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Abstract

Unsupervised visible-infrared person re-identification is
a challenging task due to the large modality gap and the
unavailability of cross-modality correspondences. Cross-
modality correspondences are very crucial to bridge the
modality gap. Some existing works try to mine cross-
modality correspondences, but they focus only on local in-
formation. They do not fully exploit the global relationship
across identities, thus limiting the quality of the mined cor-
respondences. Worse still, the number of clusters of the two
modalities is often inconsistent, exacerbating the unrelia-
bility of the generated correspondences. In response, we
devise a Progressive Graph Matching method to globally
mine cross-modality correspondences under cluster imbal-
ance scenarios. PGM formulates correspondence mining
as a graph matching process and considers the global infor-
mation by minimizing the global matching cost, where the
matching cost measures the dissimilarity of clusters. Be-
sides, PGM adopts a progressive strategy to address the
imbalance issue with multiple dynamic matching processes.
Based on PGM, we design an Alternate Cross Contrastive
Learning (ACCL) module to reduce the modality gap with
the mined cross-modality correspondences, while mitigat-
ing the effect of noise in correspondences through an alter-
nate scheme. Extensive experiments demonstrate the reli-
ability of the generated correspondences and the effective-
ness of our method.

1. Introduction

The target of visible-infrared person re-identification

(VI-ReID) [23, 25, 38, 51, 52] is to recognize the same

person across a set of visible/infrared gallery images when

given an image from another modality. This task has at-
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Figure 1. Idea illustration. Different colors indicate different

pedestrians. (a) illustrates the feature distribution of randomly

selected persons of SYSU-MM01. The cross-modality discrep-

ancy is much larger than inter-class variance within each modality.

(b) abstracts the existing solution. The locally closest unmatched

cross-modality cluster is treated as correspondence. Bottom of (b)

indicates its two drawbacks: 1) it ignores the global information

among different identities and 2) it ignores the cluster imbalance

issue across modalities and discards remaining nodes ( ). (c) is

the progressive graph matching method. We utilize graph match-

ing to obtain the globally optimal correspondences and design a

progressive strategy to handle the cluster imbalance issue.

tracted extensive interest recently due to its significance in

night intelligent surveillance and public security. Many pro-

gresses [3, 5, 29, 40, 51] have been made in VI-ReID. How-

ever, these methods require well-annotated training sets

which are exhausting to obtain, so they are less applicable
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in real scenarios. In light of this limitation, we attempt to

investigate an unsupervised solution for VI-ReID.

For unsupervised single-modality ReID, widely-studied

works [4, 7, 9, 34, 42, 57] utilize cluster-based methods to

produce supervision signals in the homogeneous space.

However, in the visible-infrared heterogeneous space, the

consistency of features and semantics cannot be maintained

due to the large modality gap. Specifically, the cross-

modality difference is much larger than the inter-class dis-

crepancy within each modality (see Fig. 1a). Hence, we

cannot establish connections between the two modalities by

adopting off-the-shelf clustering methods. However, cross-

modality correspondences play an important role in bridg-

ing the modality gap between two heterogeneous modal-

ities [25, 29, 40, 51, 52]. Without reliable cross-modality

correspondences, the model can hardly learn modality-

invariant features.

Some efforts [22,33,45] have been made recently to find

cross-modality correspondences. However, most of the ex-

isting methods consider only local information and do not

take full advantage of the global relationship among dif-

ferent identities (see Fig. 1b). What’s worse, they are not

applicable to scenarios with cluster imbalance problems,

since some clusters cannot find their correspondences, hin-

dering the later modality gap reduction process. To globally

mine cross-modality correspondences under cluster imbal-

ance scenarios, we propose a Progressive Graph Matching

(PGM) method. It is featured for two designs, i.e., 1) con-

necting the two modalities with graph matching and 2) ad-

dressing the imbalance issue with the progressive strategy.

First, we employ graph matching to fully utilize the rela-

tionship among different identities under global constraints

(see Fig. 1c left). PGM formulates the cross-modality cor-

respondences mining process as a bipartite graph matching

problem with each modality as a graph and each cluster as a

node. The matching cost between nodes is positively corre-

lated with the distance of clusters. By minimizing the global

matching cost, graph matching is expected to generate more

reliable correspondences with global consideration. Graph

matching has been demonstrated to have an advantage in

unsupervised correspondence localization between two fea-

ture sets [6, 35, 44, 49, 50]. With this property, we are in-

spired to construct a graph for each modality and link the

same person across different modalities.

Second, we propose a progressive strategy to tackle the

imbalance problem. Basic graph matching cannot han-

dle the cluster imbalance issue across modalities, which is

caused by camera variations within class. Instances of the

same person are sometimes split into different clusters [4,

57] and some clusters cannot find their cross-modality cor-

respondences (see Fig. 1c). This correspondence-missing

problem affects the further modality discrepancy decrease.

In response, we propose to find the correspondence for each

cluster through multiple dynamic matching (see Fig. 1c

right). The subgraphs in the bipartite graph are dynami-

cally updated according to the previous matching results un-

til each cluster progressively finds its correspondence. With

the progressive strategy, different clusters with the same

person ID could find the same cross-modality correspon-

dences. Therefore, these many-to-one matching results alle-

viate the imbalance issue and also implicitly enhance intra-

class compactness.

In addition, to fully exploit the mined cross-modality

correspondences, we design a novel Alternate Cross Con-

trastive Learning (ACCL) module. Inspired by supervised

methods like [23,25,47], Cross Contrastive Learning (CCL)

reduces the modality discrepancy by pulling the instance

close to its corresponding cross-modality proxy and push-

ing it away from other proxies. However, unlike the super-

vised setting, the cross-modality correspondences generated

by unsupervised methods are inevitably noisy, so directly

combining the two unidirectional metric losses (visible to
infrared and infrared to visible) may lead to rapid false “as-

sociation”. We propose to alternately use two unidirectional

metric losses so that positive cross-modality pairs can be

associated by stages. This alternate scheme mitigates the

effect of noise since the false positive pairs do not remain

for long. In an alternative way, the noise effect would be

reduced (as detailed in Sec. 3.3).

Our main contributions can be summarized as follows:

• We propose the PGM method to mine reliable cross-

modality correspondences for unsupervised VI-ReID.

We first build modality graph and perform graph

matching to consider global information among iden-

tities and devise a progressive strategy to make the

matching process applicable to imbalanced clusters.

• We design ACCL to decrease the modality dispar-

ity, which promotes the learning of modality-invariant

information by gathering the instance to its corre-

sponding cross-modality proxy. The alternate updat-

ing scheme is designed to mitigate the effect of noisy

cross-modality correspondences.

• Extensive experiments demonstrate that PGM method

provides relatively reliable cross-modality correspon-

dences and our proposed method achieves significant

improvement in unsupervised VI-ReID.

2. Related Work

2.1. Visible-Infrared Person ReID

Supervised VI-ReID has drawn increasing interest re-

cently due to its potential in 24-hour surveillance. It mainly

suffers from the modality discrepancy originating from

different spectrum cameras [38]. To alleviate the cross-

modality discrepancy, many works apply feature-level con-

straints to embed heterogeneous images into a shared fea-
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ture space so as to align feature distribution [23, 25, 40, 47].

Among these, [25] utilizes a unidirectional cross-modality

metric to alleviate the relay effect and promote modality

association. Another representative method-of-choice is to

make up the missing modality-specific information from ex-

isting modalities [21, 32, 36, 55, 58]. Zhang first et al. pro-

posed an FMCNet [55] to compensate for missing modality-

specific information at the feature level rather than the im-

age level. However, the success of the above-described su-

pervised approaches is partially attributable to the availabil-

ity of well-annotated training datasets.

Unsupervised VI-ReID is raised to cope with the lack

of annotations. H2H [22] makes the first attempt to address

this challenging problem by proposing a two-stage learn-

ing approach. In OTLA [33], Wang et al. try to assign

the infrared images to the pseudo visible labels based on

the optimal-transport strategy. These methods require extra

RGB datasets for pre-training and OTLA also assumes each

visible label is assigned to a similar number of infrared im-

ages, which may not hold in practice. Yang et al. first mine

the cluster-level relationship [45] with cross-modality mem-

ory aggregation but it lacks global consideration and cannot

handle the cluster imbalance issue.

2.2. Unsupervised Person ReID

In an effort to alleviate the conflict between annotation

and performance, unsupervised ReID has attracted increas-

ing attention. These methods can be roughly classified

as Unsupervised Domain Adaption (UDA) and UnSuper-

vised Learning (USL) methods. The target of UDA-based

methods is to adapt models trained on labeled source do-

main to unlabeled target domain [28]. Among UDA-based

methods, several works [19, 26, 63, 64] attempt to reduce

domain gap by finding positive or negative pairs from la-

beled source and unlabeled target dataset. Some [11,37,62]

would like to employ generative networks to transfer im-

ages of source domain into the style of target domain.

Another possibility is to acquire pseudo labels by cluster-

ing methods from target domain [1, 13–15, 60]. The USL

methods [7, 24, 31, 43, 46, 56, 57, 61] are mainly based on

pseudo labels, which establish a bridge with supervised

manner. However, due to the large modal discrepancies be-

tween visible and infrared images, the unsupervised meth-

ods designed for single-modality ReID are not applicable

for visible-infrared ReID.

2.3. Graph Matching for Person Re-ID

In the context of single-modality ReID, graph match-

ing is mainly utilized in two ways. 1) The pedestrian im-

age is divided into slices or parts, and each slice or part

is considered as a node inside the graph [41, 59]. Graph

matching is used to align parts of different person images.

2) In [16, 39, 50], each camera view is considered as a

graph and each person within the camera is considered as

a node. Graph matching is used to identify the same per-

son across multiple cameras. For VI-ReID, however, the

cross-modality difference is much larger than inter-camera

variance within each modality, thus we construct a graph

for each modality and explore the correspondences across

modalities with graph matching.

3. Methodology

The framework of our proposed method is illustrated in

Fig. 2. We first utilize the Dual-Contrastive Learning (DCL

[45]) framework to learn intra-modality discriminability,

which is optimized by the joint intra-modality contrastive

learning. Based on DCL, the proposed method lays em-

phasis on its novel progressive graph matching (middle

in Fig. 2) and alternate cross contrastive learning module

(right in Fig. 2), which are described in detail in Sec. 3.2

and Sec. 3.3, respectively.

3.1. Dual-Contrastive Learning framework

Given a visible-infrared training dataset T = {T v, T r},

T v = {xv
i |i = 1, 2, · · · , N} represents visible dataset with

N visible instances and T r = {xr
i |i = 1, 2, · · · ,M} de-

notes M infrared images. It should be noted that channel

augmentation [51] is a common and powerful data augmen-

tation to bridge the gap between visible and infrared images,

and thus channel augmented (CA) images are used to assist

in the learning process of visible streams.

The two-stream backbone (e.g., ResNet50 [17] and

AGW [53]) f is used to extract the features of these pedes-

trian images. Visible and infrared memories are constructed

after their features got clustered by DBSCAN [12]. Ke ∈
R

d×Y e

is the memory for modality e (e = {v, r}, indi-

cating visible and infrared modality, respectively), where d
is the feature dimension and Y e is the number of clusters

for modality e. Each proxy represents all the instances of

the same cluster and each entry of the memory is initial-

ized with the mean feature of its corresponding proxy. The

memory is updated by

Ke[j] ← λKe[j] + (1− λ)f(xe
i ), (1)

where Ke[j] stores the feature centroid for j-th class in

modality e. Besides, xe
i is an image in class j and λ ∈ [0, 1]

is the memory updating rate.

In a mini-batch during training, we randomly sample P
classes and K samples per class as in [18] for the infrared

modality. Considering that each visible image has its aug-

mented CA image, to balance the number of images of dif-

ferent modalities, we randomly choose P classes, each con-

taining (K/2) visible images and their generated (K/2) CA

images. For infrared modality, a ClusterNCE [9] loss is:
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Figure 2. The pipeline of our framework. Different colors indicate different pedestrians. It contains the Dual Contrastive Learning

framework (baseline, described in Sec. 3.1) and two key novel components: Progressive Graph Matching (PGM, described in Sec. 3.2)

method and Alternate Cross Contrastive Learning (ACCL, described in Sec. 3.3) module. PGM method is proposed to find reliable cross-

modality correspondences (stored in V2R and R2V), which take part in the further ACCL to learn modality-invariant features.

Linf = −
NB∑
i=1

log(
exp(Kr[ỹri ]

T · f(xr
i )/τ)∑Y r

k=1 exp(Kr[k]T · f(xr
i )/τ)

), (2)

where NB = P × K is the number of infrared instances

and ỹri is the class (pseudo label) for image xr
i . Besides,

τ is a temperature factor. This loss achieves classification

by gathering an instance toward the proxy of its class while

scattering all other proxies. The loss function for the visible

modality and its CA modality is denoted by Lvis and Lca,

respectively. Their formulations are similar to Eq. (2) and

are omitted here. The details of Lvis and Lca are given in

the supplementary material.

Ldcl = Linf + Lvis + Lca (3)

The DCL loss function Ldcl combines these ClusterNCE

[9] losses, which help the model to learn intra-modality dis-

criminability and the augmented stream assists to learn cer-

tain modality-invariant features.

3.2. Progressive Graph Matching

DCL mentioned above does not directly explore the rela-

tion between the two modalities and thus can not cope with

the case of excessive modality differences. To connect vis-

ible and infrared data, we present the PGM method to find

reliable cross-modality correspondences.

Notaion Definition. We build a graph for each modal-

ity and each graph can be viewed as part of a bipartite

graph. Suppose that the visible graph GV contains Y v

nodes (clusters), which can be denoted by [V] = {cvi |i =
1, 2, · · · , Y v}. Analogously, the infrared graph GR in-

cludes Y r infrared nodes represented by [R] = {crj |j =
1, 2, · · · , Y r}. We use C = {C(i, j)} to denote the as-

signment cost matrix with each element illustrating the dis-

similarity of node cvi and node crj . Our target is to find the

correspondence in GR (GV ) for each node in GV (GR). We

assume that Y v ≥ Y r, indicating that the number of clus-

ters in the two modalities is different.

Cost Matrix. The assignment cost in the graph match-

ing method can be represented by the dissimilarity between

the features of different clusters under a certain metric. The

basic idea of the matching cost is to penalize the matched

clusters across two modalities with the feature difference.

That is, the more similar the features of clusters are, the

lower the cost is. We design a simple yet effective cost ex-

pression, which is formulated by

C(i, j) =
1

exp(Sim(i, j))
,

Sim(i, j) =
uv
i · ur

j

||uv
i || × ||ur

j ||
,

uv
i =

1

|cvi |
∑

xv
i ∈cvi

f(xv
i ),

ur
j =

1

|crj |
∑

xr
j∈crj

f(xr
j),

(4)

where |cvi | denotes the number of instances in the cluster cvi
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and xv
i (xr

j ) is the instance within the cluster cvi (crj ). The

mean feature of instances inside the cluster is expressed as

the cluster’s representation.

Basic Graph Matching Formulation. We give a defini-

tion of Basic Graph Matching (BGM) formulation follow-

ing [30], which can be formulated as binary linear program-

ming with linear constraints:

G(m) = argmin
m

CTm

s.t. ∀i ∈ [V], ∀j ∈ [R] : mj
i ∈ {0, 1},

∀i ∈ [V] :
∑
j∈[R]

mj
i ≤ 1,

∀j ∈ [R] :
∑
i∈[V]

mj
i = 1,

(5)

where m = {mj
i} ∈ R

Y v∗Y r×1 is an indicator of the

matching of nodes cvi and crj , indicating whether cvi and crj
belong to the same person (mj

i = 1) or not (mj
i = 0). Var-

ious efficient solutions such as the Hungarian algorithm [2]

could be used to solve the basic matching problem, so we

will not describe these algorithms in detail.

Given cost matrix C, the BGM outputs matrix m, which

has Y r elements of 1, representing Y r matched positive

pairs. Note that not each node cvi in GV can find a node

crj that satisfies mj
i = 1 (see 3rd line in Eq. (5)), indicating

that there exit some clusters in visible modality not finding

their correspondences. Further, we will introduce the PGM

method to handle the imbalanced problem during matching.

Progressive Graph Matching Method. The core idea

of the PGM method is to find the correspondence for each

node through multiple dynamic matching. Specifically, we

suppose that the nodes in GV are more than nodes in GR.

After performing one BGM process, there are remaining

nodes in GV not finding their correspondences, and nodes in

GR all find their correspondences. We dynamically recon-

struct a new graph (annotated as GV′ ) with the remaining

nodes in GV and the edges between them. GV′ and GR are

recomposed into a bipartite graph and a new BGM process

will be performed. Note that nodes in GR would not update

their correspondences since they have already found one. In

the new BGM process, only nodes in GV′ will update their

correspondences. The BGM is performed repeatedly until

each node finds its correspondence progressively. Details

are presented in Algorithm 1.

3.3. Alternate Cross Contrastive Learning

With the cross-modality correspondences obtained by

the PGM method, we propose the ACCL to reduce the

modality discrepancy while mitigating the effect of the

noise in the correspondences.

Cross Contrastive Learning (CCL). The CCL consists

of two unidirectional learning, namely infrared to visible

Algorithm 1: Progressive Graph Matching

Input: The cost matrix C ∈ R
Y v×Y r

(Suppose

Y v ≥ Y r).

Output: The two mapping dictionaries: V2R and

R2V, with keys storing clusters and

values storing their correspondences.

1 Initialize and empty three tag arrays: matched v,

unmatched v and matched r;

2 while len(matched v) �= Y v do
// basic graph matching result

3 m = BGM (C) // through Eq. (5)

4 for each mj
i ∈ m do

5 if mj
i = 1 then

6 if i /∈ matched v then
7 V2R[i] = j;

8 matched v.append(i);

9 if j /∈ matched r then
10 R2V[j] = i;
11 matched r.append(j);

12 else
// remaining visible nodes

13 unmatched v.append(i);

// update C with remaining nodes
14 C ← C[unmatched v] ;

15 return V2R, R2V;

(R2V) learning and visible to infrared (V2R) learning. The

former can be expressed as:

LR2V = −
NB∑
i=1

log(
exp(Kv[ŷri ]

T · f(xr
i )/τ)∑Y v

k=1 exp(Kv[k]T · f(xr
i )/τ)

), (6)

where ŷri = R2V[ỹri ]. ỹri is the pseudo label for the in-

frared image xr
i , and ŷri is the cross-modality correspon-

dence for ỹri , also the cross-modality label for xr
i . The CCL

can bridge modality gap by gathering the given sample to

its corresponding cross-modality proxy. Visible to infrared
learning exhibits a similar form with the addition of CA as-

sisted learning, denoted as LV 2R. The difference is that half

of the NB images are visible images and the other half are

their corresponding CA images. The details of LV 2R are

given in the supplementary material.

Alternate CCL (ACCL). An intuitive loss function for

CCL is to combine LV 2R and LR2V , expressed as

Lccl = LV 2R + LR2V . (7)

However, this combination would amplify the noise in

cross-modality correspondences, leading to a false associa-

tion of false positive pairs. We devise an alternate updating
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Figure 3. Comparison of the combined scheme (Lccl) and alter-

nate (Laccl) scheme. Color in © and � indicates person ID. ←
and ← indicate the pulling force in the epoch t and epoch t + 1,

respectively. Red and green edge represent the positions of the

cluster at the epoch t and epoch t + 1. In the epoch t, Lccl as-

sociates the two pairs (true or false) by strong bidirectional force.

For Laccl, the true pair is associated after two rounds of unidirec-

tional forces, while the false pair cannot be associated if they are

not matched in the next epoch.

scheme where the cross-modality learning chooses a unidi-

rectional metric in different iteration epochs, which can be

expressed as:

Laccl =

{
LV 2R, epoch % 2 = 0

LR2V , epoch % 2 = 1,
(8)

where epoch indicates the index of iterations.

The overall loss is formulated as a combination of Ldcl

and the cross-modality contrastive learning loss with a

weighting parameter μ:

Lall = Ldcl + μLaccl. (9)

Rationale Analysis. We alternately utilize two unidirec-

tional metric losses (Laccl) instead of directly combining

them as a bidirectional loss (Lccl). The directly combined

bidirectional loss is commonly used in the supervised set-

ting [25, 48], serving to associate the two modalities. How-

ever, it is not applicable in unsupervised scenarios. The

reason is that the cross-modality correspondences obtained

by unsupervised methods are inevitably unstable and noisy,

and the “strong” bidirectional force will amplify the noise

and lead to a false association. The alternate unidirectional

learning acts to associate the two different modalities and

mitigate the effect of noise with two novel designs, i.e., 1)
learning unidirectional metrics and 2) alternating unidirec-

tional metrics. The former operates as a “weaker” force to

prevent the association of false pairs too rapidly, compared

to the bidirectional metric. The latter assures that the model

is not biased towards a certain modality and that the true

pairs can be progressively associated through multiple alter-

nations. False pairs typically do not remain for long, there-

fore they cannot be progressively associated (see Fig. 3).

4. Experiments

4.1. Datasets and Evaluation Protocols

Datasets. We evaluate the proposed method on two

widely used visible-infrared datasets SYSU-MM01 [38]

and RegDB [27]. SYSU-MM01 contains 22,257 visible and

11,909 near-infrared images from 4 visible cameras and 2

infrared cameras in both indoor and outdoor environments.

RegDB is a smaller and thus less challenging dataset that is

collected by two aligned cameras (one visible and one in-

frared), and it consists of 412 person identities, where each

identity has 10 visible images and 10 infrared images.

Evaluation Metrics. We follow the commonly used pro-

tocols [52] to evaluate both two datasets, where cumula-

tive matching characteristic (CMC), mean average precision

(mAP) and mean Inverse Negative Penalty (mINP [53]) are

adopted. On SYSU-MM01, there are two different testing

settings (all-search and indoor-search modes). The gallery

is composed of visible images and the query consists of in-

frared images in the all-search mode. For indoor-search
mode, images captured by visible outdoor scenes (CAM4

and CAM5) are discarded. RegDB contains two testing

settings, including thermal to visible and visible to thermal
modes. Following [51], we randomly split the training and

testing set 10 times and report the overall average result.

Implementation Details. We adopt a non-local mod-

ule enhanced network following AGW [53], which utilizes

ResNet50 [17] as the feature extractor. The backbone pa-

rameters are initialized with the ImageNet [10] pre-trained

weights. In a mini-batch, the number of classes P and sam-

ples for each class K are both 16. All the pedestrian im-

ages are resized to 288 × 144. We use Adam optimizer to

train the model with weight decay 5e-4. The initial learning

rate is 3.5 × 10−3 and decays 10 times every 20 epochs.

The DCL network is trained for 50 epochs. Then we train

the whole network with the pre-trained DCL for another

50 epochs. The augmentations for visible and visible im-

ages are following [45]. Besides, visible images are also

augmented with Random GrayScale, which has been veri-

fied to be useful in supervised VI-ReID solutions [54]. At

each training epoch, DBSCAN [12] is used to cluster im-

ages within each modality. Following [45], the maximum

distance for DBSCAN is set to 0.6 on SYSU and 0.3 on

RegDB. The minimal number for two datasets is set to 4

during clustering. Following [45], the memory updating

rate λ is 0.1 and the temperature factor τ is 0.05. The

weighting parameter μ is 0.5. This work is supported by

Huawei MindSpore [20].

4.2. Comparison with the State-of-the-Arts

To demonstrate the efficiency of our proposed methods,

we compare it with three related Re-ID settings, which

are supervised VI-ReID (SVI-ReID), unsupervised learn-
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SYSU-MM01 Settings All search Indoor Search

Methods Venue r1(%) r10(%) r20(%) mAP(%) mINP(%) r1(%) r10(%) r20(%) mAP(%) mINP(%)

S
V

I-
R

eI
D

Hi-CMD [8] CVPR’20 34.9 77.60 - 35.9 - - - - - -

DDAG [52] ECCV’20 54.75 90.39 95.81 53.02 39.62 61.02 94.06 98.41 67.98 62.21

AGW [53] TPAMI’21 47.5 84.39 92.14 47.65 35.3 54.17 91.94 95.98 62.97 59.23

LbA [29] ICCV’21 55.41 - - 54.14 - 58.46 - - 66.33 -

CAJ [51] ICCV’21 69.88 95.71 98.46 66.89 53.61 76.26 97.88 99.49 80.37 76.79

MPANet [40] CVPR’21 70.58 96.21 98.80 68.24 - 76.74 98.21 99.57 80.95 -

FMCNet [55] CVPR’22 66.34 - - 62.51 - 68.15 - - 74.09 -

DART [47] CVPR’22 68.72 96.36 98.96 66.29 53.26 72.52 97.84 99.46 78.17 74.94

U
S

L
-R

eI
D

SPCL [15] NIPS’20 18.37 54.08 69.02 19.39 10.99 26.83 68.31 83.24 36.42 33.05

MMT [14] ICLR’20 21.47 59.65 73.29 21.53 11.50 22.79 63.18 79.04 31.50 27.66

ICE [4] ICCV’21 20.54 57.50 70.89 20.39 10.24 29.81 69.41 82.66 38.35 34.32

IICS‡ [42] CVPR’21 14.39 47.91 62.32 15.74 8.41 15.91 54.20 71.49 24.87 22.15

PPLR‡ [7] CVPR’22 11.98 43.17 59.02 12.25 4.97 12.71 48.66 68.76 20.81 17.61

U
S

V
I-

R
eI

D

H2H [22] TIP’21 30.15 65.92 77.32 29.40 - - - - - -

OTLA [33] ECCV’22 29.9 - - 27.1 - 29.8 - - 38.8 -

OTLA(SS†) ECCV’22 48.2 - - 43.9 - 47.4 - - 56.8 -

ADCA [45] MM’22 45.51 85.29 93.16 42.73 28.29 50.60 89.66 96.15 59.11 55.17

ADCA(AGW) MM’22 50.90 88.98 95.97 45.70 29.12 51.39 90.14 95.29 59.82 56.08

Ours - 57.27 92.48 97.23 51.78 34.96 56.23 90.19 95.39 62.74 58.13

Table 1. Comparison with the state-of-the-art methods on SYSU-MM01. † indicates semi-supervised setting when the method utilizes the

visible label. ‡ indicates we re-implement the result with the official code. Rank at r accuracy(%), mAP (%) and mINP (%) are reported.

RegDB Visible to Thermal Thermal to Visible

Methods r1(%) mAP(%) r1(%) mAP(%)

S
V

I-
R

eI
D

Hi-CMD [8] 70.93 66.04 - -

DDAG [52] 69.34 63.46 68.06 61.80

AGW [53] 70.05 66.37 70.49 65.90

LbA [29] 74.17 67.64 72.43 65.46

CAJ [51] 85.03 79.14 84.75 77.82

MPANet [40] 83.70 80.90 82.80 80.70

FMCNet [55] 89.12 84.43 88.38 83.86

DART [47] 83.60 75.67 81.97 73.38

U
S

L
-R

eI
D

SPCL [15] 13.59 14.68 11.70 13.56

MMT [14] 25.68 26.51 24.42 25.59

ICE [4] 12.98 15.64 12.18 14.82

IICS [42] 9.17 9.94 9.11 9.90

PPLR [7] 10.30 11.94 10.39 11.23

U
S

V
I-

R
eI

D

H2H [22] 23.81 18.87 - -

OTLA [33] 32.90 29.70 32.10 28.60

OTLA(SS) 49.90 41.80 49.60 42.80

ADCA [45] 67.20 64.05 68.48 63.81

ADCA(AGW) 66.62 63.47 67.29 62.98

Ours 69.48 65.41 69.85 65.17

Table 2. Comparison with the state-of-the-art methods on RegDB.

Rank at r accuracy(%), mAP (%) and mINP (%) are reported.

ing ReID (USL-ReID) and unsupervised VI-ReID (USVI-

ReID), respectively. The results on SYSU-MM01 and

RegDB are shown in Tab. 1 and Tab. 2.

Comparison with SVI-ReID Methods. It is encour-

aging that our proposed unsupervised approach can out-

perform some recent supervised SVI-ReID methods (see

DDAG [52] and AGW [53] on SYSU-MM01). This phe-

nomenon indicates that reliable cross-modality correspon-

dences can be obtained by progressive graph matching. It

must be acknowledged that there is still much room for im-

provement for unsupervised methods compared to their su-

pervised counterparts due to the absence of annotated cross-

modality correspondences.

Comparison with USL-ReID Methods. The results

shown in Tab. 1 and Tab. 2 indicate USL-ReID methods can

not bridge the large modality gap in cross-modality ReID.

It is unfair to directly compare these methods with our so-

lution. We list them here to demonstrate the necessity of

proposing specific solutions for cross-modality scenarios.

Comparison with USVI-ReID Methods. There are few

USVI-ReID methods as this is a relatively new task. We se-

lect all three reported methods for comparison. OTLA and

H2H both need an extra annotated visible dataset. Com-

pared with them, ADCA is more similar to our approach,

since we both try to handle pure unsupervised VI-ReID

task. In Tab. 1 and Tab. 2, we can see that our method is

significantly better than all existing USVI-ReID methods,

demonstrating the effectiveness of our method.

4.3. Ablation Study

We conduct ablation study in this subsection to validate

the effectiveness of each component of our method. Firstly,

we explain the different settings in this study. DCL is the

baseline described in Sec. 3.1. BGM and PGM indicate

which matching method is selected and are both defined

in Sec. 3.2. DM (Direct Matching) refers to the method

proposed in [45], which is designed to find positive cross-

modality pairs, also. Lccl and Laccl indicate which loss

function is adopted. The main results are shown in Tab. 3.

Effectiveness of PGM. To verify the effectiveness of

the PGM method, we first calculate the accuracy of cross-

modality correspondences, and the results of different

matching methods are shown in Fig. 4. The matching ac-
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Components SYSU-MM01 (All) SYSU-MM01 (Indoor) RegDB (Visible to Infrared)

Order DCL BGM† PGM LR2V LV 2R Lccl Laccl r1 mAP mINP r1 mAP mINP r1 mAP mINP

1 � 39.98 39.36 26.43 45.95 53.83 49.62 43.78 42.50 32.21

2 � � � 48.82 43.32 26.83 50.51 58.41 54.32 67.21 62.87 49.35

3 � � � 51.98 47.39 31.08 53.42 61.04 56.73 67.50 63.91 51.19

4 � � � 45.52 41.58 25.65 45.34 54.34 49.97 66.34 61.78 18.98

5 � � � 51.12 45.88 29.03 54.13 59.08 55.40 67.38 63.12 50.08

6 � � � 52.25 47.74 31.88 53.16 60.88 56.72 67.42 63.50 51.20

7 � � � 57.27 51.78 34.96 56.23 62.74 58.13 69.48 65.41 52.97

Table 3. Ablation studies on SYSU-MM01 and RegDB. † indicates we utilize basic graph matching and instances without correspondences

are not involved in cross-modality contrastive learning. Rank at r accuracy(%), mAP (%) and mINP (%) are reported.

curacy is defined as the ratio of the cluster whose own la-

bel matches its corresponding label to all the clusters of the

modality. Besides, the label of the cluster is determined

by the label of the largest number of instances in the clus-

ter. We find that though a bit low in the first epochs, the

matching accuracy can be gradually improved by the pro-

posed PGM method (see Fig. 4). The comparison between

PGM (BGM) and DM validates that the former can pro-

duce more reliable correspondences with global considera-

tion. Furthermore, by comparing PGM with BGM (see 2nd

row and 4th row, 3rd row and 5th row in Tab. 3), we be-

lieve that the progressive strategy handles better the cluster

imbalance issue.

Effectiveness of ACCL. We must state that the ACCL

module does not function alone because it relies on the pre-

viously generated cross-modality correspondences. When

combined ACCL with PGM, it boosts the performance of

unsupervised setting (see 1st row and 5th row in Tab. 3).

This implies that ACCL makes efficient use of cross-

modality correspondences and decreases modal differences

effectively. When comparing ACCL with CCL (see 2nd row

and 3rd row, 4th row and 5th row), the former demonstrates

its advantages. This is because the alternate scheme is more

reasonable in dealing with noisy correspondences.

4.4. Parameters Analysis

The proposed method includes the parameter μ, which is

the weighting parameter to combine different losses. In this

experiment, we aim to study how much the ACCL would

affect the performance. First, we test our model with vary-

ing μ over a range {0, 0.3, 0.5, 0.7, 1.0} on SYSU-MM01.

When μ = 0 (ACCL is not used), the model suffers poor

performance. We also observe that the performance is not

sensitive to μ since the results are high and relatively simi-

lar in all the cases. Comparing the results with different μ,

we can conclude that our proposed ACCL can effectively

improve the performance of the model.

5. Conclusion
In this paper, we propose the progressive graph match-

ing method to find reliable cross-modality correspondences

0.4

0.45

0.5

0.55

0.6
Matching Accuracy (Infrared to Visible)

DM BGM PGM
0.4

0.38

0.415

0.45

0.485

0.52
Matching Accuracy (Visible to Infrared)

DM BGM PGM

epoch

epochp

Figure 4. Matching accuracy on SYSU-MM01 dataser under the

all-search mode.
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Figure 5. The effect of parameter μ on SYSU-MM01 dataset under

the all-search mode. μ is used to balance Ldcl and Laccl.

for unsupervised VI-ReID. We first formulate the corre-

spondences mining procedure as graph matching process

with global consideration and progressively utilize graph

matching to handle the cluster imbalance issue. Moreover,

an alternate cross contrastive learning is designed to learn

modality-invariant features. Extensive experiments demon-

strate the state-of-the-art performance of our method.
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