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Abstract

Real-world visual search systems involve deployments
on multiple platforms with different computing and stor-
age resources. Deploying a unified model that suits the
minimal-constrain platforms leads to limited accuracy. It is
expected to deploy models with different capacities adapt-
ing to the resource constraints, which requires features ex-
tracted by these models to be aligned in the metric space.
The method to achieve feature alignments is called “com-
patible learning”. Existing research mainly focuses on the
one-to-one compatible paradigm, which is limited in learn-
ing compatibility among multiple models. We propose a
Switchable representation learning Framework with Self-
Compatibility (SFSC). SFSC generates a series of compati-
ble sub-models with different capacities through one train-
ing process. The optimization of sub-models faces gradients
conflict, and we mitigate this problem from the perspective
of the magnitude and direction. We adjust the priorities
of sub-models dynamically through uncertainty estimation
to co-optimize sub-models properly. Besides, the gradients
with conflicting directions are projected to avoid mutual in-
terference. SFSC achieves state-of-the-art performance on
the evaluated datasets.

1. Introduction

Visual search systems are widely deployed, which recall
the nearest neighbors in gallery features according to their
distances to the query feature. Real-world visual search
systems consist of multiple models deployed on different
platforms [17, 38, 45] (e.g. clouds, mobiles, smart cam-
eras), where different platforms interact with each other by
visual features. Typically, as for person re-identification
systems, images are captured and processed into features
on edge sides. And such features are sent to the cloud
side to compare with the database features for identifying
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a specific person by feature similarities. As diverse plat-
forms meet different computing and storage resource limita-
tions, deploying the unified model which suits the minimal-
constrain platforms leads to a waste of resources on other
platforms and limited accuracy. To make better use of re-
sources and achieve higher accuracy, it is expected to deploy
models with different capacities which adapt to the resource
limitations. Such a solution requires compatibility among
the models to satisfy their interaction requirements, which
means that the similar data processed by different models
are close to each other in the feature space while dissimilar
data are far apart.

To achieve compatibility, compatible learning methods
have been proposed. Existing research focuses on the one-
to-one compatible paradigm [6,49,62], which constrains the
learned features of a latter (learnable) model to be compat-
ible with its previous (fixed) version. They are limited in
achieving many-to-many compatibilities, which means any
two in a series of models are compatible with each other.

In this work, we propose a Switchable representation
learning Framework with Self-Compatibility (SFSC) to
achieve many-to-many compatibilities. As shown in Figure
1, SESC can deploy different sub-models to suit the diverse
computing and storage resource limitation of different plat-
forms. The compatibility between any two sub-models can
be achieved, termed as “‘self-compatibility”. However, there
are gradients conflicts between sub-models as they are co-
optimized during the training process. We summarize such
conflicts into the gradient magnitude and gradient direc-
tion. Specifically, a gradient of a large magnitude will dom-
inate the optimization process, which may lead to the over-
fitting of its corresponding sub-model and impair the im-
provements of other sub-models. To solve this problem, we
estimate the uncertainty of different sub-models to weight
the gradient, denoting the optimization priorities. Besides,
as the sub-models may produce gradients in various direc-
tions, there is mutual interference between them. Thus the
improvement in different sub-models may be overestimated
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Figure 1. An example of SFSC in multi-platform deployments. The switchable neural network generates a series of sub-networks

{¢1, 92, ..., dm } with different capacities for different computing resources. Vi, j € {1,2,...,m},

¢i(a) — ¢;(p)| < [pi(a) — ¢;(n)l,

where (a, p) is a pair of samples with the same class ID, while (a, n) is a pair of samples with different class IDs.

or underestimated. To tackle such conflict, the gradients are
projected onto planes that are orthogonal to each other.

The contributions of this paper are summarized as fol-
lows:

* We propose a switchable representation learning
framework with self-compatibility (SFSC). SFSC gen-
erates a series of feature-compatible sub-models with
different capacities for visual search systems, which
can be deployed on different platforms flexibly.

* We resolve the conflicts between sub-models from the
aspect of gradient magnitude and gradient direction. A
compatible loss based on uncertainty estimation is pro-
posed to guide optimization priorities and alleviate the
imbalance of gradient magnitude between sub-models.
An aggregation method based on the gradient projec-
tion is proposed to avoid mutual interference and find
a generic optimal direction for all sub-models.

* SFSC achieves state-of-the-art performance on the
evaluated benchmark datasets. Compared to deploy-
ing a unified model, adopting SFSC to obtain different
sub-models can achieve 6% to 8% performance im-
provements on three different datasets.

2. Related Work
2.1. One-to-one Compatible Learning Paradigm

Given a fixed old model, the one-to-one compatible
learning methods aim at aligning the learnable models with
the fixed old one in metric space, termed as “backward com-
patible learning”. Existing methods focus on the optimiza-
tion difficulties caused by the old model. Yan et al. [63] pro-
pose Focal Distillation to reduce the “negative flips” which
means a test sample is correctly classified by the old model
but incorrectly classified by the new one. Wu et al. [62]
start from neighborhood structures and classification en-
tropy to eliminate the effect of outliers in old features. Shen
et al. [48] propose a pseudo classifier and enhance it with a

random walk algorithm to get rid of the old classifier. Dif-
ferent from these one-to-one compatible learning methods,
this paper studies a new compatible learning paradigm that
aims to learn many-to-many compatibility among multiple
learnable models.

2.2. Dynamic Neural Networks

Dynamic neural networks are able to adapt their struc-
tures or parameters to the input during inference [19]. In
recent years, research in this field has mainly focused on
dynamic depth [5, 18, 26, 54,55, 58], dynamic width [3, 4,

,27,29,36], dynamic routing [22,25,28,64], dynamic pa-
rameters [12,15,21,51,69], etc. In addition to hand-crafted
methods, Neural Architecture Search (NAS) method is also
adopted to train and optimize multiple sub-nets with various
capacities in one-time training [7,8,44,53]. Dynamic neural
networks can allocate computations on demand for differ-
ent platforms by selectively activating model components.
They have been used in classification [4 1,42, 59], segmen-
tation [31, 34, 43], and detection tasks [12,56,69]. In gen-
eral, current dynamic neural networks output with definite
semantic information (e.g. class id, detection box) which
are naturally interoperable. However, for retrieval tasks, the
networks output with features, which requires feature com-
patibility.

2.3. Gradient-based Multi-task Optimization

From the gradient perspective, multi-task optimization is
to aggregate gradients corresponding to different tasks and
find a descent direction that decreases all objectives. Ex-
isting methods treat it as a nonlinear programming prob-
lem and take the multi-objective Karush-Kuhn-Tucker [33]
(KKT) conditions to perform gradient projection and rescal-
ing under different assumptions on tasks, e.g. multiple tasks
which are equally important [10, 46, 66], main tasks with
some auxiliary tasks [13,57], a series of the tasks which
are learned sequentially [14,35,37]. This paper treats op-
timizations of multiple sub-models as multiple tasks. As
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Figure 2. Overview of SFSC. We first transform the full modelcalculate the compatible learning loss {L,, Lc,, ...,
sub-models with various capacitie. ¢ into the sub-models. Then we calculate the compatible learning loss { L¢, , Lc,, ...,

L., } on different
L.,, } on different

sub-models with various capacities. Finally, we optimize the sub-models by aggregating losses.

the sub-models vary greatly in their capacity, the optimiza-
tion of different models converges at different speeds. The
challenge is to dynamically adjust the priorities of different
sub-models to avoid the overfitting of someones as well as
underfitting of others.

2.4. Evidential Deep Learning

Evidential deep learning [47] is used to model the uncer-
tainty of deterministic neural networks. Compared with the
Bayesian neural networks [32,40], evidential deep learning
methods have the advantage of low computational complex-
ity, as there is no need for complex posterior probability es-
timates and multiple Mento Carlo samplings. Based on the
DST [16] (Dempster-Shafer Theory of Evidence), eviden-
tial deep learning treats the output of the neural networks as
subjective opinions and formalizes them as Dirichlet distri-
bution. It has been used in classification tasks to overcome
the overconfidence problem of softmax cross entropy [30],
action recognition task to identify unknown samples [2],
and multi-view learning task [20] to dynamically integrate
different views. This paper treats the output features of dif-
ferent sub-models as evidence to access uncertainty and re-
lates the priority of different sub-models with the obtained
uncertainty.

3. Methods

In this section, we will describe the proposed SFSC
method. We first introduce the construction of switchable
neural networks. Then, we analyze the difficulties for op-
timizations and propose our compatible loss as well as the
gradient aggregation method.

3.1. Overview

SESC involves the training process of multiple sub-
models whose features are compatible. Sub-models with
different capacities are transformed from the full model ¢
according to the crop ratio list W. We termed the crop ratio
list of each sub-model as W = {v1,72, ..., Ym }, Where ~;

denotes the ratio of the width of the sub-model ¢; to the full
model ¢.

As shown in Figure 2, for each batch input, SFSC
first calculates the original loss L,.;. The compati-
ble loss {L¢,, Le,, ---Le,, } is calculated on different sub-
models. By aggregating losses {Loi, Leys Leys ooy Le,, }s
SFSC computes the general gradient and updates the full
model ¢ by gradient descent methods.

3.2. Switchable Neural Network for Sub-models
Construction

We first convert the traditional convolutional neural net-
work into its corresponding switchable neural network. As
the platforms generally perform model inference layer by
layer, the resource limitation is more related to the widths
of layers than the number of layers. Here we perform chan-
nel pruning on ¢ with crop ratio -y; to obtain sub-model
@;. Specifically, the classic convolutional neural network is
mainly composed of some basic modules, such as convo-
lution, fully connected layer, and batch normalization. We
modify these basic modules as follows:

1) For convolution (Conv) and fully connected (FC) lay-
ers, if their output is not the final feature for retrieval, we
perform pruning in both input and output channels. Other-
wise, pruning is only performed in input channels.

2) For batch normalization (BN), we assign an indepen-
dent BN to the sub-model ¢;. As the intermediate features
extracted by different sub-models vary greatly in distribu-
tions [65], channel pruning can not be performed on BN.
Fortunately, the parameters of BN only occupy a small part
of all parameters of the entire network (shown in Table 1).
Such an operation only results in a slight increase in storage
resources in training progress but does not incur additional
deployment costs.

Through such design, we obtain the sub-model ¢; with
the following characteristics: 1) The features extracted by
different sub-models have the same dimensions. 2) The ra-
tio of layer widths in the sub-model ¢; to that in the full
model ¢ is around ;. 3) The sub-model ¢; reuses the pa-
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NetWorks ResNet 18 [23] ResNet-30 [23] MobileNet V2[ 1 ShuffieNet [67]

Conv and FC 1,679,912 25,503,912 3,470,870 5,402,826
99 918% 99.792% 99.027% 99.102%

BN 9,600 53,120 34,112 48,960
0.0820% 0.208% 0.973% 0.898%

Table 1. Number and proportion of different modules’ parameters
in different network structures

rameters from the full model ¢ except for BN.

3.3. Aggregation Method based on the Gradients
Projection

As the gradients corresponding to different sub-models
may have different directions, simply aggregating the gra-
dients by summation may cause mutual interference, which
means the improvements of sub-models are overestimated
or underestimated, as shown in Figure 3.

Inspired by multi-task learning [ ,46,66], we tackle such
a problem by projecting conflicting gradients and keeping
the components perpendicular to each other. Given a pair of
gradients (g;,g;) corresponding to sub-model ¢; and ¢,
if the cosine of their direction cos(g;,g;) < 0, they are
conflict with each other. For a pair of conflicting gradients
(9i,g5), we project them to the orthogonal plane of each
other, respectively, as shown in Equation 1.

/ 9j * Gi
9; =9i — * Ji- M
T el

Such projection results in a direction that improves both the
i-th and j-th sub-model simultaneously.

’
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Figure 3. An example of gradient conflict between pair (g;, g;)-
Simply taking the summation aggregation results in the elimina-
tion of the improvement of the ¢-th sub-model. Our aggregation
module ensures the generic direction to improve both the i-th and
7-th sub-model.

3.4. Compatible Loss based on the Uncertainty Es-
timation

The aggregation method aims to optimize all sub-models
coordinately. However, it may not work as expected when
facing the imbalance of gradient magnitude between sub-
models, as shown in Figure 4. Therefore, it is critical to
design a compatible loss.

As sub-models are co-optimized, constraining them with
existing compatible loss [6,49] faces conflicts in the mag-
nitude of gradients. As the sub-models vary in capacities,
their optimization process converges at different speeds.
The small-capacity sub-models will converge faster. There-
fore, the small-capacity sub-model may have reached its
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Figure 4. An example of gradient conflict between pair (g;, g;)
when there is an imbalance of gradient magnitude. The i-th sub-
model contributes little to the optimization even using gradient
projection.

performance ceiling while still producing losses of large
magnitude, resulting in the overfitting of such sub-model
and weakening of other sub-models. Intuitively, a sub-
model with low uncertainty tends to reach its performance
ceiling. Therefore, it is expected to adaptively adjust the
optimization priorities of each sub-models through their un-
certainty dynamically during the training process.

Here we propose a compatible loss based on the uncer-
tainty estimation. Inspired by Dempster-Shafer Theory of
evidence [16] (DST), we measure the uncertainty through
belief, where high uncertainty corresponds to the model
with small capacities. Typically, the belief is measured by
a set of mass B = {b1, ba, ...bc } and an overall uncertainty
mass u, where b, denotes the belief degree belonging to the
class c. B and u are related to a Dirichlet distribution, which
satisfy Equation 2.

C
w+ Y be=1u>0,b,>0. 2)
c=1

The belief is estimated by the features extracted by
sub-models. Given sample i, its features extracted by
the j-th sub-model termed ¢;(i). The evidence E] =
{el,, el ...e{c} is transformed by ¢; (7) through linear pro-
jection and activation function (i.e., exp(-)), where the lin-
ear projection layers share parameters with the classifier
of the 1.0x model ¢. The belief of sample 7 on the j-
th sub-model is computed by Equation 3, where o =

{al, aly...al .} is the Dirichlet intensity on all classes.
aj, .= e]., —+ 1

j
Oé _ ic_luj_g
ic? zc_ Sj ’ z_SJ
i

i

3)

With o, the Dlrlchlet distribution D(p;|a) is obtained,
where p; is the class assignment probabilities on a simplex.
Inspired by the Cross-Entropy loss, we integrate the proba-
bility p; on D(p;|a), as shown in Equation 4.

1 - (aie—1) | s
/Z yzc plc)]5<aj)H§:1pgc dp{

= nycwwf) —¥(al,)),

“4)
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where t(-) is the digamma function. Since Equation 4 may
converge to a trivial solution D(p;|1) during optimization,
we penalize the distance between D(p;|1) and D(p;|a) as
the regularization. The complete compatible loss L., is
shown in Equation 5. L., adaptively adjusts the magnitude
of gradients through their corresponding uncertainty.

KL [D(pifod) ID(pif1)] = log (

i N ain|
+ (af, = 1) [(ad, — () azc»] :
c=1 c=1

Le, (i) = £(ad) + A+ KL [D(pilo])ID@i[1)]

We further conduct a gradient analysis for the proposed
compatible loss. The Cross-Entropy loss is written as:

Zf:lr(agc) )
DOV, (o)

c=1 ic

ezic
e, .
D ey €7

where z; is the classification vector of sample ¢ outputed by
the model. The corresponding gradient of Equation 6 can
be computed as:

C
Dic s Lce = Z _yiclo.g(pig), (6)
c=1

OLe eZic
e _ ~ Yie. 7
D21 chzl oo Yic @)

The corresponding gradient of the proposed compatible
loss in 5 can be computed as:
OLc,(al) . A
—2 2 = (o )M, — 1) — yie
aa;zc w ( ’LC)[ ( c ) y ] (8)
+' (SH=A(S] =€) +11.

We take alj as the approximation of 1 (o,) and obtain

ic

Equation 9.
OL..(a) 1 .
o~ — Mol —1) — yic
e G R
1 j
+§[—)\(5¢ -C)+1] )
A+ Yice AC+1
:*( Ozj + S] )v

where the first term corresponds to the Cross-Entropy loss

in Equation 7, and the second term corresponds to the uncer-
tainty estimation. As the uncertainty u] = % x é, thus
higher uZ would result in a gradient with larger magnitude
through % Therefore, the magnitude of gradients cor-
responding to different sub-models is dynamically adjusted
to avoid someone dominating the optimization process.
Such compatible loss can work well with gradient pro-

jection, as shown in Algorithm 1.

Algorithm 1 Training Process of SFSC

Require: batch input B, the crop list W = {y0,71, ..., Ym }, the
full model ¢
* Gori < éLOTgéd)}B)
: forv; € Wdo
Switch to the sub-model ¢;
6L, (¢;,8)
95 & — %55
end for
G7 G? + {gom’7 go, ~~-gm}
for g, € G? do
Shuffle(G)
for g, € G do
10: d=ga*gp
11: if d < 0 then //hgavz conflicts
. b*
12: Ja = Ja = Jig, 12
13: end if
14: end for
15: end for
16: return Update ¢ by Af =

R A A ol e

- Zgagcp Ga

In general, SFSC aims to achieve the Pareto optimality
[9] among the optimization of sub-models. The proposed
compatible loss adaptively adjusts the magnitude of gradi-
ents through uncertainty to control the optimization prior-
ities of sub-models dynamically. Besides, the aggregation
method performs the gradient projection to find a generic
direction to improve all sub-models.

4. Experiments
4.1. Experimental Configuration

Datasets. We evaluate the proposed SFSC on person
RelD datasets, i.e., Market-1501 [68], MSMT17 [61], and
one vehicle RelD dataset VeRi-776 [60]. Market1501 con-
sists of 32,668 annotated images of 1,501 identities shot
from 6 cameras. MSMT17 consists of 126,441 bounding
boxes of 4,101 identities taken by 15 cameras. VeRi-776
contains over 50,000 images of 776 vehicles captured by 20
cameras.

Comparison methods. For the one-to-one compati-
ble learning paradigm, BCT [49] and Asymmetric [6] are
adopted, as they are representatives of compatible learning
through classification losses and embedding losses. BCT
and Asymmetric can only obtain sub-models in a one-to-
one compatible way. Specifically, given the fixed largest
capacity model which is trained without compatible regu-
larization, we train a series of small-capacity models to be
compatible with it, respectively. Besides, we also incorpo-
rate BCT/Asymmetric loss in our proposed self-compatible
learning paradigm for a fair comparison. We take the
compatible loss in BCT/Asymmetric to constrain each sub-
model compatible with the full model, and use summation
to aggregate losses from sub-models, termed as “BCT-S”
and “Asymmetric-S”.

Evaluation metrics. Mean average precision (mAP)
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Z(qsq,asg) S Ton | on |0n | 0 || 6n | 01 | 60 | o
Unified Model Ours
¢]1175 55.25 - - - 58.19 62.88 63.48 69.43
(bi - 67.48 - - 61.24 | 70.74 | 71.37 76.37
¢% - - 71.25 - 62.43 71.25 72.06 77.26
- - - 80.91 68.03 7476 | 75.67 81.43
BCT-S Asymmetric-S
¢1175 54.40 | 58.10 | 60.22 | 61.29 48.79 51.96 54.09 56.31
(bi 55.71 66.38 68.29 69.71 52.24 62.45 64.98 67.23
¢>% 56.50 | 68.30 | 68.42 | 71.99 54.44 64.74 67.97 71.28
61.79 69.73 71.93 73.61 56.54 67.30 | 7191 78.38
BCT Asymmetric
¢1175 55.55 56.64 | 59.40 | 60.35 55.83 50.85 53.71 55.39
(bi 55.83 65.74 | 67.10 | 68.54 52.66 67.04 62.08 66.59
¢>% 55.66 | 68.02 | 67.49 70.93 54.48 62.33 66.33 70.14
10} 58.69 69.48 70.04 - 56.08 66.66 69.71 -
Table 2. Baseline performance comparison on Market1501 (mAP). “Unified Model” are models without any compatible regularization.
M6 1, 9) M($1,9) M($5,9) M($,9)
R1 [ mAP R1 [ mAP R1 [ mAP R1 [ mAP
MSMT17
Unified Model 28.82 11.69 48.65 22.86 57.56 30.06 70.22 43.06
BCT-S 46.49 20.11 56.22 28.13 58.11 30.14 58.76 30.99
Asymmetric-S 32.64 13.34 49.62 24.04 57.18 30.04 66.08 40.39
Ours 56.22 28.16 63.29 35.32 65.13 37.74 70.38 43.89
VERI-776
Unified Model 81.07 44.79 85.30 53.63 88.69 55.42 92.20 66.50
BCT-S 86.25 49.38 87.08 57.03 90.42 58.20 86.73 58.46
Asymmetric-S 68.75 42.16 84.29 56.55 88.04 61.37 89.82 65.35
Ours 79.76 55.04 89.94 62.28 90.48 62.72 92.32 66.55

Table 3. Performance comparison on MSMT17 and VeRi-776 datasets.

M6, 9) M($31,9) M35, 9) M($,9)
RI | mAP | RI | mAP | RI | mAP | RI | mAP

Circle Loss
Unified Model 70.25 50.79 72.66 60.43 78.21 64.66 87.38 74.06

BCT-S 63.18 42.45 72.74 52.04 77.38 59.49 87.53 74.58
Asymmetric-S 69.66 48.21 77.85 57.02 80.52 61.81 86.90 73.08
Ours 73.99 54.61 80.58 63.46 82.39 67.02 88.95 77.05

Softmax + Triplet
Unified Model 77.55 55.82 83.97 65.30 87.89 70.69 90.94 78.30

BCT-S 81.62 59.58 87.86 69.05 88.75 71.38 90.11 74.71
Asymmetric-S 75.56 52.60 85.36 64.21 86.91 68.83 90.45 77.34
Ours 87.36 66.21 90.94 76.64 91.21 77.93 92.64 81.46

Table 4. Performance comparison between different loss functions on Market1501.

and top-1 accuracy (R1) are adopted to evaluate the perfor- mance of compatible learning.

mances of retrieval. Define M (¢, ¢p) as the performances

of retrieval where the query features are extracted by model Implementation details. The implementations of all
¢, and gallery features are extracted by model ¢,. We set compared methods and SFSC are based on the Fas-
¢o and ¢, as different sub-models to evaluate the perfor- tRelD [24]. The default configuration named “bag of tricks”

[39] is adopted. A is set to 0.2 for all experiments.
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M6 ,.9) M(01,9) (05,9 M (5,9)
RI | mAP RI | mAP RI | mAP RI [ mAP
ResNet-50
Unified Model 85.27 65.44 88.84 72.07 90.8 76.40 92.22 82.13
BCT-S 89.31 72.09 91.00 77.22 91.36 78.27 91.86 79.40
Asymmetric-S 85.04 67.39 90.26 76.28 91.60 78.53 91.95 82.79
Ours 90.41 76.40 91.03 78.20 91.66 78.76 93.44 83.66
MobileNet V2
Unified Model 69.00 41.14 89.58 72.85 91.54 77.99 92.28 79.50
BCT-S 80.46 55.17 88.48 70.68 89.88 73.72 89.96 73.87
Asymmetric-S 67.28 43.64 86.97 68.95 89.31 73.82 90.74 78.45
Ours 83.11 63.82 90.53 76.52 91.18 78.30 92.61 81.34
ShuffleNet
Unified Model 82.54 60.12 89.85 64.45 91.95 72.96 84.38 79.13
BCT-S 85.51 65.76 88.42 66.85 89.73 70.59 86.67 74.41
Asymmetric-S 82.30 62.50 84.41 57.43 88.42 66.43 78.92 74.92
Ours 89.25 73.09 89.93 74.86 89.93 75.14 92.81 81.97

Table 5. Performance comparison between different model architectures on Market1501.

4.2. Baseline Comparisons

We conduct baseline experiments on Market1501. We
take “Softmax + Cross Entropy” as the loss func-
tion, ResNet-18 [23] as the backbone, and W =
{0.25%,0.50%,0.75x} as the crop ratio list of the sub-
models. Notes that for a model with crop ratio +;, the ra-
tio of its parameters to the full model is v?. Therefore, the
ratio of the number of parameters in the 0.25x, 0.50x and
0.75x sub-model to that in the full model are 7%, 1, %,
respectively.

Comparison methods. As for one-to-one compatible
learning methods BCT and Asymmetric, the compatibil-
ity does not outperform that achieved by their correspond-
ing self-compatible methods especially when the models
are not constrained to be compatible directly. For self-
compatible learning methods, BCT-S and Asymmetric-S,
the conflicts among sub-models lead to a limited average
accuracy.

Our Method (SFSC). As we resolve the conflicts among
different sub-models, our methods can achieve many-to-
many compatibility among all the sub-models, which sig-
nificantly outperforms all comparison methods.

4.3. Performances under Different Settings

Different datasets. We evaluate each self-compatible
learning method on the other person RelD datasets
MSMT17, and the vehicle RelD dataset VeRi-776 under
baseline configurations, as shown in Table 3. The results on
the two datasets with larger scales are consistent with that
on the Market1501. Our methods outperform others sig-
nificantly for the small capacity sub-model (e.g. the 0.25x
sub-model ¢ 1 ).

Different loss functions. We replace the original loss

function L,,; from “Softmax” to “Softmax + Triplet” and
“Circle Loss” [52] to evaluate the effectiveness of each
method, while Triplet loss is a kind embedding loss and cir-
cle loss is a kind of classification loss. The results in Table 4
show that the accuracy of BCT-S and Asymmetric-S drops
greatly when training with circle loss, as Our method still
stably achieves the best performance.

Different model architectures. We also study whether
each method can be stably applied to various model archi-
tectures, i.e., ResNet-50 [23], MobileNet V2 [45] and Shuf-
fleNet [67]. ShuffleNet and MobileNet are both designed
especially for edge devices, which meet the application sce-
narios of self-compatible learning. It is shown in Table 5
that BCT-S and Asymmetirc-S do not achieve higher accu-
racy than deploying a unified model with ShuffleNet and
MobileNet (e.g. for the 0.75x sub-model ¢ 2 ). And our
methods always improve the accuracy in all cases.

4.4. Ablation Study

We replace the proposed compatible loss and aggrega-
tion module with existing compatible loss BCT [50] and
summation aggregation to test the proposed two methods.

M(¢ 1 ,0) M(¢%~,¢) M(¢%q¢) M(o, ¢)

Unified Model 355 6748 7195 8001
w/o Ours Loss 66.41 74.58 76.86 77.87
w/o Ours Aggregation 68.08 73.76 74.84 75.38
SFSC 69.43 76.37 77.26 81.43

Table 6. Ablation Study on Market1501.

Table 6 shows that the proposed compatible loss mainly
improves the retrieval accuracy of the small capacity sub-
models while the proposed aggregation method can ensure
the performance of the full model.
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Figure 5. Gradient visualization on Market1501-R18 baseline. As for the original cross-entropy loss (BCT [49]), the magnitude of the
0.25x sub-model is much larger than that of the 0.75x sub-model, especially at the early stage of the training process (0~1000 iterations).
Therefore, the 0.25x sub-model dominates the training progress and the improvements of the 0.75x sub-models are eliminated. While

our method ensures co-optimization through uncertainty estimation.

4.5. Hyperparameter Analysis

Here we verify the impact of hyperparameter settings on
the performance of the proposed method. The key hyperpa-
rameter is the crop ratio list for sub-models WW. Intuitively,
if the number of W increases or the minimal crop ratio de-
creases, the compatibility constraints on model ¢ would be
more strict, thereby increasing the difficulty of compatible
learning. Therefore, we take the baseline configuration and
set W with different values.

M(¢1,9)[M(b 81 ,P)[M(P169,P)|M (289, d)M(d, H)
16 400 400 400
Unified Model|  55.25 62.54 69.54 72.57 80.27
BCTS 61.45 68.63 73.42 72.80 75.39
Asymmetric-S 62.87 69.45 75.20 73.14 74.60
Ours 69.63 75.81 77.10 77.36 80.59
Table 7. Performance comparison with
W={0.25%,0.45x,0.65x,0.85% } on Market1501 (mAP).
M($ 1 59) [M(¢1.¢) [ M(éo ) [ M4, )
Unified Model 40.40 55.25 71.25 80.27
BCT-S 42.34 59.75 71.73 76.39
Asymmetric-S 42.58 58.20 70.50 75.42
Ours 45.44 68.18 78.00 81.46
Table 8. Performance comparison with

W={0.10x%,0.25%,0.75x } on Market1501 (mAP).

Table 7 shows the performances with the number of W
increases, while Table 8 shows the performances with the
minimum among W decreases. The result of the compari-
son methods has fluctuated to varying degrees. SFSC still
achieves the best retrieval accuracy.

4.6. Visualization

We visualize the norm of the gradient during the train-
ing progress on Market1501-R18 baseline, as shown in Fig-
ure 5. We also visualize the cumulative number of gradient
pairs which are conflict with each other during the train-
ing process. As shown in Figure 6, our method has found
a generic direction to improve all sub-models. Therefore,
there are almost no conflict pairs after 5000 iterations. As

2000 -

1500 1

1000 1

%]
<]
o

—— Our Aggregation Method

o

0 5000 10000 15000 20000 25000

8
8

Summation Aggregation
3000 4

2000 -

Cumulative Number of Conflicting Pairs

1000

10000 15000 20000 25000

Iterations
Figure 6. The cumulative number of conflict pairs during the train-
ing process.

0 5000

for the summation aggregation, it faces fierce conflicts es-
pecially after 10000 iterations, resulting in the improvement
of different sub-models overestimated or underestimated.

5. Conclusion

This paper proposes a Switchable Representation Learn-
ing Framework with Self Compatibility (SFSC) for multi-
platform model collaboration. SFSC enables us to obtain
models with various capacities to fit different computing
and storage resource constraints on diverse platforms. It
finds a generic direction to improve all sub-models by un-
certainty estimation and gradient projection. SFSC achieves
state-of-the-art performances and shows convincing robust-
ness in different case studies.
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