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Abstract

Stereo-based 3D object detection, which aims at detect-
ing 3D objects with stereo cameras, shows great potential
in low-cost deployment compared to LiDAR-based methods
and excellent performance compared to monocular-based
algorithms. However, the impressive performance of stereo-
based 3D object detection is at the huge cost of high-quality
manual annotations, which are hardly attainable for any
given scene. Semi-supervised learning, in which limited an-
notated data and numerous unannotated data are required
to achieve a satisfactory model, is a promising method to
address the problem of data deficiency. In this work, we pro-
pose to achieve semi-supervised learning for stereo-based
3D object detection through pseudo annotation generation
from a temporal-aggregated teacher model, which tempo-
rally accumulates knowledge from a student model. To fa-
cilitate a more stable and accurate depth estimation, we
introduce Temporal-Aggregation-Guided (TAG) disparity
consistency, a cross-view disparity consistency constraint
between the teacher model and the student model for robust
and improved depth estimation. To mitigate noise in pseudo
annotation generation, we propose a cross-view agreement
strategy, in which pseudo annotations should attain high
degree of agreements between 3D and 2D views, as well
as between binocular views. We perform extensive exper-
iments on the KITTI 3D dataset to demonstrate our pro-
posed method’s capability in leveraging a huge amount of
unannotated stereo images to attain significantly improved
detection results.

1. Introduction

3D object detection, as one of the most significant per-
ception tasks in the computer vision community, has wit-
nessed great progress in recent years, especially after the
advent of neural-network-based deep learning. Most state-
of-the-art works which focus on 3D object detection mainly
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Figure 1. Illustration of the proposed Temporal-Aggregation-
Guided (TAG) disparity consistency constraint, in which the
teacher model, temporally collecting knowledge from the student
model, leads the disparity estimation of the student model across
the views.

rely on LiDAR data [17,32,33,43,51] to extract accurate 3D
information, such as 3D structure and depth of the points.
However, LiDAR data are costly to harvest and annotate,
and have limited sensing ranges in some cases. Instead,
vision-based methods, which detect 3D objects based on
images only, have drawn more attention in recent years.
While it is convenient to collect image data, there are signif-
icant challenges in applying image-based methods to depth
sensing, which is an ill-posed problem when localizing ob-
jects with only images. This problem is further exacerbated
in monocular-based 3D object detection [24,25,48]. Stereo
images, in which image pairs took at different viewpoints
are available, can be used to reconstruct depth information
through pixel-to-pixel correspondence or stereo geometry,
making them more useful for detecting 3D objects without
the introduction of expensive LiDAR data.

With more attention focusing on stereo-based 3D object
detection, the performance of these methods gets continu-
ously improved, and the gap between LiDAR-based meth-
ods and stereo-based methods becomes progressively nar-
rower. However, the improving performance is built on
large-scale manual annotation, which is costly in terms of
both time and human resources. When the amount of an-
notation is limited, the performance of stereo-based meth-
ods deteriorates rapidly. Semi-supervised learning, which
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makes use of a limited set of annotated data and plenty of
unannotated data, is a promising method for solving the data
deficiency problem. In this work, we propose an effective
and efficient semi-supervised stereo-based 3D object detec-
tion method to alleviate this limited annotation problem.

With limited annotated stereo images, depth estima-
tion, a key stage for accurately localizing 3D objects, be-
comes increasingly unstable, which in turn leads to poor
object localization. However, the inherent constraint be-
tween the left and right image in each stereo pair can be
adopted to promote the model’s performance in depth es-
timation. Inspired by the left-right disparity consistency
constraint proposed by Godard et al. [11], we propose
a Temporal-Aggregation-Guided (TAG) disparity consis-
tency constraint, as shown in Fig. 1. In this method, dis-
parity estimation of the base model, as the student model,
should pursue that of the teacher model, with continuous
knowledge accumulation from the base model, across the
views. With the proposed TAG method, the base model can
enhance its capability in depth estimation when provided
with extra data without annotations. In addition, to gener-
ate more accurate pseudo annotations for the unannotated
data, we propose a cross-view agreement strategy, which
comprises a 3D-2D agreement constraint, in which pseudo
annotations with high localization consistency in both 2D
view and 3D view are kept, and a left-right agreement con-
straint, in which pseudo annotations with high similarities
in both the left and right view at the feature space are re-
tained for pseudo-supervision. With the proposed cross-
view agreement strategy, the remaining pseudo annotations
can effectively encompass the objects and provide high-
quality supervision on the unannotated data, further improv-
ing the detection performance of the base model.

We evaluate the proposed method on the KITTI 3D
dataset [10]. With our proposed method, the base model
achieves relative performance gains of up to 18 percentage
points under the evaluation metric of AP3D and 20 percent-
age points under the evaluation metric of APBEV with the
IoU threshold of 0.7 in the car category when only 5% of
training data are annotated, thus verifying the effectiveness
of our proposed method in making full use of data without
annotations.

We summarize our main contributions as follows:

1) We propose a semi-supervised method for stereo-
based 3D object detection, in which plentiful and easy-
to-access unannotated images are fully utilized to en-
hance the base model.

2) We propose a Temporal-Aggregation-Guided (TAG)
disparity consistency constraint to direct the dispar-
ity estimation of the base model through the teacher
model, with cumulative knowledge from the base
model, across the views.

3) We introduce a cross-view agreement strategy to re-
fine the generated pseudo annotations through enforc-
ing agreements between the 3D view and 2D view, and
between the left view and right view.

4) Our proposed semi-supervised method leads to signifi-
cant performance gains without requiring extensive an-
notations on the KITTI 3D dataset.

2. Related Works

2.1. Stereo-based 3D Object Detection

In 3D object detection, most of the attention is focused
on LiDAR-based 3D object detection and monocular-based
3D object detection, and few works have been proposed
to address 3D object detection based on stereo images, in
which image pairs captured at different viewpoints are uti-
lized to estimate the depth of each object in 3D space. Li
et al. [18] proposed Stereo R-CNN, which is extended from
Faster R-CNN [31], to predict and aggregate candidate 3D
boxes across different views for estimating dense 3D boxes.
Qin et al. [29] focused on object-level triangulation to lo-
cate 3D objects by introducing the Triangulation Learning
Network. Wang et al. [39] proposed to lift pixels in stereo
images to 3D points and perform 3D object detection on
the pseudo point cloud. Chen et al. [6, 7] proposed to si-
multaneously achieve depth estimation, based on cost vol-
ume, and 3D object detection in the 3D world space. Xu
et al. [42] reduced the depth estimation error of distant ob-
jects by zooming in corresponding image patches, followed
by instance-level depth estimation and 3D object detection.
Similarly, Sun et al. [35] implemented disparity estimation
at the instance-level supervised by disparity maps generated
from a shape prior model. Peng et al. [27] proposed to fo-
cus more on depth estimation by a cost reweighting strategy
through the correlation between left and right feature maps.
Guo et al. [12] enhanced the quality of depth estimation by
distilling depth information from a LiDAR-based detection
network trained on LiDAR points. Gao et al. [9] proposed
to distill geometry-related information from a LiDAR-based
model to a stereo-based model. Liu et al. [21] focused on
achieving fast 3D object detection, and proposed an effi-
cient single-stage framework to achieve disparity estimation
and 3D object detection at the same time.

2.2. Semi-Supervised Object Detection

The impressive performance on 2D/3D object detection
comes at the huge cost of time-consuming manual anno-
tations for the training images. To reduce the annotation
burden, there is an increasing focus on semi-supervised ob-
ject detection, in which limited annotated data and numer-
ous unannotated data are used to achieve acceptable perfor-
mance on challenging scenes.
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For 2D object detection, Jeong et al. [13] adopted consis-
tency constraints on classification and localization between
original images and their corresponding flipped versions.
Soth et al. [34] adopted a fixed teacher model, trained on ac-
cessible annotated data only, to generate pseudo annotations
offline, which will be used to optimize the student model.
Liu et al. [22] utilized a teacher model, updated from a stu-
dent model, to provide pseudo supervision for classifica-
tion, optimized by the focal loss [20] to reduce imbalances
between foreground-background and across classes. Tang
et al. [36] adopted soft labels, instead of one-hot hard la-
bels, from the teacher model to supervise the training of the
student model. Zhou et al. [50] proposed a novel Instant-
Teaching strategy, in which pseudo annotations are gener-
ated from two models that rectify each other under differ-
ent initialization and data augmentation conditions. Wang
et al. [40] proposed multi-phase learning for progressively
generating and utilizing pseudo annotations from easy to
difficult images. Xu et al. [41] proposed a Soft Teacher with
reliability scores as weight factors to reduce the error due
to the false-negatives. Liu et al. [23] implemented semi-
supervised learning on an anchor-free model, FCOS [37],
and proposed the Listen2Student strategy to improve the re-
gression performance on unannotated data. Chen et al. [2]
also extended FCOS by proposing an adaptive threshold
method to reduce noise in pseudo annotations. Kim et al.
[14] proposed a general mixing-unmixing strategy as strong
augmentation to preserve more semantic information in the
image space. Chen et al. [1] solved the label-mismatching
problem at both distribution-level and instance-level. Chen
et al. [3] and Zhang et al. [47] utilized unannotated data
with weak annotations to facilitate semi-supervised object
detection.

Although there is increasing attention on semi-
supervised 2D object detection, not many works aim at uti-
lizing a large amount of unannotated data on the 3D object
detection task. Zhao et al. [49] first adopted the teacher-
student framework to implement semi-supervised learning
on 3D object detection with several proposed consistency
constraints. Wang et al. [38] adopted a pseudo-labeling
strategy to assign pseudo annotations for unannotated im-
ages after careful filtering and selection. Yin et al. [45]
proposed to generate pseudo annotations by aggregating
voted predicted boxes from the teacher model on unan-
notated data under different views. Li et al. [19] imple-
mented semi-supervised learning on monocular 3D object
detection with the proposed Geometric Reasoning Module.
Park et al. [26] introduced a framework to implement semi-
supervised learning on multi-modality 3D object detection,
in which unannotated data in images and point clouds are
fully utilized to improve the performances in both 2D object
detection and 3D object detection with the help of 2D-3D
matching and consistency. Different from previous works,

we propose to achieve semi-supervised learning on 3D ob-
ject detection with only stereo images through our pro-
posed Temporal-Aggregation-Guided (TAG) disparity con-
sistency constraint to promote the accuracy of the predicted
disparity maps, and cross-view agreement strategy to im-
prove the quality of generated pseudo annotations.

3. Method

3.1. Problem Definition

The objective of stereo-based object detection is to
locate and discriminate 3D objects, represented by cen-
ters (x, y, z), dimensions (l, w, h) and orientation angles
θ, based on paired left and right images. In the semi-
supervised setting, limited images Xa = {Iali , I

a
ri , y

a
i }

Na
i=1

are manually annotated, where Iali and Iari are the left image
and right image, respectively. yai denotes the ground truth
and Na is the number of annotated images. The remain-
ing large amount of images Xu = {Iuli , I

u
ri}

Nu
i=1 are without

annotations, where Nu denotes the number of unannotated
images and Nu >> Na. Our goal is to develop an effective
3D object detector based on limited stereo images with an-
notations and a large amount of annotation-deficient stereo
images.

3.2. Overview

An overview of our proposed method is shown in Fig. 2.
We adopt the teacher-student framework to make use of
unannotated images, where a student model and a teacher
model mutually learn from each other. The student model
and the teacher model are initialized with a pre-trained
model on Xa. The teacher model is utilized to gener-
ate pseudo annotations for unannotated images, which will
be used to progressively enhance the student model up-
dated through standard gradient descent. In return, the
teacher model is temporally updated from the student model
through the exponential moving average (EMA) as follows:

ϕT
t+1 = αϕT

t + (1− α)ϕS
t , (1)

where ϕT and ϕS denote parameters from the teacher
model and the student model respectively, and α is the
smoothing factor to prevent the teacher model from over-
fitting to the student model when updating. We set α as
0.999 in all experiments.

To encourage more effective self-ensembling learning,
we adopt data augmentation to enhance the diversity of an-
notated images and unannotated images. Since the envi-
ronmental factors, such as illumination, are slightly differ-
ent between left and right images in different scenes, the
model should adjust itself to various patterns between pixel
correspondences through asymmetric chromatic augmenta-
tion [44], in which the left and right images are enhanced
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Figure 2. An overview of the proposed framework. In the framework, the student model is trained on limited annotated stereo images by the
supervision loss La and numerous unannotated stereo images with pseudo annotations, generated from the teacher model with cumulative
knowledge of the student model, by the pseudo-supervision loss Lu. Temporal-Aggregation-Guided (TAG) disparity consistency LTAG is
proposed to guide the disparity estimation of the student model through the stable and accurate disparity estimation of the teacher model.
To reduce noise in the pseudo annotations, the cross-view agreement strategy is proposed to generate high-quality pseudo annotations with
high degrees of agreements between different views, including 3D/2D views and left/right views.

with different chromatic augmentations, like contrast, sat-
uration and brightness. The introduction of asymmetric
chromatic augmentation improves the model’s generaliza-
tion of pixel variations between binocular images. Besides,
geometric-level data augmentation, such as translation and
scaling, is essential to improve the robustness of both mod-
els. We adopt random horizontal flipping as the weak aug-
mentation for the unannotated images, which will be fed
into the teacher model, and both symmetric geometric aug-
mentation and asymmetric chromatic augmentation as the
strong augmentation for the annotated and unannotated im-
ages, which will be sent to the student model.

The student model is trained on limited annotated images
and numerous unannotated images with pseudo annotations
from the teacher model, and the objective to be optimized is
as follows:

L = La(Xa) + λuLu(Xu) + λconsLTAG(Xu), (2)

where La(Xa) represents the supervision loss applied on
annotated images, including classification, localization and
disparity estimation losses, as follows:

La(Xa) = Lcls(Xa) + Lreg(Xa) + Ldisp(Xa), (3)

λu and λcons are weighting factors to control the con-
tributions of pseudo-supervision loss Lu(Xu), with a form
similar to La(Xa), on unannotated images with pseudo an-
notations and Temporal-Aggregation-Guided (TAG) dispar-
ity consistency loss LTAG between the student model and
the teacher model under different views, which will be de-
tailed in Sec. 3.3. We set λu and λcons as 0.1 and 1.0 in
all experiments. The pseudo annotations will be refined

by the initial threshold τcls = 0.9 on classification and the
proposed cross-view agreement strategy in Sec. 3.4. Since
there exists unavoidable missing of pseudo annotations on
challenging objects, the pseudo-supervision loss will not be
applied on the background of unannotated images to prevent
the problem of false-negatives.

3.3. Temporal-Aggregation-Guided Disparity Con-
sistency

Depth estimation plays a key role in vision-based 3D ob-
ject detection. When given limited annotated images, depth
estimation becomes more important for accurately locating
objects in 3D space. To facilitate more stable and precise
depth estimation, Godard et al. [11] proposed the left-right
disparity consistency constraint through imposing consis-
tency between the output disparity maps of one view and
the output disparity maps translated from the opposite view
as follows:

Lr→l =
∣∣∣drij+dl

ij
− dlij

∣∣∣ , (4)

where dlij and drij represent disparity value at location
(i, j) for left and right views, respectively. However, anno-
tation insufficiency drives poor disparity estimation of the
base model, leading to unreliability of the cross-view dis-
parity consistency. We resort to the output disparity maps
from the teacher model, temporally aggregating knowledge
from the student model, to direct the disparity estimation
of the student model, which is referred to as Temporal-
Aggregation-Guided (TAG) disparity consistency. Specif-
ically, we denote the output disparity maps of the left and
right images as dlt and drt for the teacher model, dls and
drs for the student model. The photometric consistency
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between the teacher and student model after exchanging
views’ disparity maps is as follows:

Lr→l
cross1 =

∣∣∣∣drsij+d
lt
ij

− drt
ij+dls

ij

∣∣∣∣ . (5)

Right disparity maps of the student model projected by
left disparity maps of the teacher model should be consis-
tent with right disparity maps of the teacher model pro-
jected by left disparity maps of the student model, since
they are directed towards the same target. The correspond-
ing loss on the opposite view can be obtained after mirror-
ing. To further enforce disparity consistency between the
student model and the teacher model, we also introduce
photometric consistency between the teacher model and stu-
dent model without exchanging views’ disparity maps as
follows:

Lr→l
cross2 =

∣∣∣∣drsij+dls
ij

− drt
ij+d

lt
ij

∣∣∣∣ . (6)

As before, we can mirror the direction to obtain the cor-
responding loss on the opposite view. Finally, disparity
maps of the student model should also be aligned to those
of the teacher model in each view as follows:

Ll
t→s =

∣∣∣dltij − dlsij

∣∣∣ . (7)

Taking all of these into account, we can obtain the final
disparity consistency loss applied on unannotated images as
follows:

LTAG(Xu) =
1

W ×H

W∑
i=1

H∑
j=1

[(Lr→l
cross1 + Ll→r

cross1)+

(Lr→l
cross2 + Ll→r

cross2) + (Ll
t→s + Lr

t→s)],
(8)

where W and H are the width and height of the disparity
maps after downsampling.

3.4. Pseudo Annotation Refinement via Cross-View
Agreement

While the quality of depth estimation improves with the
proposed TAG method, there may exist noise in the pseudo
annotations, in which the predicted boxes are unable to
completely enclose the target objects in the unannotated im-
ages, or the predicted categories do not correspond to the
target objects. To address these mismatching problems on
localization and classification, we propose to filter pseudo
annotations through cross-view agreement, from 3D view
to 2D view and from left view to right view, to improve the
quality of generated pseudo annotations.
Dimensional Agreement A high-quality pseudo anno-
tation requires high degrees of agreement on localization
in both 3D and 2D views. Therefore, with the camera in-
trinsic parameters, predicted 2D boxes should have signif-
icant overlaps with regions re-projected from predicted 3D

boxes. Taking the Intersection-over-Union (IoU) between
predicted 2D boxes and re-projected 3D boxes as the sig-
nal, we filter out predicted boxes with IoU less than the
threshold τiou, and the remaining predicted boxes are con-
sidered as pseudo annotation candidates. In this work, we
set τiou = 0.95 in all experiments.
Viewpoints Agreement Objects in the low-level pixel
space may appear slightly different in the two views due to
environmental factors such as illumination and occlusion,
leading to different decisions in either classification or lo-
calization between views. However, in the high-level fea-
ture space, the same objects should maintain similar rep-
resentations in the feature maps of different views. Based
on this assumption, we propose to filter pseudo annotations
based on the cosine similarity scores between feature vec-
tors of the corresponding boxes in the feature maps of dif-
ferent views as follows:

sl↔r
i =

(f l
i )

T fr
i+Dl

i

∥f l
i∥∥fr

i+Dl
i

∥
, (9)

where f l
i is the feature vector of each predicted box in the

left view, and fr
i+Dl

i
is the feature vector of the correspond-

ing predicted box, after translated by the downsampled left
view’s disparity map Dl

i, in the right view. The cosine sim-
ilarity score can measure the agreement of the model on
different views for the same predicted box, and serves as a
reliability measure of the generated pseudo annotations. We
further select the pseudo annotations with sl↔r

i greater than
a threshold τsim, which is set as 0.7 in all experiments.

4. Experiments
4.1. Dataset and Evaluation Metric

Dataset We adopt the KITTI 3D dataset [10], an infor-
mative dataset with diverse stereo images, for evaluation.
KITTI 3D dataset includes 7481 stereo images with man-
ual annotations for training and 7518 stereo images for test-
ing. Since there is no annotation provided for the test set,
we follow [4] to divide training images into a training split
with 3712 samples and a validation split with 3769 samples.
Following [8, 30], we first project the sparse LiDAR points
on the image plane to construct the sparse depth maps,
followed by interpolating with the efficient depth comple-
tion method [16] to generate the corresponding dense depth
maps for annotated data. With the refined dense depth maps,
we can obtain the dense disparity maps for initial supervi-
sion of the disparity estimation on annotated data. The ex-
periments are mainly performed on the car category, and
the experimental results of other classes can be found in the
supplementary material.
Evaluation Metric We follow the official evaluation met-
ric [10] of Average Precision (AP) on three modes, easy,
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moderate and hard, considering occlusion, truncation and
the size of objects in the images. We sample 40 recall
points, as the KITTI benchmark, for AP calculation on the
test set, which is reported in the supplementary material,
and 11 recall points on the validation set for a fair compar-
ison with previous competing methods. We also report the
AP calculation with 40 recall points on the validation set in
the ablation study.

4.2. Implementation Details

Baseline Model We adopt the light-weight and efficient
YoloStereo3D [21], which is built on a light-weight cost
volume with the correlation between feature maps of binoc-
ular images for 3D object detection and disparity estima-
tion, as the base detector for the student model and the
teacher model.
Training The base detector is initially trained on lim-
ited annotated data for pre-training with the same hyper-
parameters as in YoloStereo3D [21], the resulting model
of which is used to initiate both the student model and the
teacher model. We train the model using Adam [15] opti-
mizer with a batch size of 4 images, half of which are from
the annotated subset and another half of which are from
the unannotated subset. We set the initial learning rate as
0.0001 with the cosine annealing strategy as the learning
rate decay, and stop the model’s training at 36 epochs.

We adopt random horizontal flipping as the weak aug-
mentation for unannotated data to be input into the teacher
model for stable and accurate pseudo annotation generation,
and both asymmetric chromatic augmentation and symmet-
ric geometric augmentation as the strong augmentation for
annotated data and unannotated data to be fed into the
student model. Asymmetric chromatic augmentation ran-
domly applies different brightness, contrast, saturation, and
hue on binocular images. Symmetric geometric augmenta-
tion randomly applies horizontal flipping, translation, and
scaling on stereo images to the same extent.
Inference Images with the top 100 pixels cropped are re-
sized to 288 × 1280 for inference and fed into the trained
teacher model with an inference speed of 160 ms per frame
on one GTX 2080Ti. During inference, images are not aug-
mented by either asymmetric chromatic augmentation or
symmetric geometric augmentation.

4.3. 3D Object Detection on KITTI

We first conduct a performance comparison between
the competing stereo-based 3D detection methods and the
fully-supervised base detector, YoloStereo3D, with our pro-
posed TAG method and cross-view agreement strategy on
the validation set. The results are shown in Tab. 1. The
base model, YoloStereo3D, exhibits its outstanding perfor-
mance compared to all depth-independent methods, such as
SIDE [28], and even some of the sophisticated multi-stage

(a) 10% Annotated (b) 20% Annotated

Figure 3. Error comparison of depth estimation between the base
model with and without the proposed TAG method under different
annotation ratios.

pseudo-LiDAR methods. The base model also demon-
strates its high efficiency on inference compared to high-
cost depth-dependent methods, like DSGN [7]. Building on
this powerful framework, our proposed TAG method further
improves the performance of the base model while just re-
quiring comparable inference time. To fully explore the ef-
fectiveness of our proposed cross-view agreement strategy,
we exploit additional 3k easy-to-access stereo images from
the KITTI-raw dataset without annotations to enhance the
base detector, which leads to further performance improve-
ment compared to the model trained on annotated data only,
thus highlighting the effectiveness of our proposed frame-
work on utilizing readily available unannotated binocular
images for achieving enhanced performance.

We also conduct an experiment on comparing perfor-
mance between the base detector with our proposed method
and a number of stereo-based 3D detection methods, trained
on only 5% of full annotations, on the validation set. The
result is shown in Tab. 2. Both the performance of depth-
independent and depth-based methods deteriorate signifi-
cantly when provided with only limited annotated stereo
images. On the other hand, our proposed method demon-
strates its advantages even with only hundreds of stereo im-
ages with annotations. Specifically, the base model with
our proposed method, trained on partially annotated stereo
images, achieves performance gains of up to 9% on both
APBEV and AP3D under the setting of IoU = 0.5 and
IoU = 0.7, a significant improvement compared to the base
model trained on only 5% of fully-annotated data, demon-
strating that our proposed method can effectively exploit
unannotated stereo images to enhance the performance of
the base detector.

4.4. Ablation Study

We further conduct a number of experiments to high-
light the contributions of different strategies in our pro-
posed semi-supervised learning framework. Unless other-
wise stated, we randomly sample 5% of the training split as
the annotated subset and the remaining images are unanno-
tated for the ablation experiments. All reported results are
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Methods Depth APBEV /AP3D (IoU=0.5) APBEV /AP3D (IoU=0.7) Time
Easy Mod. Hard Easy Mod. Hard (ms)

3DOP [5] 55.04/46.04 41.25/34.63 34.55/30.09 12.63/6.55 9.49/5.07 7.59/4.10 -
TLNet [29] 62.46/59.51 45.99/43.71 41.92/37.99 29.22/18.15 21.88/14.26 18.83/13.72 -
IDA-3D [27] 88.05/87.08 76.69/74.57 67.29/60.01 70.68/54.97 50.21/37.45 42.93/32.23 -
S-RCNN [18] 87.13/85.84 74.11/66.28 58.93/57.24 68.50/54.11 48.30/36.69 41.47/31.07 280
SIDE [28] 88.35/87.70 76.01/69.13 67.46/60.05 72.75/61.22 53.71/44.46 46.16/37.15 260

PL+FP [39] ✓ 89.80/89.50 77.60/75.50 68.20/66.30 72.80/59.40 51.80/39.80 44.00/33.50 670
PL+AVOD [39] ✓ 89.00/88.50 77.50/76.40 68.70/61.20 74.90/61.90 56.80/45.30 49.00/39.00 510
PL++ [46] ✓ 89.80/89.70 83.80/78.60 77.50/75.10 82.00/67.90 64.00/50.10 57.30/45.30 510
DSGN [7] ✓ - - - 83.24/72.31 63.91/54.27 57.83/47.71 682

YoloStereo3D [21] ✓ 90.63/90.49 78.85/70.77 61.38/60.76 78.37/73.85 57.58/48.62 42.35/39.33 160
Ours wo/ unannot. ✓ 90.98/90.67 79.52/73.11 62.01/61.21 79.08/74.36 58.00/49.01 43.65/40.99 160
Ours w/ unannot. ✓ 91.60/91.48 81.49/76.82 63.08/62.53 80.66/75.19 59.23/51.49 45.56/42.69 160

Table 1. Performance comparison of average precision on bird’s eye view (APBEV ) and 3D boxes (AP3D) between our proposed method
and competing methods, trained on fully-annotated data, on the KITTI validation set. “Time” means inference time on the validation set.

Methods Depth APBEV /AP3D (IoU=0.5) APBEV /AP3D (IoU=0.7)
Easy Mod. Hard Easy Mod. Hard

S-RCNN [18] 36.99/30.05 33.25/26.95 28.06/22.42 13.32/10.35 12.47/10.06 11.09/9.83
IDA-3D [27] 68.53/62.65 52.25/48.42 44.23/39.97 30.69/18.78 23.38/12.46 19.53/11.18
SIDE [28] 52.26/48.34 45.16/40.64 37.48/34.42 28.43/16.72 21.68/13.79 18.29/12.03

YoloStereo3D [21] ✓ 81.91/73.04 57.34/48.89 41.66/40.37 45.77/32.43 33.14/23.47 26.76/18.94
Ours ✓ 85.98/83.91 66.80/58.65 50.72/49.34 54.76/38.42 40.21/26.90 29.26/22.57

Table 2. Performance comparison of average precision on bird’s eye view (APBEV ) and 3D boxes (AP3D) between our proposed method
and competing methods, trained on 5% of fully-annotated data, on the KITTI validation set.

evaluated with 40 recall points on the validation set.
Disparity Consistency We show the effectiveness of the
proposed TAG method by comparing the depth estimation
error between the models with and without the TAG method
when training with different ratios of fully-annotated data,
which is shown in Fig. 3. We observe that the model with
our proposed TAG method achieves satisfactory depth es-
timation with less error in different depth ranges, verifying
that the teacher model can serve as a good supervisor to im-
prove the disparity estimation of the student model.
Pseudo Supervision We conduct an ablation study to ex-
plore the contribution of each training strategy in our pro-
posed method, as shown in Tab. 3. The performance of the
base model trained on 5% of fully-annotated data, as the
baseline model, is far from satisfactory on the validation set.
We then introduce unannotated images into the training of
the base model under the teacher-student framework, which
leads to a slight performance improvement over the base
model trained on only annotated images. The introduction
of asymmetric chromatic augmentation and symmetric ge-
ometric augmentation further enhances the effectiveness of

Configs APBEV /AP3D (IoU=0.7)
Easy Mod. Hard

Baseline 45.25/28.36 27.93/18.09 20.99/13.82
+ pseudo anno. 46.11/29.99 29.98/19.61 21.88/14.01
+ data aug. 48.11/31.60 32.01/21.47 24.10/16.20
+ TAG 49.38/32.71 34.08/22.30 26.46/17.54
+ agreement 53.89/35.91 36.30/24.50 27.99/18.81

Table 3. Ablation study of different strategies in our proposed
semi-supervised learning framework on the KITTI validation set.

the model learning on both the annotated and unannotated
data. The incorporation of our proposed TAG method can
further stabilize and enhance the disparity prediction pro-
cess, leading to further improvement in the detection per-
formance of the base model. To reduce noise in the pseudo
annotations, we enforce the cross-view agreement to filter
out predicted boxes without high degrees of agreements be-
tween different views, including 3D/2D views and left/right
views, which provide effective pseudo supervision for the

17477



Chrom. Geo. APBEV /AP3D (IoU=0.7)
Easy Mod. Hard

46.85/30.44 31.15/20.23 23.86/14.64
✓ 47.62/31.31 32.00/21.12 24.64/15.61

✓ 49.61/33.13 34.15/22.90 26.01/17.07
✓ ✓ 53.89/35.91 36.30/24.50 27.99/18.81

Table 4. Performance comparison of the base model trained on
different data augmentation settings.

Dim. View. APBEV /AP3D (IoU=0.7)
Easy Mod. Hard

49.38/32.71 34.08/22.30 26.46/17.54
✓ 50.15/33.40 34.98/23.12 26.87/17.90

✓ 52.02/34.21 35.18/23.93 27.49/18.43
✓ ✓ 53.89/35.91 36.30/24.50 27.99/18.81

Table 5. Performance comparison of the base model trained on
different agreement strategies.

unannotated images and further enhance the base model.
As a result, the contributions from all the strategies in our
proposed method are required to achieve significant perfor-
mance gains of up to 8% on the detection results.
Data Augmentation We next adopt different augmenta-
tion combinations to verify the effectiveness of the asym-
metric chromatic augmentation and symmetric geometric
augmentation, the results of which are shown in Tab. 4.
Asymmetric chromatic augmentation can adapt the base
model to different environment variations across different
views. Symmetric geometric augmentation can promote the
diversity of training data and the resulting robustness of the
base model. Both types of augmentations are important for
improving the performance of the base model.
Cross-View Agreement We also explore the contribu-
tion of each stage in the cross-view agreement strategy in
Tab. 5. Filtering based on the agreement between 3D and
2D views guarantees that the selected pseudo annotations
satisfy high localization consistency between the 3D space
and 2D space, a necessary but not sufficient requirement
for high-quality pseudo annotations. To further alleviate the
problem of noisy pseudo annotations, only predicted boxes
with a high degree of consensus from different viewpoints
in the high-level feature space are retained for pseudo super-
vision on the unannotated data. The model trained on unan-
notated stereo images with high agreements on both 3D/2D
and left/right views achieves significant performance gains
on both APBEV and AP3D under the three modes.
Annotation Ratio We also quantitatively analyze the
cases when different ratios of stereo images are annotated
in Tab. 6. Under different annotation ratios, the base model

Methods Ratios of Annotated Stereo Images
5% 10% 20% 50% 100%

Baseline 18.09 24.32 38.13 43.29 46.96
Ours 24.50 30.84 41.25 44.89 47.67

Table 6. Performance comparison of our proposed method trained
on different ratios of annotated stereo images over AP3D under
the difficulty of moderate and the setting of IoU=0.7.

trained with our proposed method consistently surpasses
that trained on annotated data only. With the increase of
annotated data, the relative improvements between both
models become smaller since the proportion of unanno-
tated data decreases in the training set. The consistently
high performances verify the effectiveness of our proposed
TAG method and cross-view agreement strategy in utiliz-
ing unannotated data to enhance the resulting model. More
details about detection performances under different evalu-
ation metrics can be found in the supplementary material.

5. Conclusion
In this work, we propose a semi-supervised learning

framework to address the problem of data deficiency in
stereo-based 3D object detection through leveraging infor-
mation in unannotated stereo images. In the framework,
we adopt a teacher model, which temporally accumulates
knowledge from the student model, to generate pseudo an-
notations for supervising the training of a student model on
unannotated data. With limited annotated stereo images, the
student model performs poorly on depth estimation. To ad-
dress this problem, we propose the Temporal-Aggregation-
Guided (TAG) disparity consistency constraint, in which
the teacher model with cumulative knowledge directs the
disparity estimation of the student model across the views.
To mitigate noise in the pseudo annotations, we propose
a cross-view agreement strategy to preserve high quality
pseudo annotations with high degrees of agreements be-
tween different views, including 3D/2D views and left/right
views. Incorporating our proposed TAG method and cross-
view agreement strategy, the resulting model attains signif-
icant performance improvement on the KITTI 3D dataset
through the more reliable pseudo annotations and stable
depth estimation process.
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