries are updated iteratively.
Finally, we decode each query as a detected action instance
of action scores, human scores, and a human box. We will
describe the technical details of each step in the next sub-
sections.

3.1. 4D Feature Space Construction

Hierarchical video backbone. Formally, let Xz ∈
RCz×T×Hz×Wz denote the feature map of convolution
stage z of the hierarchical backbone, where z ∈ {2, 3, 4, 5},
Cz stands for the channel number, T for time, Hz and Wz

for the spatial height and width. The stage index z can be
seen as the scale index of the feature map as Xz has the
downsampling rate of 2z . We first transform each feature
map Xz to the same channel D by 1 × 1 × 1 convolution.
Then, we rescale the spatial shape of each stage feature map

Figure 3. 4D feature space construction for hierarchical video
backbone. We construct 4D feature space on multi-scale 3D fea-
ture maps from hierarchical video backbone by simple lateral con-
volution and nearest-neighbor interpolation. The four dimensions
of the 4D feature space are x-, y-, t-axis, and scale index z.

to H2 × W2 by simple nearest-neighbor interpolation and
align them along the x- and y-axis. The four dimensions
of the constructed feature space are x-, y-, t-axis, and scale
index z, respectively. This process is illustrated in Figure 3.
Plain ViT backbone. To make STMixer framework com-
patible with plain ViT [7] backbone, inspired by ViT-
Det [23], we construct 4D feature space based on the last
feature map from ViT backbone. Specifically, with the out-
put feature map of the default downsampling rate of 24, we
first produce hierarchical feature maps {Xz} of the same
channel number D using convolutions of spatial strides{

1
4 ,

1
2 , 1, 2

}
, where a fractional stride indicates a deconvo-

lution. Then we also rescale each feature map to the spatial
size of H2 ×W2.

3.2. Query Definition

The definition of our queries derives from the object
query in Sparse R-CNN [35], but we specify the action
query in a disentangled fashion. Specifically, we factorize

14722

action queries into spatial queries Qs ∈ RN×D and tempo-
ral queries Qt ∈ RN×D to refer to the spatial content and
temporal content respectively. N represents the number of
queries, while D denotes the dimension of each query.

We further define positional queries Qp ∈ RN×4. Each
positional query Qn

p (n stands for the query index) is formu-
lated as a proposal box vector (xn, yn, zn, rn). Formally,
xn and yn stand for the x- and y-axis coordinates of the box
center, and zn and rn denote the logarithm of its scale (i.e.
the area of the bounding box) and aspect ratio. The posi-
tional queries Qp are initialized in such a way that every
box vector is the whole keyframe.

3.3. Adaptive Spatiotemporal Feature Sampling

Different from previous work [6,11,29,36] that samples
RoI features by pre-computed proposal boxes, we sample
actor-specific features adaptively from the aforementioned
4D feature space under the guidance of spatial queries.
Specifically, given a spatial query Qn

s and the corresponding
positional query Qn

p , we regard the center point (xn, yn, zn)
of the proposal box as the reference point, and regress Pin

groups of offsets along x-, y-axis and scale index z on query
Qn

s , using a linear layer:

{(△xn
i ,△yni ,△zni)} = Linear(Qn

s),

where i ∈ Z and 1 ⩽ i ⩽ Pin,
(1)

where Pin is the number of sampled points for each query.
Then, the offsets are added to the reference point, thus Pin

spatial feature points are obtained:
x̃n
i = xn +△xn

i · 2zn−rn ,

ỹni = yn +△yni · 2zn+rn ,

z̃ni = zn +△zni .

(2)

where 2z
n−rn and 2z

n+rn are the width and height of the
box respectively. We offset the spatial position of sampling
points with respect to the width and height of the box to
reduce the learning difficulty.

Finally, we propagate sampling points along the tempo-
ral axis, thus obtaining T×Pin points to sample from the 4D
feature space. In our implementation, we simply copy these
spatial sampling points along the temporal dimension be-
cause current action detection datasets yield temporal slow-
ness property that the variation of actor locations along the
temporal dimension is very slow. We compare different
ways of temporal propagating in our ablation study.

Given T × Pin sampling points, we sample instance-
specific features by interpolation from the 4D feature space.
In the following sections, the sampled spatiotemporal fea-
ture for spatial query Qn

s is denoted by Fn ∈ RT×Pin×D.

3.4. Adaptive Dual-branch Feature Mixing

After feature sampling, we factorize the sampled fea-
tures into spatial features and temporal features by pooling

and then enhance each by adaptive mixing respectively. As
the dual-branch mixing module is completely symmetrical,
we only describe spatial mixing in detail and temporal mix-
ing is performed in a homogeneous way.

Different from MLP-Mixer [37], our mixing param-
eters are generated adaptively. Given a spatial query
Qn

s ∈ RD and its corresponding sampled features Fn ∈
RT×Pin×D, we first use a linear layer to generate query-
specific channel-mixing weights Mc ∈ RD×D, and then
apply plain matrix multiplication on temporally pooled fea-
ture and Mc to perform channel-mixing, given by:

Mc = Linear(Qn
s) ∈ RD×D, (3)

CM(Fn) = ReLU(LayerNorm(GAP(Fn)×Mc)). (4)

where GAP stands for the global average pooling operation
in the temporal dimension while LayerNorm for the layer
normalization [2]. We use CM(Fn) ∈ RPin×D to denote
the channel-wise mixing output features.

After channel-mixing, we perform point-wise mixing in
a similar way. Suppose Pout is the number of spatial point-
wise mixing out patterns, we use PCM(Fn) ∈ RD×Pout to
denote the point-wise mixing output features, given by:

Mp = Linear(Qn
s) ∈ RPin×Pout , (5)

PCM(Fn) = ReLU(LayerNorm(CM(Fn)
T ×Mp)). (6)

The final output PCM(Fn) is flattened, transformed to
D dimension, and added to the spatial query Qn

s . The tem-
poral query Qn

t is updated in a homogeneous way, except
that the pooling is applied in the spatial dimension. After
global spatial pooling, there are T feature points of differ-
ent temporal locations for temporal mixing and we set the
number of temporal point-wise mixing out patterns to Tout.

3.5. Sparse Action Decoder

STMixer adopts a unified action decoder for both actor
localization and action classification. The decoder com-
prises M stacked ASAM modules followed by a feed-
forward network (FFN) for human scores prediction and a
short-term or long-term classifier for action score predic-
tion. In this section, we represent the structure of ASAM
module and specify the outputs of the prediction heads.
ASAM module. The overall structure of ASAM module is
shown in Figure 2. We first perform self-attention [42] on
spatial queries Qs and temporal queries Qt to capture the
relation information between different instances. Then we
perform adaptive sampling from the 4D feature space and
dual-branch adaptive mixing on the sampled feature as de-
scribed before. The spatial queries Qs and temporal queries

14723

Qt are updated with mixed features. An FFN is applied on
updated spatial queries Q′

s to update the positional queries
Qp. The updated queries Q′

p, Q′
s and Q′

t are used as inputs
for the next ASAM module.
Outputs of the prediction heads. The output human boxes
are decoded from positional queries Q′

p. We apply an FFN
on Q′

s to predict human scores SH ∈ RN×2 which indicates
the confidence values that each box belongs to the human
category and background. Based on the concatenation of
spatial queries Q′

s and temporal queries Q′
t, we use a short-

term or long-term classifier to predict action scores SA ∈
RN×C , where C is the number of action classes.
Short-term and long-term classifier. Short-term clas-
sifier (see Figure 2 right top) is a simple FFN which pre-
dicts action scores based on short-term information of cur-
rent queries while long-term classifier (see Figure 2 right
bottom) refers to long-term query bank for long-term infor-
mation. Our design of the long-term classifier is adapted
from LFB [47]. We train an STMixer model without long-
term information first. Then, for a video of T clips, we
use the trained STMixer to perform inference on each clip
of it. We store the concatenation of the spatial and tem-
poral queries from the last ASAM module corresponding
to the k highest human scores in the query bank for each
clip. We denote the stored queries for clip of time-step t as
Lt ∈ Rk×d where d = 2D, and the long-term query bank
of the video as L = [L0, L1, ..., LT −1]. Given the long-
term query bank of all videos, we train an STMixer model
with a long-term classifier from scratch. For video clip t, we
first sample a window of length w from the long-term query
bank centered at it and stack this window into L̃t ∈ RK×d:

L̃t = stack([Lt−w/2, ..., Lt+w/2−1]). (7)

We then infer current queries to L̃t for long-term informa-
tion by cross-attention [42]:

S′
t = cross-attention(St, L̃t), (8)

where St ∈ RN×d is the concatenation of the output spa-
tial queries and temporal queries of the last ASAM module.
The output S′

t is then channel-wise concatenated with St for
action scores prediction.

3.6. Training

We compute training loss based on the output human
boxes, human scores, and action scores. Consistent with
WOO [6], the loss function L consists of set prediction loss
Lset [4,35,54] and action classification loss Lact. Formally,

Lset = λclsLcls + λL1
LL1

+ λgiouLgiou, (9)

L = Lset + λactLact. (10)

Lcls denotes the cross-entropy loss over two classes (hu-
man and background). LL1 and Lgiou are box loss inher-
ited from [4, 35, 54]. As in [4, 6], we first use Hungar-
ian algorithm to find an optimal bipartite matching between
predicted actors and ground truth actors according to Lset.
Then we calculate full training loss L based on the matching
results. Lact is binary cross entropy loss for action classi-
fication. We only compute Lact for the prediction matched
with a ground truth. λcls, λL1

, λgiou, and λact are corre-
sponding weights of each term.

4. Experiments

4.1. Experimental Setup

Datasets. The AVA dataset [16] contains 211k video clips
for training and 57k for validation segmented from 430 15-
minute videos. The videos are annotated at 1FPS over 80
atomic action classes. Following the standard evaluation
protocol [16], we report our results on 60 action classes that
have at least 25 validation examples. JHMDB [19] consists
of 928 temporally trimmed videos from 21 action classes.
Results averaged over three splits are reported. UCF101-24
is a subset of UCF101 [33]. It contains 3,207 videos anno-
tated with action instances of 24 classes. As the common
setting, we report the performance on the first split.
Network configurations. We configure the dimension D
of both spatial and temporal queries to 256 and set the num-
ber of both queries N equaling 100. The number of sam-
pling point Pin in each temporal frame is set to 32. The
spatial and temporal mixing out patterns Pout and Tout are
set to 4 times the number of sampling points and temporal
frames respectively, that is, 128 and 32 for SlowFast [11]
backbone and 128 and 16 for CSN [40] and ViT [7] back-
bone. Following multi-head attention [42] and group con-
volution [49], we split the channel D into 4 groups and per-
form group-wise sampling and mixing. We stack 6 ASAM
modules in our action decoder as default. For the long-term
classifier, we set the number of stored queries of each clip
k as 5 and window length w as 60. The number of cross-
attention layers is set to 3.
Losses and optimizers. We set the loss weight in STMixer
as λcls = 2.0, λL1

= 2.0, λgiou = 2.0 and λact = 24.0. We
use AdamW [28] optimizer with weight decay 1× 10−4 for
all experiments. Following [4, 6], intermediate supervision
is applied after each ASAM module.
Training and inference recipes. We train STMixer detec-
tors for 10 epochs with an initial learning rate of 2.0×10−5

and batchsize of 16. The learning rate and batchsize can be
tuned according to the linear scaling rule [15]. We randomly
scale the short size of the training video clips to 256 or 320
pixels. Color jittering and random horizontal flipping are
also adopted for data augmentation.

For inference, we scale the short size of input frames

14724

to 256 as the common setting. Given an input video clip,
STMixer predicts N bounding boxes associated with their
human scores and action scores from the last ASAM mod-
ule. If the confidence score that a box belongs to the human
category is higher than the preset threshold, we take it as a
detection result. We set the threshold to 0.6 for AVA. The
performances are evaluated with official metric frame-level
mean average precision(mAP) at 0.5 IoU threshold.

4.2. Ablation Study

We conduct ablation experiments on AVA v2.2 dataset
to investigate the influence of different components in our
STMixer framework. A SlowOnly ResNet-50 backbone [8]
is used for our ablation experiments. We report both mAP
and GFLOPs for effectiveness and efficiency comparison.
Ablations on 4D feature space. We first show the bene-
fit of sampling features from the unified 4D feature space.
For comparison, we design a two-stage counterpart of our
STMixer. In the first stage, we sample features from key-
frame features for actor localization. In the second stage, we
sample features from res5 features for action classification.
As shown in Tabel 1a, sampling features from a unified 4D
feature space and performing action detection in a one-stage
manner significantly reduce computing costs, and detection
mAP also gets improved as multi-scale information is also
utilized for classification. We then investigate two different
ways for the 4D feature space construction. As shown in
Table 1b, constructing 4D feature space by simple lateral
1 × 1 × 1 convolution achieves comparable detection ac-
curacy while being more efficient than using full FPN [25]
with a top-down pathway.
Ablations on feature sampling. In Tabel 1c, we compare 3
different feature sampling strategies. For fixed grid feature
sampling, we sample 7× 7 feature points inside each actor
box by interpolation, which is actually the RoIAlign [17]
operation adopted by many former methods [6,13]. Though
sampling fewer points per group, our adaptive sampling
strategy improves the detection mAP by 1.2. The results
show that the fixed RoIAlign operation for feature sam-
pling fails to capture useful context information outside the
box while our adaptive sampling strategy enables the de-
tector to mine discriminative features from the whole 4D
feature space. Beyond simply copying sampling points, we
try sampling different feature points in different frames by
predicting the offset of the reference bounding box for each
frame. The improvement is marginal due to the slowness
issue of current action detection datasets that the variation
of actors’ location and action is very slow. In Table 1d,
we further investigate the influence of the number of sam-
pling points per group Pin in each temporal frame. Setting
Pin = 32 achieves the best detection performance.
Ablations on feature mixing. In Table 1f, we compare
different feature mixing strategies. We first demonstrate

the benefit of query-guided adaptive mixing. The detection
mAP drops by 0.6 when using fixed parameter mixing. For
adaptive mixing, the mixing parameters are dynamically
generated based on a specific query, thus more powerful
to enhance the presentation of each specific action instance
proposal. We further compare different adaptive feature
mixing strategies. From the results in Table 1f, it is demon-
strated that both spatial appearance and temporal motion in-
formation are important for action detection. However, cou-
pled spatiotemporal feature mixing using queries of a sin-
gle type has a high computational complexity. Decoupling
features along spatial and temporal dimensions saves com-
puting costs. Our dual-branch spatiotemporal feature mix-
ing outperforms sequential spatiotemporal feature mixing
by 0.5 mAP. This is because actor localization at keyframes
only needs spatial appearance information and parallel dual-
branch mixing will reduce the effect of temporal infor-
mation on localization. Also, by concatenating temporal
queries to spatial queries, more temporal information is
leveraged for action classification. In Table 1g, we investi-
gate different spatial and temporal mixing out patterns Pout

and Tout from 64 and 8 to 192 and 24, that is, 2 times to 6
times the number of sampling points and temporal frames.
Setting Pout and Tout equaling 128 and 16 achieves the best
performance.
Ablations on network configuration. As shown in Ta-
ble 1e, the detection mAP is saturated when the number of
queries is increased to 100. From the results in Table 1h,
a stack of 6 ASAM modules achieves a good effectiveness
and efficiency balance.

4.3. Comparison with State-of-the-arts on AVA

We compare our proposed STMixer with state-of-the-
art methods on AVA v2.1 and v2.2 in Table 2. We first
compare our STMixer to methods using an extra offline
human detector. Our STMixer with SlowFast-R101 back-
bone achieves 30.6 and 30.9 mAP when not using long-
term features. With long-term query support, our STMixer
reaches 32.6 and 32.9 mAP on AVA v2.1 and v2.2 respec-
tively. To demonstrate the generalization ability of our
method, we conduct experiments with ViT [7] backbone.
Compared with the two-stage counterparts, STMixer brings
performance improvements while getting rid of the depen-
dence on an extra detector. Although ViT is considered to
have a global receptive field, our adaptive sampling and de-
coding mechanism could serve as a supplement to improve
the flexibility of the model. Compared to previous end-to-
end methods, our STMixer achieves the best results. Our
STMixer outperforms WOO [6] by 2.0 and 1.7 mAP even
though WOO test models at 320 resolution. STMixer also
consistently outperforms TubeR [53] on AVA v2.1 or v2.2,
using or not using long-term features.

We compare mAP versus GFLOPs on AVA v2.2 in Fig-

14725

Classification Localization mAP GFLOPs
4D Feature Space 23.1 44.4

Key-Frame Features Res5 Features 22.8 53.7

(a) Feature space. Sampling features from 4D fea-
ture space is more effective and efficient than sam-
pling from key-frame features for classification and
res5 features for localization.

mAP GFLOPs
Simple Lateral Conv. 23.1 44.4
Full FPN 22.9 45.8

(b) 4D feature space construction.
Simple lateral convolution achieves
comparable performance while being
more efficient than using full FPN.

Sampling Strategy Pin mAP GFLOPs
Fixed Grid Sampling 49 21.9 45.6
Adaptive Sampling + Temporal Copying 32 23.1 44.4
Adaptive Sampling + Temporal Moving 32 23.3 44.6

(c) Sampling strategy. Sampling fewer feature points,
our adaptive sampling strategy achieves better performance
than fixed grid sampling. Temporal moving brings slight
improvement in mAP.

Pin 8 16 32 48 64
mAP 22.4 22.5 23.1 23.0 22.5

GFLOPs 42.4 43.1 44.4 45.6 46.9

(d) Number of sampling points. Sampling 32
points per frame achieves the best performance.

N 15 50 100 150
mAP 22.1 22.9 23.1 22.5

GFLOPs 31.7 36.9 44.4 51.8

(e) Number of queries. Using 100
queries works the best.

Mixing Strategy mAP GFLOPs
fixed parameter dual-branch mixing 22.5 36.8
dual-branch spatiotemporal mixing 23.1 44.4
spatial mixing only 22.4 40.4
temporal mixing only 22.1 33.5
sequential spatiotemporal mixing 22.6 43.6
coupled spatiotemperal mixing 22.8 93.2

(f) Mixing strategy. Query-guided adaptive feature mixing
outperforms fixed parameter mixing and our dual-branch
spatiotemporal feature mixing strategy works the best.

Pout/Tout 64/8 96/12 128/16 160/20 192/24
mAP 22.5 22.8 23.1 22.9 22.6

GFLOPs 40.2 42.3 44.4 46.4 48.4

(g) Number of mixing out patterns. A moderate
number of mixing out patterns works the best.

M 1 3 6 9
mAP 18.4 22.5 23.1 22.6

GFLOPs 32.0 36.9 44.4 51.8

(h) Number of ASAM modules. Us-
ing 6 ASAM modules works the best.

Table 1. Ablations Experiments. We use a SlowOnly ResNet-50 backbone to perform our ablation studies. Models are trained on the
training set of AVA v2.2 and evaluated on the validation set. Default choices for our model are colored in gray .

mAPMethod Detector One-stage Input Backbone Pre-train LF v2.1 v2.2
Compare to methods with an extra human detector
SlowFast [11] ✓ ✗ 32×2 SF-R101-NL K600 ✗ 28.2 29.0
LFB [47] ✓ ✗ 32×2 I3D-R101-NL K400 ✓ 27.7 -
CA-RCNN [48] ✓ ✗ 32×2 R50-NL K400 ✓ 28.0 -
AIA [36] ✓ ✗ 32×2 SF-R101 K700 ✓ 31.2 32.3
ACARN [29] ✓ ✗ 32×2 SF-R101 K400 ✓ 30.0 -
ACARN [29] ✓ ✗ 32×2 SF-R101-NL K600 ✓ - 31.4
VideoMAE [38] ✓ ✗ 16×4 ViT-B K400 ✗ - 31.8
VideoMAE [38] ✓ ✗ 16×4 ViT-L K700 ✗ - 39.3
STMixer ✗ ✓ 32×2 SF-R101 K700 ✗ 30.6 30.9
STMixer ✗ ✓ 32×2 SF-R101 K700 ✓ 32.6 32.9
STMixer ✗ ✓ 16×4 ViT-B (from [38]) K400 ✗ - 32.6
STMixer ✗ ✓ 16×4 ViT-B (from [43]) K710+K400 ✗ - 36.1
STMixer ✗ ✓ 16×4 ViT-L (from [38]) K700 ✗ - 39.5
Compare to end-to-end methods
AVA [16] ✗ ✗ 20×1 I3D-VGG K400 ✗ 14.6 -
ACRN [34] ✗ ✗ 20×1 S3D-G K400 ✗ 17.4 -
STEP [51] ✗ ✗ 12×1 I3D-VGG K400 ✗ 18.6 -
VTr [13] ✗ ✗ 64×1 I3D-VGG K400 ✗ 24.9 -
WOO [6] ✗ ✗ 32×2 SF-R50 K400 ✗ 25.2 25.4
WOO [6] ✗ ✗ 32×2 SF-R101-NL K600 ✗ 28.0 28.3
TubeR [53] ✗ ✓ 32×2 CSN-152 IG-65M ✗ 29.7 31.1
TubeR [53] ✗ ✓ 32×2 CSN-152 IG-65M ✓ 31.7 33.4
STMixer ✗ ✓ 32×2 SF-R50 K400 ✗ 27.2 27.8
STMixer ✗ ✓ 32×2 SF-R101-NL K600 ✗ 29.8 30.1
STMixer ✗ ✓ 32×2 CSN-152 IG-65M ✗ 31.7 32.8
STMixer ✗ ✓ 32×2 CSN-152 IG-65M ✓ 34.4 34.8

Table 2. Comparisons with state-of-the-arts on validation sets of AVA v2.1 and v2.2. ✓of column “Detector” denotes an extra human
detector Faster RCNN-R101-FPN [31] is used. ✓of column “LF” denotes long-term features are used.

ure 1 to show the efficiency of our STMixer. AIA [36]
and ACARN [29] do not report their GFLOPs. As they
are built on SlowFast [11] framework and also use an of-
fline human detector but introduce extra modules to model
interaction, SlowFast can serve as a lower bound of com-
plexity for them. For a fair comparison, we report results
for no long-term feature version of each method. As shown
in Figure 1, due to an extra human detector being needed,
SlowFast [11], CSN [40], and VideoMAE [38] have much
higher GFLOPs than end-to-end methods with same back-

bone. Among end-to-end methods, STMixer achieves the
best effectiveness and efficiency balance. STMixer out-
performs WOO [6] by 1.8 mAP while having much lower
GFLOPs (135 versus 252). With a slight GFLOPs increase
(126 versus 120), STMixer outperforms TubeR [53] by 1.7
mAP.

4.4. Results on JHMDB and UCF101-24

To verify the effectiveness of our STMixer, we fur-
ther evaluate it on the JHMDB [19] and UCF101-24 [33]

14726

Figure 4. Sampling points and detection results visualization. We display the actor bounding boxes and action classes of three ground-
truth action instances in the first column. Each ASAM module’s sampling points, predicted actor bounding boxes and action scores are
displayed in the following columns. The correctly predicted action classes are displayed in green, missing in orange, and wrongly predicted
in red. Intuitively, STMixer mines discriminative context features outside the bounding box for better action detection.

Method Detector Input Backbone JHMDB UCF101-24
MOC* [24] ✓ 7×1 DLA34 70.8 78.0
AVA* [16] ✗ 20×1 I3D-VGG 73.3 76.3
ACRN [34] ✗ 20×1 S3D-G 77.9 -
CA-RCNN [48] ✓ 32×2 R50-NL 79.2 -
YOWO [21] ✗ 16×1 3DResNext-101 80.4 75.7
WOO [6] ✗ 32×2 SF-R101-NL 80.5 -
AIA [36] ✓ 32×1 SF-R50-NL - 78.8
ACARN [29] ✓ 32×1 SF-R50 - 84.3
TubeR* [53] ✗ 32×2 I3D - 81.3
STMixer ✗ 32×2 SF-R101-NL 86.7 83.7

Table 3. Comparison on JHMDB and UCF101-24. Methods
marked with * use extra optical flow features.

datasets. We report the frame-level mean average precision
(frame-mAP) with an intersection-over-union (IoU) thresh-
old of 0.5 in Table 3. Experimental results demonstrate that
STMixer outperforms the current state-of-the-art methods
with remarkable performance gain on JHMDB and achieves
competitive results on UCF101-24.

4.5. Visualization

We provide the visualization of sampling points and de-
tection results of each ASAM module in order in Figure 4.
In the first few ASAM modules, the sampling points are
quickly concentrated on the action performer and the actor
localization accuracy gets improved rapidly. In the follow-
ing ASAM modules, some of the sampling points get out of
the human box and spread to the context. Benefiting from
the gathered context and interaction information, the action
recognition accuracy gets improved while localization ac-
curacy is not compromised. In Figure 4, we show clear
improvements in three aspects: predicting missing classes
(ride in row 1), improving the confidence score of correctly
predicted classes (talk to in row 2), and removing wrongly
predicted classes (watch in row 3). To recognize an action
“ride”, we need to observe the person is in a car and some-
one is driving. For recognition of “talk to”, we need to know

if a person is listening in the context, and for “watch”, we
need to know if a person is in the actor’s sight. The im-
provements are mostly related to these classes of interac-
tion, which indicates our STMixer is capable of mining dis-
criminative interaction information from the context.

5. Conclusion and Future Work

In this paper, we have presented a new one-stage sparse
action detector in videos, termed STMixer. Our STMixer
yields a simple, neat, and efficient end-to-end action detec-
tion framework. The core design of our STMixer is a set of
learnable queries to decode all action instances in parallel.
The decoding process is composed of an adaptive feature
sampling module to identify important features from the
entire spatiotemporal domain of video, and an adaptive fea-
ture mixing module to dynamically extract discriminative
representations for action detection. Our STMixer achieves
a new state-of-the-art performance on three challenging
benchmarks of AVA, JHMDB, and UCF101-24 with less
computational cost than previous end-to-end methods. We
hope STMixer can serve as a strong baseline for future re-
search on video action detectors.

One limitation of our STMixer is that the long-term
query bank is implemented in an offline way where another
STMixer without long-term query support is pre-trained for
long-term query generation. We leave the design of an on-
line query bank to future research and hope our STMixer is
extended to extract long-form video information in an end-
to-end manner.

Acknowledgements. This work is supported by National Key
R&D Program of China (No. 2022ZD0160900), National Natural
Science Foundation of China (No. 62076119, No. 61921006, No.
62072232), Fundamental Research Funds for the Central Univer-
sities (No. 020214380091), and Collaborative Innovation Center
of Novel Software Technology and Industrialization.

14727

References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen

Sun, Mario Luči’c, and Cordelia Schmid. Vivit: A video
vision transformer. In ICCV, pages 6836–6846, 2021. 1

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4

[3] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In ICML, volume 139 of Proceedings of Machine Learning
Research, pages 813–824. PMLR, 2021. 1

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229. Springer, 2020. 1, 2, 5

[5] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
pages 6299–6308, 2017. 1

[6] Shoufa Chen, Peize Sun, Enze Xie, Chongjian Ge, Jiannan
Wu, Lan Ma, Jiajun Shen, and Ping Luo. Watch only once:
An end-to-end video action detection framework. In ICCV,
pages 8178–8187, 2021. 2, 4, 5, 6, 7, 8

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR. OpenReview.net, 2021. 3, 5, 6

[8] Haoqi Fan, Yanghao Li, Bo Xiong, Wan-Yen Lo, and
Christoph Feichtenhofer. Pyslowfast. https://gith
ub.com/facebookresearch/slowfast, 2020. 6

[9] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer.
Multiscale vision transformers. In ICCV, pages 6824–6835,
2021. 1, 2

[10] Gueter Josmy Faure, Min-Hung Chen, and Shang-Hong Lai.
Holistic interaction transformer network for action detection.
In WACV, pages 3329–3339. IEEE, 2023. 2

[11] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
ICCV, pages 6202–6211, 2019. 1, 2, 4, 5, 7

[12] Ziteng Gao, Limin Wang, Bing Han, and Sheng Guo.
Adamixer: A fast-converging query-based object detector.
In CVPR, pages 5354–5363. IEEE, 2022. 2

[13] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zis-
serman. Video action transformer network. In CVPR, pages
244–253, 2019. 2, 6, 7

[14] Georgia Gkioxari and Jitendra Malik. Finding action tubes.
In CVPR, pages 759–768, 2015. 1

[15] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training imagenet in 1 hour. CoRR, abs/1706.02677,
2017. 5

[16] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Car-
oline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan,

George Toderici, Susanna Ricco, Rahul Sukthankar, et al.
Ava: A video dataset of spatio-temporally localized atomic
visual actions. In CVPR, pages 6047–6056, 2018. 1, 2, 5, 7,
8

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 1, 2,
6

[18] Roei Herzig, Elad Levi, Huijuan Xu, Hang Gao, Eli
Brosh, Xiaolong Wang, Amir Globerson, and Trevor Darrell.
Spatio-temporal action graph networks. In ICCVW, pages 0–
0, 2019. 1

[19] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia
Schmid, and Michael J. Black. Towards understanding ac-
tion recognition. In ICCV, pages 3192–3199. IEEE Com-
puter Society, 2013. 2, 5, 7

[20] Jianwen Jiang, Yu Cao, Lin Song, Shiwei Zhang, Yunkai Li,
Z Xu, Q Wu, C Gan, C Zhang, and G Yu. Human centric
spatio-temporal action localization. In CVPRW, 2018. 1

[21] Okan Köpüklü, Xiangyu Wei, and Gerhard Rigoll. You
only watch once: A unified cnn architecture for real-
time spatiotemporal action localization. arXiv preprint
arXiv:1911.06644, 2019. 2, 8

[22] Yixuan Li, Lei Chen, Runyu He, Zhenzhi Wang, Gang-
shan Wu, and Limin Wang. Multisports: A multi-person
video dataset of spatio-temporally localized sports actions.
In ICCV, pages 13516–13525. IEEE, 2021. 1

[23] Yanghao Li, Hanzi Mao, Ross B. Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. CoRR, abs/2203.16527, 2022. 3

[24] Yixuan Li, Zixu Wang, Limin Wang, and Gangshan Wu. Ac-
tions as moving points. In ECCV, pages 68–84. Springer,
2020. 2, 8

[25] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, pages 2117–2125,
2017. 6

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755. Springer, 2014. 2

[27] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In CVPR,
pages 3192–3201. IEEE, 2022. 1

[28] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[29] Junting Pan, Siyu Chen, Mike Zheng Shou, Yu Liu, Jing
Shao, and Hongsheng Li. Actor-context-actor relation net-
work for spatio-temporal action localization. In CVPR, pages
464–474, 2021. 1, 2, 4, 7, 8

[30] Xiaojiang Peng and Cordelia Schmid. Multi-region two-
stream r-cnn for action detection. In ECCV, pages 744–759.
Springer, 2016. 1

[31] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. In NIPS, pages 91–99, 2015. 1, 2,
7

14728

[32] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip HS
Torr, and Fabio Cuzzolin. Online real-time multiple spa-
tiotemporal action localisation and prediction. In ICCV,
pages 3637–3646, 2017. 1

[33] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from
videos in the wild. CoRR, abs/1212.0402, 2012. 2, 5, 7

[34] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Mur-
phy, Rahul Sukthankar, and Cordelia Schmid. Actor-centric
relation network. In ECCV, pages 318–334, 2018. 2, 7, 8

[35] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, et al. Sparse r-cnn: End-to-end object detec-
tion with learnable proposals. In CVPR, pages 14454–14463,
2021. 1, 3, 5

[36] Jiajun Tang, Jin Xia, Xinzhi Mu, Bo Pang, and Cewu Lu.
Asynchronous interaction aggregation for action detection.
In ECCV, pages 71–87. Springer, 2020. 1, 2, 4, 7, 8

[37] Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario
Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp ar-
chitecture for vision. In NeurIPS, pages 24261–24272, 2021.
4

[38] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang.
VideoMAE: Masked autoencoders are data-efficient learners
for self-supervised video pre-training. In NeurIPS, 2022. 1,
2, 7

[39] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torre-
sani, and Manohar Paluri. Learning spatiotemporal features
with 3d convolutional networks. In ICCV, pages 4489–4497,
2015. 1

[40] Du Tran, Heng Wang, Matt Feiszli, and Lorenzo Torre-
sani. Video classification with channel-separated convolu-
tional networks. In ICCV, pages 5551–5560. IEEE, 2019. 1,
5, 7

[41] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotem-
poral convolutions for action recognition. In CVPR, pages
6450–6459. Computer Vision Foundation / IEEE Computer
Society, 2018. 1

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, pages 5998–
6008, 2017. 4, 5

[43] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yi-
han He, Yi Wang, Yali Wang, and Yu Qiao. VideoMAE V2:
Scaling video masked autoencoders with dual masking. In
CVPR, 2023. 1, 7

[44] Limin Wang, Yu Qiao, Xiaoou Tang, and Luc Van Gool.
Actionness estimation using hybrid fully convolutional net-
works. In CVPR, pages 2708–2717, 2016. 1

[45] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In CVPR, pages 7794–
7803, 2018. 1

[46] Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia
Schmid. Learning to track for spatio-temporal action local-
ization. In ICCV, pages 3164–3172, 2015. 1

[47] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-
ing He, Philipp Krahenbuhl, and Ross Girshick. Long-term
feature banks for detailed video understanding. In CVPR,
pages 284–293, 2019. 2, 5, 7

[48] Jianchao Wu, Zhanghui Kuang, Limin Wang, Wayne Zhang,
and Gangshan Wu. Context-aware rcnn: A baseline for ac-
tion detection in videos. In ECCV, pages 440–456. Springer,
2020. 7, 8

[49] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated residual transformations for
deep neural networks. In CVPR, pages 5987–5995. IEEE
Computer Society, 2017. 5

[50] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In ECCV,
pages 305–321, 2018. 1

[51] Xitong Yang, Xiaodong Yang, Ming-Yu Liu, Fanyi Xiao,
Larry S Davis, and Jan Kautz. Step: Spatio-temporal pro-
gressive learning for video action detection. In CVPR, pages
264–272, 2019. 7

[52] Yanyi Zhang, Xinyu Li, Chunhui Liu, Bing Shuai, Yi Zhu,
Biagio Brattoli, Hao Chen, Ivan Marsic, and Joseph Tighe.
Vidtr: Video transformer without convolutions. In ICCV,
pages 13577–13587, 2021. 1

[53] Jiaojiao Zhao, Yanyi Zhang, Xinyu Li, Hao Chen, Bing
Shuai, Mingze Xu, Chunhui Liu, Kaustav Kundu, Yuanjun
Xiong, Davide Modolo, Ivan Marsic, Cees G. M. Snoek, and
Joseph Tighe. Tuber: Tubelet transformer for video action
detection. In CVPR, pages 13588–13597. IEEE, 2022. 1, 2,
6, 7, 8

[54] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: deformable transformers
for end-to-end object detection. In ICLR. OpenReview.net,
2021. 1, 5

14729

