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Abstract

Sparsely annotated semantic segmentation (SASS) aims
to learn a segmentation model by images with sparse labels
(i.e., points or scribbles). Existing methods mainly focus
on introducing low-level affinity or generating pseudo la-
bels to strengthen supervision, while largely ignoring the
inherent relation between labeled and unlabeled pixels. In
this paper, we observe that pixels that are close to each
other in the feature space are more likely to share the same
class. Inspired by this, we propose a novel SASS frame-
work, which is equipped with an Adaptive Gaussian Mix-
ture Model (AGMM). Our AGMM can effectively endow re-
liable supervision for unlabeled pixels based on the distri-
butions of labeled and unlabeled pixels. Specifically, we
first build Gaussian mixtures using labeled pixels and their
relatively similar unlabeled pixels, where the labeled pix-
els act as centroids, for modeling the feature distribution
of each class. Then, we leverage the reliable information
from labeled pixels and adaptively generated GMM predic-
tions to supervise the training of unlabeled pixels, achieving
online, dynamic, and robust self-supervision. In addition,
by capturing category-wise Gaussian mixtures, AGMM en-
courages the model to learn discriminative class decision
boundaries in an end-to-end contrastive learning manner.
Experimental results conducted on the PASCAL VOC 2012
and Cityscapes datasets demonstrate that our AGMM can
establish new state-of-the-art SASS performance. Code is
available at https://github.com/Luffy03/AGMM-SASS.

1. Introduction
Semantic segmentation [2, 8, 42] aims to assign the

corresponding pixel-wise semantic labels for a given im-
age, which is a fundamental computer vision task. Pre-
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Figure 1. (a) Illustration of SASS task. (b) Different from existing
SASS frameworks, our AGMM leverages the reliable information
of labeled pixels and generates GMM predictions for dynamic on-
line supervision. f denotes the model, P and G represent segmen-
tation and GMM predictions, respectively. Solid and dashed lines
represent model propagation and supervision, respectively.

vious deep learning based semantic segmentation meth-
ods [3, 9, 43] trained on large amounts of data with accu-
rate pixel-wise annotations have demonstrated outstanding
achievements. However, collecting such dense annotations
always requires cumbersome manual efforts, which heav-
ily limits the development of semantic segmentation meth-
ods. To reduce the cost of manual annotations, many re-
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Figure 2. (a) Observation of the inherent relation between the labeled and unlabeled pixels. (b) Category-wise performance on the PASCAL
VOC 2012 dataset. The black line, blue bar, and orange bar represent the IoU of all unlabeled pixels, unlabeled pixels that are similar to
labeled pixels, and unlabeled pixels that are dissimilar to labeled pixels, respectively. σ is the variance of a class (Eq. 5).

cent works [4,17,27,29,47,48,59] have been made towards
sparsely annotated semantic segmentation (SASS), which
learns segmentation models via sparse labels, i.e., points or
scribbles, as shown in Fig. 1(a). The sparse annotations are
cheap to obtain and also contain the least necessary category
and location information. Thus, SASS has high research
potential in terms of the trade-off between information and
costs.

The main challenge of SASS is the lack of information
for supervision. Existing SASS methods can be roughly
divided into three categories, i.e., low-level regulariza-
tion [26,30,34,47,48], pseudo supervision [7,27,35,59,60],
and consistency learning [19, 38], as shown in Fig. 1(b).
Specifically, the low-level regularization methods [26, 30,
34, 47, 48] focus on introducing the low-level affinity of the
raw images for supervision. However, the low-level infor-
mation is not reliable enough to be associated with the high-
level semantics. Pseudo supervision [27, 35, 59, 60] aims
to generate pseudo labels via training with sparse labels,
and then uses these pseudo labels to learn a more robust
segmentation model. However, it commonly requires time-
consuming multi-stage training and the generated pseudo
labels are always coarse and ambiguous, which significantly
hinders the learning of unlabeled pixels. Consistency learn-
ing [19, 38, 55] further proposes to learn consistent repre-
sentations in the high-dimension feature space, but it cannot
directly supervise the final predictions at the category level.

To solve these problems, we aim to address the SASS
task with more reliable supervision. To this end, we argue
that the reliable information of labeled pixels should be fur-
ther exploited. Previous methods only employ the labeled
pixels for partial cross-entropy supervision, while largely
ignoring the inherent relation between labeled and unla-

beled pixels. As illustrated in Fig. 2, we observe that the
similarity between labeled and unlabeled pixels is highly as-
sociated with the predictions of unlabeled pixels. As shown
in Fig. 2(a), if an unlabeled pixel is similar to the labeled
pixel in the feature space, its corresponding prediction is
more likely to be consistent with the category of the labeled
pixel. In Fig. 2(b), we calculate the distance d (see Eq. 6)
between labeled and unlabeled pixels to measure the simi-
larity, i.e., d < σ as similar and d > σ as not similar. It
can be seen that the similarity between labeled and unla-
beled pixels is highly associated with the accuracy of the
predictions. To this end, we propose to explicitly leverage
the similarity between the labeled and unlabeled pixels to
generate supervision information. The key challenge is how
to effectively model the similarity between the labeled and
unlabeled pixels.

In this paper, we propose a novel Adaptive Gaussian
Mixture Model (AGMM) framework, which is realized by
incorporating a GMM branch into the traditional segmenta-
tion branch. Specifically, we assign the labeled pixels as the
centroids of Gaussian mixtures, enabling us to model the
data distribution of each class in the high-dimension fea-
ture space. Each Gaussian mixture represents the distribu-
tion of a class, which consists of the centered labeled pix-
els and the relatively similar unlabeled pixels. In this way,
we build a GMM to measure the feature similarity between
labeled and unlabeled pixels, producing soft GMM predic-
tions to supervise the unlabeled regions from a probabilis-
tic perspective. The process of GMM formulation works
in an adaptive manner, where the parameters of GMM are
dynamically adapted to the input features, achieving end-to-
end online self-supervision. The GMM branch is progres-
sively optimized during training, enabling us to learn more
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discriminative Gaussian mixtures adaptively.
There are three appealing advantages in our proposed

AGMM. First, by capturing category-wise Gaussian mix-
tures for feature representations, we can learn discrimina-
tive decision boundaries between different classes via very
limited supervision. Second, AGMM pushes each unla-
beled pixel into or away from specific category-wise Gaus-
sian mixtures, which further enables an end-to-end con-
trastive representation learning. Finally, we leverage the
reliable information from labeled pixels to generate GMM
predictions for the unlabeled pixels, achieving more reliable
supervision.

We conduct experiments under the point- and scribble-
supervised settings on two widely used datasets, i.e., PAS-
CAL VOC 2012 [14] and Cityscapes [12]. It is worth
noting that compared with existing SASS methods, our
AGMM does not require extra information for supervision
[19,26,30,34,50], multi-stage training [7,35,37,59,60], and
time-consuming post-processing [27, 31, 50, 60]. Extensive
experiments demonstrate that our AGMM outperforms the
existing state-of-the-art SASS methods.

2. Related Works
Weakly-supervised semantic segmentation: Weakly-

supervised semantic segmentation (WSSS) aims to train
the semantic segmentation model via coarse weak labels,
e.g., image-level labels [1, 18, 20, 54], point-level [4, 29, 47,
48], scribble-level labels [27, 32, 49, 59], and box-level la-
bels [13,60]. WSSS with image-level supervision is widely
researched in recent works [1,18,20,54], which usually gen-
erates class activation maps (CAM) [61] for training. Al-
though image-level labels require the least effort for man-
ual annotations, they cannot provide the important location
information of objects. Thus, these models fail to segment
multiple objects with complete constructions and result in
limited performance. Although box-level labels [13,60] can
provide more information for supervision, they tend to over-
lap with each other and thus result in confusing supervision
during training. In addition, these box-level labels still re-
quire time-consuming annotations, which is not efficient for
large-scale semantic segmentation.

Compared with image-level and box-level labels, sparse
labels such as points and scribbles are more efficient and
also provide the least necessary information for supervi-
sion. Thus, many recent works propose to use sparse
annotations for sparsely annotated semantic segmentation
(SASS) [4, 27, 29, 47, 48, 59]. What’s the Point [4] first
uses point annotations to supervise a semantic segmenta-
tion model. Ozan Unal et al. [49] proposes to use scribbles
to segment LiDAR point clouds. ScribbleSup [27] further
proposes to propagate scribble labels via a graphical model
for supervision. Most existing SASS methods are based on
pseudo supervision [4, 55, 59, 60], which generate pseudo

labels and leverage the pseudo labels for multi-stage self-
training. However, the quality of coarse pseudo labels may
heavily limit the performance. RAWKS [50], BPG [51],
and SPML [19] further utilize extra edge information for
supervision. However, the edge information also requires
additional annotation efforts. To regularize the consistency
between labeled and unlabeled pixels, a variety of regular-
ization losses [26, 30, 34, 47, 48, 57] are proposed, which
use the low-level affinity from the raw images to supervise
the segmentation predictions. However, these regularization
losses highly ignore the large gap between the low-level vi-
suals and high-level semantics, which heavily limits the per-
formance of segmentation.

Gaussian Mixture Models: In this paper, we propose
a novel SASS framework based on an adaptive Gaussian
Mixture Model. GMM is a typical probabilistic model for
representing mixture distributions. A GMM consists of K
Gaussian mixture components to represent K mixtures dis-
tributions, and each component is a Gaussian mixture g

′

formulated as follows:

g
′
(x, µ, σ) =

1√
2πσ2

e−
(x−µ)2

2σ2 , (1)

where x is the input variable, µ and σ represent the mean
and variance of the Gaussian distribution g

′
, respectively.

Thus, a GMM G
′

with K components can be formulated as
follows:

G
′
(x, µ, σ) =

K∑
i

g
′

i(x, µi, σi), (2)

GMM has been widely applied to model the distri-
butions of hand-crafted features in an unsupervised way
[5, 6, 11, 39–41]. Previous methods propose to use expec-
tation–maximization (EM) algorithms [24,33,53] to formu-
late GMMs, which demand initial prior estimates and iter-
ative parameter updates. However, in SASS, sparsely an-
notated labels are available, which can be regarded as ac-
curate prior information for GMM formulation. Thus, we
can easily formulate a GMM with the help of the annotated
information. In this paper, instead of time-consuming EM
algorithms, we leverage the reliable information of labeled
pixels and employ an effective self-supervision loss func-
tion to adaptively optimize the GMM. We will present the
details of our designed AGMM in Section 3.

3. Methodology
In this section, we first describe our motivation in Sec-

tion 3.1. Second, we introduce the overall framework of our
proposed AGMM in Section 3.2. After that, we present the
details of GMM formulation in Section 3.3. Then, the train-
ing losses in our proposed AGMM framework are described
in Section 3.4. Finally, in Section 3.5, we further discuss the
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Figure 3. The overall framework of our proposed AGMM. AGMM contains a main segmentation branch and a GMM branch. Given
an input image x, the segmentation branch directly outputs segmentation predictions P , which is supervised by Lseg according to Eq. 3.
During training, the extracted deep features f(x) are fed into the GMM branch to generate soft GMM predictions G according to Eq. 7,
which is also supervised by the sparse labels Yl according to Eq. 9. Then we employ segmentation predictions P and GMM predictions G
for online self-supervision according to Eq. 8. It is worth noting that during testing, the GMM branch is discarded since the sparse labels
are not available in the inference process.

difference between our AGMM and previous SASS meth-
ods.

3.1. Motivation

In SASS, the input pixels x can be separated into two
parts: labeled pixels xl and unlabeled pixels xu. As for the
labeled pixels xl, their corresponding sparse labels yl can
be directly used for supervision with a partial cross-entropy
loss Lseg as follows:

Lseg = − 1

|yl|
∑
∀y∈yl

ylog(Pi), (3)

where P is the network prediction. However, as for the un-
labeled pixels xu, there is no available label for supervi-
sion. One popular solution is to assign pseudo labels to xu

for supervision [7, 26, 27, 59, 60], which requires a time-
consuming multi-stage training process. However, these
generated pseudo labels are always very coarse and unreli-
able for supervision, significantly resulting in performance
degradation. To address this problem, in this paper, we aim
to introduce a more reliable and effective approach for su-
pervising the unlabeled pixels.

In Fig. 2, we observe that two pixels sharing visual sim-
ilarity tend to belong to the same semantic class. Specifi-
cally, if an unlabeled pixel is similar to a labeled pixel, the
semantics of these two pixels are more likely to be consis-
tent. Thus, we propose to leverage the similarity between
labeled and unlabeled pixels to generate predictions for un-
labeled pixels. Then, these predictions can be used to super-
vise the unlabeled regions, achieving dynamic online self-

supervision. However, it is not appropriate to directly set
fixed thresholds for the similarity to generate hard one-hot
predictions, which will bring a lot of noise and hinder the
performance. To solve this problem, we propose to gener-
ate the predictions in a soft probabilistic form. In this paper,
we propose to use a probabilistic model to measure the sim-
ilarity and generate soft probabilistic predictions for online
self-supervision.

As a typical probabilistic model, GMM can generate
multiple Gaussian mixtures to represent the distributions of
different categories [5, 6, 11, 25, 40, 41], which can be fur-
ther introduced into the field of SASS. In SASS, only the
labeled pixels can be regarded as completely reliable infor-
mation. We argue that the learned features of labeled pixels
can be seen as the centroids of different Gaussian mixtures.
In this way, we can build a GMM to represent the feature
distributions, enabling us to model the similarity between
labeled and unlabeled pixels. To this end, we propose a
simple yet effective AGMM framework for SASS, which
benefits both online self-supervision and discriminative rep-
resentation learning. The details are described as follows.

3.2. Overall Framework

The overall framework of our proposed AGMM is illus-
trated in Fig. 3, which contains a main segmentation branch
and a GMM branch. The segmentation branch directly pre-
dicts segmentation results P for Lseg supervision according
to Eq. 3. In the GMM branch, soft GMM predictions G are
generated from the deep features f(x). The GMM predic-
tions G are also supervised by the sparse labels yl, which is
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incorporated with a typical cross-entropy loss. Then, we as-
sign these GMM predictions G for online self-supervision
with the segmentation predictions P . We illustrate the pro-
cess of GMM formulation in Section 3.3.

By leveraging these supervisions jointly, the segmenta-
tion model can be trained progressively with only limited
sparse labels. The details of these training losses will be
introduced in Section 3.4. It is worth noting that the GMM
branch is employed only during training for generating su-
pervision information, which is discarded in the inference
process.

3.3. GMM Formulation

Given an input image with K annotated classes, we build
a GMM with K Gaussian mixture components. For ith
Gaussian mixture component, we first calculate the mean
features of labeled pixels xli belonging to ith class as the
mean µi:

µi =
1

|xli|
∑

∀x∈xli

f(x), (4)

where f(x) are the deep features of pixels x, which are pro-
duced from the features before the classification layer of the
segmentation model. Once obtaining the µi, the variance σi

of ith component can be calculated as:

σi =

√
1

|Pi|
∑

∀x∈xu

Pid2, (5)

where Pi means the segmentation prediction scores of the
ith category, and d is formulated as:

d = f(x)− µi, (6)

which measures the distance between labeled and unlabeled
pixels. Similar to Eqs. 1 and 2, we then build a GMM
to model the feature distributions of labeled and unlabeled
pixels. With the GMM, we produce the GMM predictions
G as:

G =

K∑
i

gi(x, µi, σi) =

K∑
i

e
− d2

2σ2
i . (7)

Compared with the typical GMM introduced in Section
2, we discard the regularization term 1√

2πσ2
. In this way,

we can guarantee that for each class, the GMM prediction
scores gi range from 0 to 1, enabling us to conduct self-
supervision with the segmentation predictions P . These
GMM predictions G are in a form of soft scores, denot-
ing each pixel x belongs to which category-wise Gaussian
mixture.

Note that, our proposed GMM is implemented in an
adaptive manner, where the parameters of the GMM, i.e.,
number of components K, mean µ, and variance σ, are dy-
namically adapted to the input images. Thus, our AGMM

Figure 4. The optimization process of our GMM predictions. With
the proposed loss functions according to Eq. 11, we adaptively
learn more discriminative category-wise Gaussian mixtures during
the optimization process.

can dynamically generate reliable GMM predictions for dif-
ferent input images, enabling us to conduct online supervi-
sion. The functions of training losses will be presented in
the next section.

3.4. Training with AGMM

Given the GMM predictions G, we assign them for self-
supervision with the segmentation predictions P . We adopt
a cross-entropy form to formulate the self-supervision loss
function Lself as follows:

Lself = − 1

|x|
∑

[G∗ log(P )+(1−G)∗ log(1−P )]. (8)

Then, we also assign the sparse labels yl to supervise G
as follows:

Lspar = − 1

|yl|
∑
∀y∈yl

ylog(G). (9)

In addition, aiming to learn discriminative Gaussian mix-
tures, we propose a contrastive loss Lcon to enlarge the dis-
tance between the centroids of different Gaussian mixtures
as follows:

Lcon =
2

K(K + 1)

∑
∀i,j∈K,i̸=j

e−(µi−µj)
2

. (10)

Equipped with these loss functions, we employ the
GMM predictions G and the segmentation predictions P
to supervise each other mutually. The total loss function
LGMM for GMM predictions G can be summarized as fol-
lows:

LGMM = Lself + Lspar + Lcon. (11)
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Therefore, the overall loss function L in our GMM-SASS
framework is formulated as follows:

L = Lseg + LGMM (12)

It is worth noting that we do not stop the gradients
of GMM predictions G when calculating LGMM . Since
the process of GMM formulation is derivable as described
in Section 3.3, our probabilistic GMM predictions G are
also optimized progressively during the back-propagation
of LGMM . In our AGMM framework, with the mutual
self-supervision Lself , each unlabeled pixel xu should be
assigned to a specific Gaussian mixture, guiding us to em-
ploy strong supervision to the unlabeled regions. As shown
in Fig. 4, with the collaborative optimization of Lseg and
LGMM , we can learn more discriminative class decision
boundaries for the generated Gaussian mixtures. In addi-
tion, incorporated with the contrastive loss Lcon, we pull the
different Gaussian mixtures of different classes from each
other, enabling us to learn more discriminative category-
wise representations.

3.5. Discussion

Compared with existing SASS methods, our proposed
AGMM is more effective and efficient. First, AGMM does
not require the unreliable low-level information [26, 30, 34,
47,48] or extra edge information [19,50,51] for supervision.
Second, instead of adopting the time-consuming multi-
stage training for pseudo labels generation [7,35,37,60], we
leverage the GMM predictions for online self-supervision,
which is more efficient. Finally, compared with the consis-
tency learning methods [19, 38], our AGMM not only su-
pervises the features in the high-dimension space but also
supervises the final predictions at the category-level. Com-
prehensive experimental results will be presented in Section
4 to demonstrate the effectiveness of our method.

4. Experiments
In this section, we first describe the datasets and imple-

mentation details. Then, we perform detailed extensive ab-
lation experiments for our proposed AGMM. Finally, we
report the results of our proposed method compared with
other state-of-the-art SASS methods.

4.1. Datasets

To verify the effectiveness of our proposed method, we
conduct extensive experiments on two widely-used seman-
tic segmentation datasets: PASCAL VOC 2012 [14] and
Cityscapes [12].

PASCAL VOC 2012 [14] originally consists of 1,464
images for training and 1,449 images for validation. Fol-
lowing previous SASS settings, we introduce additional
data from the SBD [15] and augment the training set to

Lseg Lself Lspar Lcon MT point sup. scrib. sup.
✓ - - - - 59.2 67.3
✓ - - - ✓ 66.3 72.4
✓ ✓ - - - 68.5 75.2
✓ ✓ ✓ - - 69.3 76.1
✓ ✓ ✓ ✓ - 69.6 76.4
✓ ✓ ✓ ✓ ✓ 74.7 77.2

Table 1. Ablation study for AGMM on the PASCAL VOC 2012
dataset. MT means multi-stage training.

10,582 images. It contains 20 foreground classes and a
background class for semantic segmentation. Point-level
annotations [4] and scribble-level annotations [27] are pro-
vided for PASCAL VOC 2012 dataset. To conduct fair com-
parisons with existing SASS methods, we also report our
results on the validation dataset.

Cityscapes dataset [12] is created for urban scene-
understanding. It contains 19 classes with 2,975 train-
ing images and 500 validation images. The images of the
dataset are all with 2048×1024 pixels. Block-wise annota-
tions are provided in [26] for the Cityscapes dataset. How-
ever, these block-wise annotations still cover relatively high
ratios of the area (10%, 20%, and 50%), which are not effi-
cient for SASS. Thus, to conduct SASS experiments on the
Cityscapes dataset, we randomly select points on the ground
truth to create sparse point labels, which include 20, 50, and
100 clicks per image (2048× 1024) for experiments.

4.2. Implementation Details

To conduct fair comparisons, we employ ResNet
[16] pre-trained on ImageNet [21] as the backbone and
DeeplabV3+ [10] as the segmentation head to build the net-
work structure in our experiments. Following previous set-
tings [26,59], multiple data augmentation methods, i.e., ran-
dom resize, random crop, and random horizontal flip are
adopted. The randomly crop size is set to 321 × 321 for
PASCAL VOC 2012 dataset and 769 × 769 for Cityscapes
dataset. Specifically, we employ the stochastic gradient de-
scent (SGD) optimizer for training, where the initial base
learning rate of the backbones is set as 0.001 on PASCAL
VOC 2012 and 0.004 on Cityscapes, respectively. For the
randomly initialized segmentation head, the learning rate is
10 times larger than that of the backbone. In addition, a
polynomial learning rate policy [28] is used to decay the
learning rate, where the initial learning rate is multiplied by
(1− epoch

total_epoch )
power with a power of 0.9. Momentum and

weight decay are set to 0.9 and 0.0001, respectively. The to-
tal training epochs are 80 and 240 for PASCAL VOC 2012
and Cityscapes, respectively. We conduct the experiments
on Pytorch [36] with 4 NVIDIA 3090 GPUs.

4.3. Ablation Study

Ablation study for AGMM. We first conduct thorough
ablation studies for AGMM on the PASCAL VOC 2012
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method hard soft online point sup. scrib. sup.
Baseline - - - 59.2 67.3

Baseline(+MT) ✓ - - 66.3 72.4
Label Assignment ✓ - ✓ 66.5 73.4

AGMM (SG) - ✓ ✓ 67.4 74.6
AGMM - ✓ ✓ 69.6 76.4

Table 2. Effectiveness evaluation of AGMM. We report the mIoU
results on the PASCAL VOC 2012 dataset. Hard and soft repre-
sent the kind of pseudo labels for supervision. MT and SG denote
multi-stage training and stop gradient, respectively.

σ 0.1 0.5 0.8 1.0 1.5 Eq. (5)
point sup. 69.2 69.5 69.5 69.6 69.4 69.6
scrib. sup. 76.0 76.3 76.2 76.3 76.1 76.4

Table 3. Effectiveness evaluation of σ in Eq. 5. We report the
mIoU results on the PASCAL VOC 2012 dataset.

dataset, as shown in Table 1. Compared with the base-
line method using Lseg only, the self-supervision Lself

between GMM and segmentation predictions can achieve
9.3% and 7.9% mIoU improvements for point- and scribble-
supervised SASS, respectively. Adopting Lspar and Lcon,
the performance can be further improved. We further evalu-
ate the effectiveness of multi-stage training (MT) strategies.
Specifically, we adopt the simplest MT strategy, which gen-
erates pseudo labels by AGMM for second-round training.
It can be seen that the MT can also improve the perfor-
mances, especially for the point-supervised setting.

Comparisons with non-adaptive baselines. To prove
our core insight, i.e., model the inherent relation between la-
beled and unlabeled pixels with adaptive GMM, we further
compare our method with non-adaptive baselines. First, in-
stead of GMM formulation, we use a similarity-based label
assignment method to generate hard one-hot pseudo labels
for supervision. Specifically, we simply set a fixed thresh-
old d < σ to assign the unlabeled pixels to specific cate-
gories, i.e., an unlabeled pixel is assigned to ith category
when:

d < σi, d > σj ,∀i, j ∈ K, j ̸= i. (13)

If an unlabeled pixel is not satisfied with Eq. 13, we ignore
this pixel during training. In addition, to further evaluate the
optimization of GMM formulation as shown in Fig. 4, we
stop the gradients of GMM optimization for comparison.
In this case, Lspar and Lcon are discarded, and only the
segmentation branch is updated during training.

The detailed results are shown in Table 2. It can be seen
that it is not appropriate to roughly assign hard one-hot
pseudo labels to the unlabeled pixels according to Eq. 13,
since we cannot set accurate thresholds for the similarity.
In addition, the optimization of GMM branch also plays an
important role in our GMM-SASS framework, which indi-
cates that we should not stop the gradients of GMM predic-
tions during training.

Evaluation of variance. We further evaluate the set-

tings of σ in Eq. 5, as shown in Table 3. We compare the
effectiveness of adaptive σ obtained by Eq. 5 and fixed σ.
It can be seen that the segmentation accuracy is not sen-
sitive to the value of σ. Thus, we argue that the distance
between labeled and unlabeled pixels matters more to the
GMM formulation. The change of intra-class variance has
a low impact to the performance of our proposed AGMM
framework.

4.4. Comparison with State-of-the-art Methods

Results on PASCAL VOC 2012. We first conduct
point-supervised SASS experiments on PASCAL VOC
2012 dataset. The detailed results are shown in Table 4.
Equipped with DeepLabV3+ [10] and ResNet-101 [16],
the baseline method incorporated with only partial cross-
entropy loss Lseg achieves a mIoU of 59.2%. Compared
with the baseline method, our proposed AGMM achieves
69.6% mIoU with an improvement of 10.4% mIoU, which
demonstrates the effectiveness of our proposed method.
Among all the existing SASS methods, TEL [26] produces
the best performance with 64.9% mIoU. Specifically, TEL
[26] uses the tree filter methods [23, 45, 46] to model both
low-level and high-level pair-wise affinity for regulariza-
tion. To conduct fair comparisons with TEL [26], we also
report our results without multi-stage training. Under the
same settings, our AGMM outperforms TEL [26] by 4.7%
mIoU. The results of point-supervised SASS show that our
AGMM can achieve state-of-the-art performance, outper-
forming existing SASS methods by a large margin.

We further conduct scribble-supervised SASS experi-
ments on PASCAL VOC 2012 dataset. The results are
also shown in Table 4. It can be seen that most existing
methods employ DenseCRF [8] during testing, which can
bring about 3% mIoU improvements. However, this post-
processing strategy will significantly increase the cost of
computation. Multi-stage training strategy is also widely
employed, which requires time-consuming training. It is
worth noting that RAWKS [50], BPG [51], and SPML
[19] create extra edge information [58] for supervision,
but it is unfair for comparisons with other SASS meth-
ods. In our experiments, we discard these settings to eval-
uate the pure effectiveness of our proposed AGMM. Our
AGMM achieves 76.4% mIoU and outperforms the base-
line by 9.1% mIoU. As shown in Table 4, our proposed
AGMM method achieves the state-of-the-art performance
without extra edge annotations, multi-stage training, and
time-consuming DenceCRF [8].

Results on Cityscapes. To evaluate our method on the
Cityscapes dataset, we randomly select point labels from
the groud-truth for point-supervised SASS, which include
20, 50, and 100 clicks per image (2048 × 1024) for train-
ing. We employ ResNet-50 [16] and DeeplabV3+ [10] for
experiments. The results are reported in Table 5. For fair
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Method Network Publication Supervision Extra Data Multi-stage Training DenseCRF mIoU
(1) DeeplabV2 [8] VGG16 [44] TPAMI’17 F - - ✓ 71.6
(2) DeeplabV2 [8] ResNet101 [16] TPAMI’17 F - - ✓ 77.3

* (3) DeeplabV3+ [10] ResNet101 [16] ECCV’18 F - - - 78.6
* (3) DeeplabV3+ [10] ResNet101 [16] ECCV’18 P - - - 59.2
* (3) DeeplabV3+ [10] ResNet101 [16] ECCV’18 S - - - 67.3

What’s the Point [4] (1) ECCV’16 P - - - 43.4
KernelCut Loss [48] (2) ECCV’18 P - ✓ ✓ 57.0

A2GNN [60] (2) TPAMI’21 P - ✓ ✓ 66.8
DBFNet [56] (3) TIP’22 P - - - 66.8

TEL [26] (3) CVPR’22 P - - - 63.3
AGMM (3) - P - - - 69.6

ScribbleSup [27] (1) CVPR’16 S - ✓ ✓ 63.1
RAWKS [50] (1) CVPR’17 S ✓ ✓ ✓ 61.4
GraphNet [37] (2) ACM MM’18 S - ✓ - 70.3

NormCut Loss [47] (2) CVPR’18 S - ✓ - 72.8
DenseCRF Loss [48] (2) ECCV’18 S - ✓ - 73.0
GridCRF Loss [31] (2) CVPR’19 S - ✓ ✓ 72.8

BPG [51] (2) IJCAL’19 S ✓ - - 73.2
SPML [19] (2) ICLR’21 S ✓ ✓ - 74.2
URSS [35] (2) ICCV’21 S - ✓ - 74.6

PSI [59] (3) ICCV’21 S - - - 74.9
A2GNN [60] (2) TPAMI’21 S - ✓ ✓ 74.3
DBFNet [56] (3) TIP’22 S - - - 72.5

PCE [22] (3) NPL’22 S - - - 72.6
CCL [52] (3) ACM HCMA’22 S - ✓ - 74.4

* TEL [26] (3) CVPR’22 S - - - 75.8
AGMM (3) - S - - - 76.4

Table 4. Experimental results of the point- and scribble-supervised SASS methods on the Pascal VOC 2012 validation set. F, P, and S
denote fully-, point-, and scribble-supervised, respectively. Experimental settings with extra data, multi-stage training, and DenseCRF
post-processing (DenseCRF) [8] are also considered. * represents we reproduce the approach.

Method Cityscapes
20 clicks 50 clicks 100 clicks full

Baseline 53.5 60.3 64.2 78.6
DenseCRF Loss [48] 54.2 61.6 65.5 -

TEL [26] 56.3 62.8 67.6 -
AGMM 62.1 68.3 71.6 -

AGMM (+MT) 66.5 71.7 73.4 -

Table 5. Experimental results of the point-supervised SASS meth-
ods on the Cityscapes validation set. MT means multi-stage train-
ing.

comparisons, we further conduct the experiments with two
existing SASS methods [26, 48] based on low-level regu-
larization. However, the improvements of these two meth-
ods are very limited. Since the Cityscapes dataset contains
more complex scenes with diverse objects and cluttered
backgrounds, the low-level affinity is not obvious in the
Cityscapes dataset. Thus, the low-level regularization meth-
ods [26,48] cannot achieve obvious improvements. It can be
seen that compared with existing methods, our method can
also achieve the best performance on the Cityscapes dataset.
Specifically, AGMM outperforms the existing state-of-art
method TEL [26] with a large margin, i.e., by 5.8% im-
provements with 20 clicks, 5.5% improvements with 50
clicks, and 4.0% improvements with 100 clicks, respec-
tively. Incorporated with the multi-stage training process,
the performance of our method can be further improved.

5. Conclusion

In this paper, we proposed a simple yet effective frame-
work AGMM for SASS. Specifically, we assigned the la-
beled pixels as the centroids of category-wise Gaussian
mixtures, enabling us to formulate a GMM to model the
similarity between labeled and unlabeled pixels. Then,
we can leverage the reliable information from labeled pix-
els to generate GMM predictions for dynamic online self-
supervision. AGMM is progressively optimized during
training, enabling us to capture category-wise Gaussian
mixtures. In this way, AGMM learns discriminative deci-
sion boundaries between different classes and achieves an
end-to-end contrastive representation learning. Extensive
experiments demonstrate our method achieves state-of-the-
art SASS performance.
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