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Abstract

Recently, virtual/pseudo-point-based 3D object detec-
tion that seamlessly fuses RGB images and LiDAR data
by depth completion has gained great attention. However,
virtual points generated from an image are very dense, in-
troducing a huge amount of redundant computation during
detection. Meanwhile, noises brought by inaccurate depth
completion significantly degrade detection precision. This
paper proposes a fast yet effective backbone, termed Vir-
ConvNet, based on a new operator VirConv (Virtual Sparse
Convolution), for virtual-point-based 3D object detection.
VirConv consists of two key designs: (1) StVD (Stochas-
tic Voxel Discard) and (2) NRConv (Noise-Resistant Sub-
manifold Convolution). StVD alleviates the computation
problem by discarding large amounts of nearby redundant
voxels. NRConv tackles the noise problem by encoding
voxel features in both 2D image and 3D LiDAR space. By
integrating VirConv, we first develop an efficient pipeline
VirConv-L based on an early fusion design. Then, we
build a high-precision pipeline VirConv-T based on a trans-
formed refinement scheme. Finally, we develop a semi-
supervised pipeline VirConv-S based on a pseudo-label
framework. On the KITTI car 3D detection test leader-
board, our VirConv-L achieves 85% AP with a fast run-
ning speed of 56ms. Our VirConv-T and VirConv-S attains
a high-precision of 86.3% and 87.2% AP, and currently
rank 2nd and 1st1, respectively. The code is available at
https://github.com/hailanyi/VirConv .

1. Introduction
3D object detection plays a critical role in autonomous

driving [32, 45]. The LiDAR sensor measures the depth
of scene [4] in the form of a point cloud and enables re-
liable localization of objects in various lighting environ-
ments. While LiDAR-based 3D object detection has made
rapid progress in recent years [19, 23, 25, 27, 28, 42, 43, 49],
its performance drops significantly on distant objects, which
inevitably have sparse sampling density in the scans. Unlike
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Figure 1. Our VirConv-T achieves top average precision (AP) on
both 3D and BEV moderate car detection in the KITTI benchmark
(more details are in Table 1). Our VirConv-L runs fast at 56ms
with competitive AP.

LiDAR scans, color image sensors provide high-resolution
sampling and rich context data of the scene. The RGB im-
age and LiDAR data can complement each other and usu-
ally boost 3D detection performance [1, 6, 20, 21, 24].

Early methods [29–31] extended the features of LiDAR
points with image features, such as semantic mask and 2D
CNN features. They did not increase the number of points;
thus, the distant points still remain sparse. In contrast,
the methods based on virtual/pseudo points (for simplic-
ity, both denoted as virtual points in the following) enrich
the sparse points by creating additional points around the
LiDAR points. For example, MVP [45] creates the vir-
tual points by completing the depth of 2D instance points
from the nearest 3D points. SFD [36] creates the virtual
points based on depth completion networks [16]. The vir-
tual points complete the geometry of distant objects, show-
ing the great potential for high-performance 3D detection.

However, virtual points generated from an image are
generally very dense. Taking the KITTI [9] dataset as an
example, an 1242×375 image generates 466k virtual points
(∼27× more than the LiDAR scan points). This brings a
huge computational burden and causes a severe efficiency
issue (see Fig. 2 (f)). Previous work addresses the density
problem by using a larger voxel size [19, 44] or by ran-
domly down-sampling [17] the points. However, applying
such methods to virtual points will inevitably sacrifice use-
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Figure 2. The noise problem and density problem of virtual points.
(a) Virtual points in 3D space. (b) Virtual points in 2D space. (c)
Noises (red) in 3D space. (d) Noises (red) distributed on 2D in-
stance boundaries. (e) Virtual points number versus AP improve-
ment along different distances by using Voxel-RCNN [7] with late
fusion (details see Sec. 3.1). (f) Car 3D AP and inference time us-
ing Voxel-RCNN [7] with LiDAR-only, virtual points-only, early
fusion, and late fusion (details see Sec. 3.1), respectively.

ful shape cues from faraway points and result in decreased
detection accuracy.

Another issue is that the depth completion can be inac-
curate, and it brings a large amount of noise in the virtual
points (see Fig. 2 (c)). Since it is very difficult to distinguish
the noises from the background in 3D space, the localiza-
tion precision of 3D detection is greatly degraded. In addi-
tion, the noisy points are non-Gaussian distributed, and can
not be filtered by conventional denoising algorithms [8,12].
Although recent semantic segmentation network [15] show
promising results, they generally require extra annotations.

To address these issues, this paper proposes a VirCon-
vNet pipeline based on a new Virtual Sparse Convolution
(VirConv) operator. Our design builds on two main obser-
vations. (1) First, geometries of nearby objects are often
relatively complete in LiDAR scans. Hence, most virtual
points of nearby objects only bring marginal performance
gain (see Fig. 2 (e)(f)), but increase the computational cost
significantly. (2) Second, noisy points introduced by inac-
curate depth completions are mostly distributed on the in-
stance boundaries (see Fig. 2 (d)). They can be recognized
in 2D images after being projected onto the image plane.

Based on these two observations, we design a StVD
(Stochastic Voxel Discard) scheme to retain those most im-
portant virtual points by a bin-based sampling, namely, dis-
carding a huge number of nearby voxels while retaining far-
away voxels. This can greatly speed up the network com-
putation. We also design a NRConv (Noise-Resistant Sub-
manifold Convolution) layer to encode geometry features
of voxels in both 3D space and 2D image space. The ex-

tended receptive field in 2D space allows our NRConv to
distinguish the noise pattern on the instance boundaries in
2D image space. Consequently, the negative impact of noise
can be suppressed.

We develop three multimodal detectors to demon-
strate the superiority of our VirConv: (1) a lightweight
VirConv-L constructed from Voxel-RCNN [7]; (2) a high-
precision VirConv-T based on multi-stage [34] and multi-
transformation [35] design; (3) a semi-supervised VirConv-
S based on a pseudo-label [33] framework. The effective-
ness of our design is verified by extensive experiments on
the widely used KITTI dataset [9] and nuScenes dataset [3].
Our contributions are summarized as follows:

• We propose a VirConv operator, which effectively en-
codes voxel features of virtual points by StVD and
NRConv. The StVD discards a huge number of redun-
dant voxels and substantially speeds up the 3D detec-
tion prominently. The NRConv extends the receptive
field of 3D sparse convolution to the 2D image space
and significantly reduces the impact of noisy points.

• Built upon VirConv, we present three new multimodal
detectors: a VirConv-L, a VirConv-T, and a semi-
supervised VirConv-S for efficient, high-precision,
and semi-supervised 3D detection, respectively.

• Extensive experiments demonstrated the effectiveness
of our design (see Fig. 1). On the KITTI leaderboard,
our VirConv-T and VirConv-S currently rank 2nd and
1st, respectively. Our VirConv-L runs at 56ms with
competitive precision.

2. Related Work
LiDAR-based 3D object detection. LiDAR-based 3D

object detection has been widely studied in recent years.
Early methods project the point clouds into a 2D Bird’s eye
view (BEV) or range view images [2, 4] for 3D detection.
Recently, voxel-based sparse convolution [7,13,19,39] and
point-based set abstraction [26,27,42,43] have become pop-
ular in designing effective detection frameworks. However,
the scanning resolution of LiDAR is generally very low for
distant objects. The LiDAR-only detectors usually suffer
from such sparsity. This paper addresses this problem by
introducing RGB image data in a form of virtual points.

Multimodal 3D object detection. The RGB image and
LiDAR data can complement each other and usually boost
3D detection performance. Early methods extend the fea-
tures of LiDAR points with image features [29–31]. Some
works encode the feature of two modalities independently
and fuse the two features in the local Region of Interest
(RoI) [5,18] or BEV plane [21]. We follow the recent work
that fuses the two data via virtual points [36,45]. The virtual
points explicitly complete the geometry of distant objects

21654



RPN

Det. head

L
iD

A
R

 p
o

in
ts

 &
 

V
ir

tu
a

l 
p

o
in

ts
(c) VirConv-L

𝑯 ∈ ℝ𝑵×𝟑

𝑯 ∈ ℝ𝑵×𝟐

𝑿 ∈ ℝ𝑵×𝑪𝒊𝒏

𝒀 ∈ ℝ𝑵×𝑪𝒐𝒖𝒕
3D kernel 

2D kernel 
to points

(b) NRConv

∑

×

×
3D SpConvStVD layer

(a) VirConv Block

NRConv 

Voxels

RoI featureVirConvNet

𝒫 ⋅𝒯−1 ⋅

Figure 3. (a) VirConv block consists of a StVD layer, some NRConv layers and a 3D SpConv layer. (b) NRConv projects the voxels back
to image space, and encodes virtual point features in both 2D and 3D space. (c) VirConv-L fuses the LiDAR points and the virtual points
into a single point cloud, and encodes the multimodal features by our VirConvNet for 3D detection.

by depth estimation, showing the great potential for high-
performance 3D detection. But virtual points are extremely
dense and often noisy. This paper addresses these problems
through two new schemes, StVD and NRConv, respectively.

3D object detection with re-sampled point clouds.
The points captured by LiDAR are generally dense and un-
evenly distributed. Previous work speeds up the network
by using a larger voxel size [19, 44] or by randomly down-
sampling [17] the point clouds. However, applying these
methods to the virtual points will significantly decrease the
useful geometry cues, especially for the faraway objects.
Different from that, our StVD retains all the useful faraway
voxels and speeds up the network by discarding nearby re-
dundant voxels.

Noise handling in 3D vision. Traditional methods han-
dle the noises by filtering algorithm [8, 11, 12]. Recently,
score-based [22] and semantic segmentation networks [15]
are developed for point cloud noise removal. Different from
the traditional noises that are randomly distributed in 3D
space, the noises brought by inaccurate depth completion
are mostly distributed on 2D instance boundaries. Although
the noise can be roughly removed by some 2D edge de-
tection method [14], this will sacrifice the useful boundary
points of object. We design a new scheme, NRConv, that
extends the receptive field of 3D sparse convolution to 2D
image space, distinguishing the noise pattern without the
loss of useful boundary points.

Semi-supervised 3D object detection. Recent semi-
supervised methods boost 3D object detection by a large
amount of unlabeled data. Inspired by the pseudo-
label-based framework [33, 37, 47], we also constructed a

VirConv-S pipeline to perform semi-supervised multimodal
3D object detection.

3. VirConv for Multimodal 3D Detection

This paper proposes VirConvNet, based on a new Vir-
Conv operator, for virtual-point-based multimodal 3D ob-
ject detection. As shown in Fig. 3, VirConvNet first con-
verts points into voxels, and gradually encodes voxels into
feature volumes by a series of VirConv block with 1×, 2×,
4× and 8× downsampling strides. The VirConv block con-
sists of three parts (see Fig. 3 (a)): (1) an StVD layer for
speeding up the network and improving density robustness;
(2) multiple NRConv layers for encoding features and de-
creasing the impact of noise; (3) a 3D SpConv layer for
down-sampling the feature map. Based on the VirConv op-
erator, we build three detectors for efficient, accurate, and
semi-supervised multimodal 3D detection, respectively.

3.1. Virtual Points for Data Fusion

Many recent 3D detectors use virtual points [45] (pseudo
points [36]) generated from an image by depth completion
algorithms to fuse RGB and LiDAR data. We denote the
LiDAR points and virtual points as P and V, respectively.
Recently, two popular fusion schemes have been applied for
3D object detection: (1) early fusion [45], which fuses P
and V into a single point cloud P∗ and performs 3D object
detection using existing detectors, and (2) late fusion [36],
which encodes the features of P and V by different back-
bone networks and fuses the two types of features in BEV
plane or local RoI. However, both fusion methods suffer
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from the dense and noisy nature of virtual points.
(1) Density problem. As motioned in Section 1, the vir-

tual points are usually very dense. They introduce a huge
computational burden, which significantly decreases the de-
tection speed (e.g., more than 2× in Fig. 2 (f)). Exist-
ing work tackles the density issue by using a larger voxel
size [19] or by randomly down-sampling [17] the points.
But these methods will inevitably sacrifice the shape cues
from the virtual points, especially for the faraway object.
Based on a pilot experiment on the KITTI dataset [9] using
the Voxel-RCNN [7] with a late fusion, we observed that a
huge number of virtual points introduced for nearby objects
are redundant. Specifically, 97% of virtual points from the
nearby objects bring only a 0.18% performance improve-
ment, while 3% of virtual points for the faraway objects
bring a 2.2% performance improvement. The reason is that
the geometry of nearby objects is relatively complete for Li-
DAR points. Such virtual points generally bring marginal
performance gain but increase unnecessary computation.
Motivated by this observation, we design an StVD (Stochas-
tic Voxel Discard) scheme, which alleviates the computa-
tion problem by discarding nearby redundant voxels. In ad-
dition, the points of the distant object are much sparser than
the nearby objects (see Fig. 2 (e)). The StVD can simulate
sparser training samples to improve detection robustness.

(2) Noise problem. The virtual points generated by the
depth completion network are usually noisy. An example
is shown in Fig. 2 (c). The noise is mostly introduced
by the inaccurate depth completion, and is hardly distin-
guishable in 3D space. By using only virtual points, the
detection performance drops ∼9% AP compared with the
LiDAR-only detector (see Fig. 2 (f)). In addition, the noisy
points are non-Gaussian distributed, and cannot be filtered
by traditional denoising algorithms [8, 12]. We observed
that noise is mainly distributed on the instance boundaries
(see Fig. 2 (d)) and can be more easily recognized in 2D
images. Although the edge detection [14] could be ap-
plied here to roughly remove the noise, this will sacrifice
the useful boundary points which are beneficial to the ob-
ject’s shape and position estimation. Our idea is to extend
the receptive field of sparse convolution to the 2D image
space, and distinguish the noise without the loss of shape
cues.

3.2. Stochastic Voxel Discard

To alleviate the computation problem and improve the
density robustness for the virtual-point-based detector, we
develop the StVD. It consists of two parts: (1) input StVD,
which speeds up the network by discarding input voxels of
virtual points during both the training and inference pro-
cess; (2) layer StVD, which improves the density robust-
ness by discarding voxels of virtual points at every VirConv
block during only the training process.
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Figure 4. (a)(b) show the voxel distributions after random sam-
pling for all and nearby voxels, respectively. (c) shows the voxel
distribution after bin-based sampling for all voxels.

Input StVD. Two naive methods can keep less input
voxels: (1) random sampling or (2) farthest point sampling
(FPS). However, the random sampling usually keeps unbal-
anced voxels at different distances and inevitably sacrifices
some useful shape cues (in the red region at Fig. 4 (a) (b)).
In addition, FPS needs huge extra computation when down-
sampling the huge number of virtual points due to the high
computational complexity (O(n2)). To tackle this problem,
we introduce a bin-based sampling strategy to perform ef-
ficient and balanced sampling (see Fig. 4 (c)). Specifically,
We first divide the input voxels into N b bins (we adopt
N b = 10 in this paper) according to different distances. For
the nearby bins (≤30m based on the statistics in Fig. 2 (e)),
we randomly keep a fixed number (∼ 1K) of voxels. For
distant bins, we keep all of the inside voxels. After the bin-
based sampling, we discard about 90% (which achieves the
best precision-efficiency trade-off, see Fig. 6) of redundant
voxels and it speeds up the network by about 2 times.

Layer StVD. To improve the robustness of detection
from sparse points, we also develop a layer StVD which
is applied to the training process. Specifically, we discard
voxels at each VirConv block to simulate sparser training
samples. We adopt a discarding rate of 15% in this paper
(the layer StVD rate is discussed in Fig. 6). The layer StVD
serves as a data augmentation strategy to help enhance the
3D detector’s training.

3.3. Noise-Resistant Submanifold Convolution

As analyzed in Section 3.1, the noise introduced by the
inaccurate depth completion can hardly be recognized from
3D space but can be easily recognized from 2D images. We
develop an NRConv (see Fig. 3 (b)) from the widely used
submanifold sparse convolution [10] to address the noise
problem. Specifically, given N input voxels formulated
by a 3D indices vector H ∈ RN×3 and a features vector
X ∈ RN×Cin

, we encode the noise-resistant geometry fea-
tures Y ∈ RN×Cout

in both 3D and 2D image space, where
Cin and Cout denote the number of input and output feature
channels respectively.

Encoding geometry features in 3D space. For each
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voxel feature Xi in X, we first encode the geometry features
by the 3D submanifold convolution kernel K3D(·). Specif-
ically, the geometry features X̂i ∈ RCout/2 are calculated
from the non-empty voxels within 3× 3× 3 neighborhood
based on the corresponding 3D indices as

X̂i = R
{
K3D

(
Xi, X

(f1)
i , ..., X

(fj)
i

)}
, (1)

where X
(f1)
i , ..., X

(fj)
i denote neighbor features generated

by H, and R denotes the nonlinear activation function.
Encoding noise-aware features in 2D image space.

The noise brought by the inaccurate depth completion sig-
nificantly degrade the detection performance. Since the
noise is mostly distributed on the 2D instance boundaries,
we extend the convolution receptive field to the 2D image
space and encode the noise-aware features using the 2D
neighbor voxels. Specifically, we first convert the 3D in-
dices to a set of grid points based on the voxelization param-
eters (the conversion denoted as G(·)). Since state-of-the-art
detectors [7, 36] also adopt the transformation augmenta-
tions (the augmentation denoted as T (·)) such as rotation
and scaling, the grid points are generally misaligned with
the corresponding image. Therefore, we transform the grid
points backward into the original coordinate system based
on the data augmentation parameters. Then we project the
grid points into the 2D image plane based on the LiDAR-
Camera calibration parameters (with the projection denoted
as P(·)). The overall projection can be summarized by

Ĥ = P
(
T −1 (G (H))

)
, (2)

where Ĥ ∈ RN×2 denotes the 2D indices vector. For each
voxel feature Xi ∈ RCin

, we then calculate the noise-aware
features X̃i ∈ RCout/2 from the non-empty voxels within a
3×3 neighborhood based on the corresponding 2D indices.

X̃i = R
{
K2D

(
Xi, X̃

(f1)
i , ..., X̃

(fk)
i

)}
, (3)

where X̃
(f1)
i , ..., X̃

(fk)
i denote the neighbor voxel features

generated by Ĥ, and K2D(·) denote the 2D submanifold
convolution kernel. If there are multiple features in a single
2D neighbor voxel, we perform max-pooling and keep one
feature in each voxel to perform the 2D convolution.

After the 3D and 2D features encoding, we adopt a sim-
ple concatenation to implicitly learn a noise-resistant fea-
ture. Specifically, we finally concatenate X̂i and X̃i to ob-
tain the noise-resistant feature vector Y ∈ RN×Cout

as

Y =

[[
X̂i, X̃i

]T
, ...,

[
X̂N , X̃N

]T]T
. (4)

Different from related noise segmentation and removal [15]
methods, our NRConv implicitly distinguishes the noise
pattern by extending the receptive field to 2D image space.
Consequently, the impact of noise is suppressed without
lose of shape cues.
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Figure 5. Transformed refinement scheme. The inputs are first
transformed with different rotations and reflections. Then, Vox-
elNet and VirConvNet encode the LiDAR and virtual points fea-
tures, respectively. Next, RoIs are generated and refined by the
backbone features under different transformations. At last, the re-
fined RoIs from different stages are fused by boxes voting [34].

3.4. Detection Frameworks with VirConv

To demonstrate the superiority of our VirConv, we con-
structed VirConv-L, VirConv-T and VirConv-S from the
widely used Voxel-RCNN [7] for fast, accurate and semi-
supervised 3D object detection, respectively.

VirConv-L. We first construct the lightweight VirConv-
L (Fig. 3 (c)) for fast multimodal 3D detection. VirConv-
L adopts an early fusion scheme and replaces the back-
bone of Voxel-RCNN with our VirConvNet. Specifically,
we denote the LiDAR points as P = {p}, p = [x, y, z, α],
where x, y, z denotes the coordinates and α refers intensity.
We denote the virtual points as V = {v}, v = [x, y, z].
We fuse them into a single point cloud P∗ = {p∗}, p∗ =
[x, y, z, α, β], where β is an indicator denoting where the
point came from. The intensity of virtual points is padded
by zero. The fused points are encoded into feature volumes
by our VirConvNet for 3D detection.

VirConv-T. We then construct a high-precision
VirConv-T based on a Transformed Refinement Scheme
(TRS) and a late fusion scheme (see Fig. 5). CasA [34]
and TED [35] achieve high detection performance based
on three-stage refinement and multiple transformation
design, respectively. However, both of them require
heavy computations. We fuse the two high computation
detectors into a single efficient pipeline. Specifically,
we first transform P and V with different rotations and
reflections. Then we adopt the VoxelNet [7] and VirCon-
vNet to encode the features of P and V, respectively.
Similar to TED [35], the convolutional weights between
different transformations are shared. After that, the RoIs
are generated by a Region Proposal Network (RPN) [7]
and refined by the backbone features (the RoI features of
P and V fused by simple concatenation) under the first
transformation. The refined RoIs are further refined by the
backbone features under other transformations. Next, the
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Method Reference Modality Car 3D AP (R40) Car BEV AP (R40) Time (ms)Easy Mod. Hard Easy Mod. Hard
PV-RCNN [26] CVPR 2020 LiDAR 90.25 81.43 76.82 94.98 90.65 86.14 80*

Voxel-RCNN [7] AAAI 2021 LiDAR 90.90 81.62 77.06 94.85 88.83 86.13 40
CT3D [25] ICCV 2021 LiDAR 87.83 81.77 77.16 92.36 88.83 84.07 70*

SE-SSD [48] CVPR 2021 LiDAR 91.49 82.54 77.15 95.68 91.84 86.72 30
BtcDet [38] AAAI 2022 LiDAR 90.64 82.86 78.09 92.81 89.34 84.55 90
CasA [34] TGRS 2022 LiDAR 91.58 83.06 80.08 95.19 91.54 86.82 86

Graph-Po [40] ECCV 2022 LiDAR 91.79 83.18 77.98 95.79 92.12 87.11 60
F-PointNet [24] CVPR 2018 LiDAR+RGB 82.19 69.79 60.59 91.17 84.67 74.77 170*

UberATG-MMF [20] CVPR 2019 LiDAR+RGB 88.40 77.43 70.22 93.67 88.21 81.99 80
3D-CVF [46] ECCV 2020 LiDAR+RGB 89.20 80.05 73.11 93.52 89.56 82.45 75

Focals Conv [6] CVPR 2022 LiDAR+RGB 90.55 82.28 77.59 92.67 89.00 86.33 100*
VPFNet [50] TMM 2022 LiDAR+RGB 91.02 83.21 78.20 93.94 90.52 86.25 62

Graph-VoI [40] ECCV 2022 LiDAR+RGB 91.89 83.27 77.78 95.69 90.10 86.85 76
SFD [36] CVPR 2022 LiDAR+RGB 91.73 84.76 77.92 95.64 91.85 86.83 98

VirConv-L (Ours) - LiDAR+RGB 91.41 85.05 80.22 95.53 91.95 87.07 56
VirConv-T (Ours) - LiDAR+RGB 92.54 86.25 81.24 96.11 92.65 89.69 92

VirConv-S (Our semi-supervised) - LiDAR+RGB 92.48 87.20 82.45 95.99 93.52 90.38 92

Table 1. Car 3D detection results on the KITTI test set, where the best fully supervised methods are in bold and ∗ denotes that the result
is from the KITTI leaderboard. Our VirConv-T outperforms all the other methods in both 3D AP and BEV AP metrics. Besides, our
VirConv-L runs fast at 56ms with 85.05 AP, and our VirConv-S attains a high detection performance of 87.20 AP.

refined RoIs from different refinement stages are fused by
boxes voting, as is done by CasA [34]. We finally perform
a non-maximum-suppression (NMS) on the fused RoIs to
obtain detection results.

VirConv-S. We also design a semi-supervised pipeline,
VirConv-S, using the widely used pseudo-label method [33,
41]. Specifically, first, a model is pre-trained using the
labeled training data. Then, pseudo labels are generated
on a larger-scale unannotated dataset using this pre-trained
model. A high-score threshold (empirically, 0.9) is adopted
to filter out low-quality labels. Finally, the VirConv-T
model is trained using both real and pseudo labels.

4. Experiments

4.1. KITTI Datasets and Evaluation Metrics

The KITTI 3D object detection dataset [9] contains
7,481 and 7,518 LiDAR and image frames for training and
testing, respectively. We divided the training data into a
train split of 3712 frames and a validation split of 3769
frames following recent works [7, 34]. We also adopted the
widely used evaluation metric: 3D Average Precision (AP)
under 40 recall thresholds (R40). The IoU thresholds in
this metric are 0.7, 0.5, and 0.5 for car, pedestrian, and cy-
clist, respectively. We used the KITTI odometry dataset [9]
as the large-scale unlabeled dataset. The KITTI odometry
dataset contains 43,552 LiDAR and image frames. We uni-
formly sampled 10,888 frames (denoted as the semi dataset)
and used them to train our VirConv-S. There is no over-
lap found between the KITTI 3D detection dataset and the

KITTI odometry dataset after checking the mapping files
released by KITTI.

4.2. Setup Details

Network details. Similar to SFD, our method uses the
virtual points generated by PENet [16]. VirConvNet adopts
an architecture similar to the Voxel-RCNN backbone [7].
VirConvNet includes four levels of VirConv blocks with
feature dimensions 16, 32, 64, and 64, respectively. The
input StVD rate and layer StVD rate are set to 90% and
15% by default. On the KITTI dataset, all the detectors use
the same detection range and voxel size as CasA [34].

Losses and data augmentation. VirConv-L uses the
same training loss as in [7]. VirConv-T and VirConv-S
use the same training loss as CasA [34]. In all these three
pipelines, we adopted the widely used local and global data
augmentation [27,34,36], including ground-truth sampling,
local transformation (rotation and translation), and global
transformation (rotation and flipping).

Training and inference details. All three detectors
were trained on 8 Tesla V100 GPUs with the ADAM op-
timizer. We used a learning rate of 0.01 with a one-
cycle learning rate strategy. We trained the VirConv-L
and VirConv-T for 60 epochs. The weights of VirConv-S
are initialized by the trained VirConv-T. We further trained
the VirConv-S on the labeled and unlabeled dataset for 10
epochs. We used an NMS threshold of 0.8 to generate 160
object proposals with 1:1 positive and negative samples dur-
ing training. During testing, we used an NMS threshold of
0.1 to remove redundant boxes after proposal refinement.
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4.3. Main Results

Results on KITTI validation set. We report the car
detection results on the KITTI validation set in Table 2.
Compared with the baseline detector Voxel-RCNN [7], our
VirConv-L, VirConv-T and VirConv-S show 3.42%, 5% and
5.68% 3D AP(R40) improvement in the moderate car class,
respectively. We also reported the performance based on the
3D AP under 11 recall thresholds (R11). Our VirConv-L,
VirConv-T and VirConv-S show 2.38%, 3.33% and 3.54%
3D AP(R11) improvement in the moderate car class, re-
spectively. The performance gains are mostly derived from
the VirConv design, which effectively addressed the den-
sity problem and noise problem brought by virtual points.
Note that our VirConv-L also runs much faster than other
multimodal detectors, thanks to our efficient StVD design.

Method
Car 3D AP (R40) Mod.

Easy Mod. Hard AP(R11)

Voxel-RCNN 92.38 85.29 82.86 84.52
Voxel-RCNN(EF) 92.42 85.78 83.10 84.94
Voxel-RCNN(LF) 92.91 86.32 83.97 85.23

VirConv-L 93.36 88.71 85.83 86.70
VirConv-T 95.81 90.29 88.10 87.82

VirConv-S (semi) 95.76 90.97 89.14 88.06

Table 2. 3D car detection results on the KITTI validation set,
where EF and LF denote early fusion and late fusion, respectively.

Results on KITTI test set. The experimental results on
the KITTI test set are reported in Table 1. Our VirConv-L,
VirConv-T, and VirConv-S outperform the baseline Voxel-
RCNN [7] by 3.43%, 4.63% and 5.58% 3D AP (R40) in the
moderate car class, respectively. The VirConv-L, VirConv-
T, and VirConv-S also outperform the best previous 3D de-
tector SFD [36] by 0.29%, 1.49%, and 2.44%, respectively.
As of the date of the CVPR deadline (Nov.11, 2022), our
VirConv-T and VirConv-S rank 2nd and 1st, respectively,
on the KITTI 3D object detection leaderboard. The results
further demonstrate the effectiveness of our method.

4.4. Ablation Study

VirConv performance with different fusion schemes.
Virtual points only, early fusion, and late fusion are three
potential choices for virtual points-based 3D object detec-
tion. To investigate the performance of VirConv under these
three settings, we first constructed three baselines: Voxel-
RCNN [7] with only virtual points, Voxel-RCNN [7] with
early fusion, and Voxel-RCNN [7] with late fusion. Then
we replaced the backbone of Voxel-RCNN with our Vir-
ConvNet. The experimental results on the KITTI validation
set are shown in Table 3. With our VirConv, the 3D AP
has significantly improved by 3.43%, 2.93%, and 2.65%,
under virtual points only, early fusion, and late fusion set-

Setting VirConv TRS 3D AP Time (ms)
LiDAR points No 85.29 38

Virtual points
No 76.12 84
Yes 79.55 52
Yes ✓ 80.91 71

Early fusion
No 85.78 88
Yes 88.71 56
Yes ✓ 88.96 76

Late fusion
No 86.32 120
Yes 88.97 74
Yes ✓ 90.29 92

Table 3. Ablation results on the KITTI validation set by using
different fusion scheme.

with with 3D AP Time
StVD NRConv Easy Mod. Hard (ms)

No No 94.26 87.55 85.49 152
Yes No 94.55 88.32 85.95 87
Yes Yes 95.81 90.29 88.10 92

Table 4. Ablation results on the KITTI validation set by using
different designed components.

tings, respectively. Meanwhile, the efficiency significantly
improves. This is because VirConv speeds up the network
with the StVD design and decreases the noise impact with
the NRConv design.

Effectiveness of StVD. We next investigated the effec-
tiveness of StVD. The results are shown in Table 4. With
StVD, VirConv-T not only performs more accurate 3D de-
tection but also runs faster by about 2×. The reason lies in
that StVD discards about 90% of redundant voxels to speed
up the network, and it also improves the detection robust-
ness by simulating more sparse training samples.

Influence of StVD rate. We then conducted experi-
ments to select the best input and layer StVD rate. The
results are shown in Fig. 6. We observe that using a higher
input StVD rate, the detection performance will decrease
dramatically due to the geometry feature loss. On the con-
trary, using a lower input StVD rate, the efficiency is de-
graded with poor AP improvement. We found that by ran-
domly discarding 90% of nearby voxels, we achieve the best
accuracy-efficiency trad-off. Therefore, this paper adopts
an input StVD rate of 90%. Similarly, by using a 15% layer
StVD rate, we achieved the best detection accuracy.

Effectiveness of NRConv. We then investigated the ef-
fects of NRConv using VirConv-T. The results are shown
in Table 4. With our NRConv, the car detection AP of
VirConv-T improves from 88.32% to 90.29%. Since the
NRConv encodes the voxel features in both 3D and 2D im-
age space, reducing the noise impact brought by the inaccu-
rate depth completion, the detection performance is signifi-
cantly improved.
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Figure 6. Left: precision and speed trade-off by using different
Input StVD rate. Right: detection performance by using different
layer StVD rate.

Effectiveness of TRS. We conducted experiments to
examine the effect of TRS in VirConv-T. The results are
shown in Table 3. With our TRS, detectors show 1.36%,
0.25%, and 1.32% performance improvement under virtual
points only, early fusion, and late fusion, respectively. The
performance gain is derived from the two-transform and
two-stage refinement, which improves the transformation
robustness and leads to better detection performance.

Class Method
3D AP

Easy Mod. Hard

Car
Baseline 89.39 83.83 87.73

VirConv-T 94.98 89.96 88.13

Pedestrian
Baseline 70.55 62.92 57.35

VirConv-T 73.32 66.93 60.38

Cyclist
Baseline 89.86 71.13 66.67

VirConv-T 90.04 73.90 69.06

Table 5. 3D Detection results (3D AP (R40)) of multi-class
VirConv-T (KITTI validation set).

Multi-class performance. We also trained a multi-class
VirConv-T to detect car, pedestrian and cyclist class in-
stances using a single model. We reported the multi-class
3D object detection performance in Table 5, where the base-
line refers to the multi-class Voxel-RCNN [7]. Compared
with the baseline, the detection performance of VirConv-T
in all classes has been significantly improved. The results
demonstrate that our VirConv can be easily generalized to a
multi-class model and boost the detection performance.

Performance breakdown. To investigate where our
model improves the baseline most, we evaluate the detec-
tion performance based on the different distances. The re-
sults are shown in Fig. 7. Our three detectors have signif-
icant improvements for faraway objects because our Vir-
Conv models better geometry features of distant sparse ob-
jects from the virtual points.

Evaluation on nuScenes test set. To demonstrate the
universality of our method, we conducted an experiment on
the nuScenes [3] dataset. we compared our method with
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Figure 7. 3D AP and performance improvement along different
detection distance (KITTI validation set).

Method mAP NDS
CenterPoint + VP [45] 66.4 70.5

CenterPoint + VP + VirConv 67.2 71.2
TransFusion [1] 68.9 71.7

TransFusion-L+VP 66.7 70.8
TransFusion-L +VP + VirConv 68.7 72.3

Table 6. 3D detection results on the nuScenes test set.

CenterPoint + VP (virtual point), TransFuison-L + VP and
TransFusion. We adopted the same data augmentation strat-
egy as TransFuison-L and trained the network for 30 epochs
on 8 Tesla V100 GPUs. The results on the nuScenes test set
are shown in Table 6. With VirConv, the detection perfor-
mance of CenterPoint + VP and TransFuison-L + VP has
been significantly improved. In addition, the TransFusion-
L with VirConv even surpasses the TransFusion in terms of
NDS, demonstrating that our model is able to boost the vir-
tual point-based detector significantly.

5. Conclusion

This paper presented a new VirConv operator for
virtual-point-based multimodal 3D object detection. Vir-
Conv addressed the density and noise problems of virtual
points through the newly designed Stochastic Voxel Dis-
card and Noise-Resistant Submanifold Convolution mech-
anisms. Built upon VirConv, we presented VirConv-L,
VirConv-T, and VirConv-S for efficient, accurate, and semi-
supervised 3D detection, respectively. Our VirConvNet
holds the leading entry on both KITTI car 3D object de-
tection and BEV detection leaderboards, demonstrating the
effectiveness of our method.
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