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Abstract

Under good conditions, Neural Radiance Fields (NeRFs)
have shown impressive results on novel view synthesis tasks.
NeRFs learn a scene’s color and density fields by minimiz-
ing the photometric discrepancy between training views and
differentiable renderings of the scene. Once trained from
a sufficient set of views, NeRFs can generate novel views
from arbitrary camera positions. However, the scene geom-
etry and color fields are severely under-constrained, which
can lead to artifacts, especially when trained with few input
views.

To alleviate this problem we learn a prior over scene
geometry and color, using a denoising diffusion model
(DDM). Our DDM is trained on RGBD patches of the syn-
thetic Hypersim dataset and can be used to predict the gra-
dient of the logarithm of a joint probability distribution of
color and depth patches. We show that, these gradients of
logarithms of RGBD patch priors serve to regularize geom-
etry and color of a scene. During NeRF training, random
RGBD patches are rendered and the estimated gradient of
the log-likelihood is backpropagated to the color and den-
sity fields. Evaluations on LLFF, the most relevant dataset,
show that our learned prior achieves improved quality in
the reconstructed geometry and improved generalization to
novel views. Evaluations on DTU show improved recon-
struction quality among NeRF methods.

1. Introduction

Neural radiance fields, neural implicit surfaces, and
coordinate-based scene representations are proving valu-
able for novel view synthesis and 3D reconstruction tasks.
NeRFs [17] learn a specific scene’s appearance as a multi-
layer perceptron that predicts density and color, when given
any 3D point and a viewing direction.

This volume representation allows differentiable render-
ing from arbitrary views, where predicted color contribu-
tions along a ray are alpha-composited according to the den-

(a) DiffusioNeRF (Ours)

(b) RegNeRF [21]

Figure 1. Image and depth map rendered from a test view. All
NeRF models were trained with 3 views of the LLFF [16] dataset’s
“Room” scene. Our priors encourage NeRF to explain the TV and
table geometry with flat surfaces in the density field, and to explain
the view-dependent color changes with the color field.

sity predictions.
The model is trained with the aim of faithfully recon-

structing images captured with known camera poses. Even
when trained with just a photometric reconstruction loss,
NeRFs show impressive generalization capabilities, inspir-
ing novel applications in virtual and augmented reality, and
visual special effects.

However, with small numbers or even with large num-
bers of input views, the scene color and geometry fields are
severely under-constrained. Indeed, an infinite number of
NeRFs can explain all training views. In practice, NeRFs
can generate low-quality and physically implausible ge-
ometries and surface appearances. For example, “floaters”
are one common artifact, where the fitted density field con-
tains clouds of semi-transparent material floating in mid-air
that would look reasonable in 2D once rendered from train-
ing views, but look implausible from novel views.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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Various hand-crafted regularizers and learned priors
have been proposed to tackle these issues: hand-engineered
priors to constrain the scene geometry [2,21], learned priors
that force plausible renderings from arbitrary views [21],
and methods that use single image depth and normal esti-
mation [38, 46] to provide high-level constraints on the es-
timated scene geometry. However, there are no approaches
that learn a joint probability distribution of the scene geom-
etry and color.

Our contribution is leveraging denoising diffusion mod-
els (DDMs) as a learned prior over color and geometry.
Specifically, we use an existing synthetic dataset to gener-
ate a dataset of RGBD patches to train our DDM. DDMs
do not predict a probability for RGBD patch distribution.
Rather, they provide the gradient of the log-probability of
the RGBD patch distribution, i.e. the negative direction
to the noise predicted by DDM is equivalent to moving
towards the modes of the RGBD patch distribution. As
NeRFs are trained with stochastic gradient descent, gradi-
ents of log-probabilities are sufficient, as they can be back-
propagated to NeRF networks during training to act as a
regularizer; probabilities are not required for this purpose.
We demonstrate that the DDM gradient encourages NeRFs
to fit density and color fields that are more physically plau-
sible on the LLFF and DTU datasets.

2. Related work
Geometry modeling The geometry of the scene can be
modeled as a density field [17], occupancy field [22, 23] or
signed distance field [40, 43, 44]. Geometry models can be
rendered using differentiable surface/volumetric rendering,
so that the training loss for a NeRF model is the photometric
reconstruction loss [17]. Signed distance fields also require
regularization with an Eikonal loss [6] to constrain the dis-
tance field to be valid. Our regularizer operates on rendered
color and depth patches, so it can be applied to any geome-
try representation.
Field representation NeRFs [17] represent geometry with
a multi-layer perceptron that is queried with a 3D coordi-
nate. Positional encoding of coordinates, where coordinate
values are evaluated with sinusoids at different frequencies,
allows modeling of high-frequency density signals with
MLPs [35]. Alternatively, [7, 29] encode scalar opacity and
spherical harmonic coefficients in a sparse voxel represen-
tation, and shows that novel views can be synthesized with-
out MLPs. Similarly, Neural Sparse Voxel Fields [15] stores
feature encodings in a sparse voxel octree structure that can
be trilinearly interpolated and passed through an MLP to
predict density and color, thus improving the modeling ca-
pacity and rendering speed of NeRFs. MVSNeRF [3] pre-
dicts a volume of feature encodings by constructing a 3D
cost volume and processing it with 3D CNNs. Density and
color MLPs trilinearly interpolate the feature encoding vol-

ume to train NeRFs. The 3D CNN can be pretrained on a
large number of scenes, which allows faster convergence on
novel scenes.

Instant Neural Graphics Primitives [19] uses multi-scale
hash tables to store feature encodings of all coordinates in
a fixed memory block. This allows storing features at vary-
ing spatial resolutions, and consequently reduces the size
of the MLP that models geometry and color. With a GPU-
optimized implementation, Instant NGP can train NeRFs in
minutes without quality degradation. Our contribution is in
priors used for NeRF optimization, and hence our method is
agnostic to the underlying geometry representation. As In-
stant NGP is fast to train and render, we use it as a backbone
for our experiments.
Density regularization Mip-NeRF 360 [2] proposes a den-
sity regularizer that encourages compactness of the density
along conical frustums. In addition to our learned regular-
izer, we use [2] density regularizer as it helps to sharpen the
distribution of densities along sampled rays.
Regularization with loss terms Loss terms to regularize
NeRFs can play an important role in the final result, as they
provide additional supervision to under-constrained geom-
etry and color fields. Some regularizers are hand-crafted to
encourage depth and normal smoothness, e.g. [2,21,23,48].
In [11], a semantic loss is introduced to make high-level
semantic attributes consistent across renderings from ran-
dom views. In [27] a loss term regularizes rendered depth
maps with depths estimated using Structure-from-Motion
and depth completion methods. MonoSDF [46] regularizes
occupancy fields with loss terms that incorporate depth and
normals maps predicted with a single-image depth predic-
tion model. Similarly, [38] introduces loss terms that use
a single-image normal prediction model to regularize ren-
dered normal maps. While all these approaches introduce
high-level geometric supervision to NeRFs, the predicted
depth and normals are fixed during NeRF fitting and hence
the depth and normal models provide a unimodal prior over
geometry. Furthermore, the additional supervision is not
adapted to the NeRF reconstructions and hence the monoc-
ular depth and normal predictions are trusted blindly.
Regularization with Normalizing Flows RegNeRF [21]
uses a 2D depth patch smoothness prior and a normaliz-
ing flow model as a learned prior over 2D RGB patches.
The color patches are rendered while fitting the NeRF and
a term proportional to the log probability density assigned
to the patch by the normalizing flow model is added to the
loss function.

However, the underlying cause of NeRF’s dramatic per-
formance degradation in the few-view case is that the ge-
ometry is poor, so we argue that it is preferable to regu-
larize the geometry directly, rather than indirectly via RGB
patches. By learning a distribution over RGBD patches we
also benefit from the fact that color and depth are strongly

4181



x, y, z

d

σ 
density

c color

Ray

Rays of a 
patch

Volume Rendering

C(r) RGBD
patch

Backpropagate

Figure 2. Illustration of our method. The scene is sampled with training-view rays and rays originating from random patches. Color and
density are predicted by MLP for the 3D points sampled along the rays. Volumetric rendering is used to estimate expected color C(r),
depth D(r) as well as weights of color contributions {wi} and positions of samples {ti}. These estimates are used to compute gradients
of losses that are backpropagated to color and density MLPs. DDM model ϵθ uses RGBD patches to predict color and density gradients
that are passed to MLPs directly. Instant NGP’s multi-scale hash table of feature encodings is not illustrated for simplicity.

correlated, and therefore attempting to regularize them sep-
arately discards information.

RegNeRF [21] uses MLPs to model color and density
fields, hence during NeRF training the patch rendering cost
can extend NeRF training time substantially. Thus, Reg-
NeRF renders 8 × 8 patches for the prior model, which
severely limits the amount of context visible to the normal-
izing flow model. We use Instant NGP for our NeRF rep-
resentation, which has a fast rendering time, allowing us to
model priors over 48× 48 patches.

Normalizing flows are generative models that learn to
transform a simple probability distribution into a more com-
plex data distribution [13]. The model is built of blocks that
fulfil the requirements of (i) preserving the number of di-
mensions of input and output features; (ii) being invertible,
i.e. the input to the block can be calculated from the out-
put; and (iii) the Jacobian of each block must be tractable
so that the log probability density can be computed. These
constraints can lead to trade-offs in which model expres-
siveness is sacrificed for tractability. Diffusion models do
not have such constraints on their structures and may there-
fore be more suitable to model data priors.
Denoising Diffusion Models DDMs [8, 20, 31] are pow-
erful generative models that learn to estimate gradients of
the log data distribution. Once trained, Langevin dynam-
ics sampling [42] can be used to generate novel samples
by performing a sequence of denoising steps starting from a
random sample of a standard Gaussian distribution. Denois-
ing Diffusion Models have successfully been used to learn
and sample images [8, 34], video [9], speech [4, 14], etc.
Recently, multiple DDM-based models were proposed for
the task of text-to-image synthesis, e.g. DALL-E 2 [25] and
Imagen [28]. Concurrently to our work, Dreamfusion [24]

has incorporated Imagen into NeRF optimization to gener-
ate novel 3D assets from a text input. Unlike our work, they
use DDMs to guide optimization of NeRFs to match input
text, while we use DDMs to regularize NeRFs given input
training images.

3. Method
We start by covering preliminaries like NeRF and DDM

training. Next, we describe the relation of DDMs to the
gradient of the log-likelihood of the data, and show how we
incorporate DDMs as NeRF regularizers. An overview of
the our method is shown in Fig. 2.

3.1. NeRFs

Given a set of images of a scene I with camera intrinsic
parameters and poses, we are interested in optimizing a den-
sity field σ : R3 → R+ and color field c : R3×S2 → R3

[0,1],
where the density field can be evaluated at any 3D coordi-
nate (x, y, z) ∈ R3 and the color field can be evaluated at
any 3D coordinate and viewing direction d ∈ S2.

The density and color fields can be used to synthesize
views of the scene from arbitrary cameras using differen-
tiable rendering techniques. The expected color C(r) of a
ray r(t) = o + td can be estimated using discrete samples
t0:N (where ti+1 > ti > 0), so

C(r) ≊
N∑
i=1

wic(r(ti),d) +

(
1−

N∑
i=1

wi

)
cbg, (1)

where the weights of color contributions are
wi = T (ti)ρ(ti), defined with

ρ(ti) = 1− exp(−σ(r(ti))(ti+1 − ti)) (2)
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and

T (ti) =

i−1∏
j=1

(1− ρ(tj)) (3)

is the accumulated transmittance function, i.e. the probabil-
ity of the ray r(t) starting at camera center o and reach-
ing coordinate r(ti) without being absorbed. The cbg is the
background color, which we set to white.

Similarly, one can compute the expected depth as

D(r) =

∑N
i=1 witi∑N
i=1 wi

. (4)

The density and color fields are optimized to reduce the
photometric reconstruction loss, e.g. the L2 difference be-
tween input images and renderings from the same views is

Lphoto(σ, c) =

I∑
i=1

||Ii −Ci||2. (5)

The weights of color contributions wi in Eq. 5 can be
regularized to have compact distribution [2]:

Ldist =
1

D(r)

(∑
i,j

wiwk

∣∣∣∣ ti + ti+1

2
− tj + tj+1

2

∣∣∣∣
+

1

3

N∑
i=1

w2
i (ti+1 − ti)

)
, (6)

where we deviate from the original formulation by divid-
ing through by the expected depth for the ray, which has
the effect of increasing the strength of this regularizer for
geometry that is close to the camera.

We also encourage the weights to sum to unity, because
in real scenes we always expect a ray to be absorbed fully
by the scene geometry:

Lfg =

(
1−

N∑
i=1

wi

)2

. (7)

In the few-view case, NeRFs frequently collapse to a de-
generate solution in which each camera is fully or partially
“covered up” with a copy of the corresponding training im-
age. To prevent this, we introduce a regularization approach
in which the placement of density that is contained in only
one view frustum is penalized as

Lfr =
∑
i

wi1(ni <= 1), (8)

where ni is the number of training view frustums in which
the point along the ray r(ti) is contained, so that only
weights which lie in fewer than two training frustums are
included in the sum. This reflects our prior that most of the

scene should be within the frustum of more than one of the
training views.

Combining these geometric regularizers into a loss func-
tion already gives a very strong baseline,

Lgeom = Lphoto + λfgLfg + λfrLfr + λdistLdist. (9)

The λ coefficients control the contributions of the regular-
izers. In our experiments we refer to this combination of
losses as our “geometric baseline”.

3.2. Score functions and DDMs

Per Bayes’ theorem, the a posteriori probability of den-
sity and color fields given training views I is

p(σ, c|I) ∝ p(I|σ, c)p(σ, c), (10)

where we drop the normalizing constant since it depends
only on I. The log-posterior is

log(p(I|σ, c)) + log(p(σ, c)). (11)

In practice, we are interested in maximizing p(σ, c|I)
with stochastic gradient descent, which only requires
computation of the gradient of the log-likelihood
∇σ,c log(p(I|σ, c)) and the gradient of the log-prior
∇σ,c log(p(σ, c)), i.e. the score function. Notice that
explicit computation of the probabilities of the density and
color fields p(σ, c) is not required. Below, we describe how
DDMs are learned and their relation to the score function.

The forward diffusion process progressively adds small
Gaussian noise to a data sample x0 ∼ q(x) to produce pro-
gressively noisier versions, so

xτ =
√
ατxτ−1 +

√
βτ ϵτ−1, (12)

where ϵτ−1 ∼ N (0, I) and ατ = 1− βτ , i.e. the variances
{βτ}Tτ=1 control the noise schedule. As the noise function
is Gaussian, it follows from the reparameterization trick that

q(xτ |x0) = N (xτ ;
√
ᾱτx0, (1− ᾱτ I)), (13)

where ᾱτ =
∏τ

s=0 αs, allowing efficient generation of
noised samples for arbitrary τ . As T → ∞ the distribu-
tion of noised samples xT is equivalent to an isotropic unit
Gaussian.

The DDM [8, 20, 31] is tasked to learn the reverse diffu-
sion process:

p(xτ−1|xτ ) = N (xτ−1;µ(xτ , τ), β̃τ I)), (14)

where β̃τ = (1− ᾱτ−1)βτ/(1− ᾱτ ) .
Since xτ is available as input to µ(xτ , τ), the mean

µ(xτ , τ) can be computed by predicting noise ϵτ−1 from
the noised input [8]:

µ(xτ , τ) =
1

√
ατ

(
xτ − βτ√

1− ᾱτ
ϵθ(xτ , τ)

)
, (15)
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Figure 3. (a) Illustration of forward and reverse diffusion pro-
cesses. (b) Example RGBD patches in the training set of the DDM
model extracted from Hypersim dataset. (c) Example RGBD
patches generated with our DDM model trained on Hypersim
dataset. Depths are shown as normalized inverse depths for vi-
sualization purposes. The noise in the samples is due to noise that
is injected during the sampling process.

using a neural network ϵθ(xτ , τ).
Thus, one can learn the reverse diffusion process by

training a neural network ϵθ(xτ , τ) to estimate noise given
a noised input and noise-level using the loss function:

Ex0,ϵ

[
βτ

2ατ (1− ᾱτ )
||ϵ− ϵθ

(√
ᾱτx0 +

√
1− ᾱτ ϵ, τ

)
||
]
,

(16)
where ϵ ∼ N (0, I). Fig. 3 (a) illustrates the forward and
backwards processes.

Importantly, it was shown in [8, 37] that a DDM noise
estimator has a connection to score matching [10, 32, 33]
and is proportional to the score function:

ϵθ(xτ , τ) ∝ −∇x log p(x). (17)

Hence, taking steps in the negative direction to the noise
predicted by the model is equivalent to moving towards the
modes of the data distribution. This can be used to generate
samples from the data distribution using Langevin dynam-
ics [8, 32, 42].

In this work, we want to use a DDM model as a score
function estimator to regularize NeRF reconstructions ac-
cording to eq. 11. Hence, we model a prior over (σ, c) by

modeling the score function over the distribution of RGBD
patches ϵθ({C(r),D(r)|r ∈ P}), where P is a set of rays
that pass through a random 48 × 48 patch of pixels cast
from a random camera. To allow control of the magni-
tude of the gradients, we further normalize the output of
ϵθ({C(r),D(r)|r ∈ P}), and refer to this regularization
function as ϵθ (see supplementary for details).

To train our DDM we use Hypersim [26], a photoreal-
istic synthetic dataset for indoor scene understanding with
ground truth images and depth maps. Specifically, we sam-
ple 48 × 48 patches of images and depth maps to generate
training data for the DDM (removing problematic images
and scenes as per dataset instructions); see Fig. 3(b) for ex-
amples. Fig. 3(c) shows samples of RGBD patches gener-
ated by our DDM model. The quality of samples indicates
that DDM successfully learns the data distribution of the
RGBD Hypersim patches.

3.3. Regularizing NeRFs with DDMs

The gradient of the log-posterior (11), which forms our
loss function, is

∇ log p(σ, c|I) = ∇ log p(σ, c) +∇ log p(I|σ, c). (18)

By plugging (17) into the above, we can use a diffusion
model as a prior over (σ, c). For the second term on the
RHS we use loss in eq 9, resulting in the following gradient
for our loss function:

∇L = ∇Lphoto+λfg∇Lfg+λfr∇Lfr+λdist∇Ldist−λDDMϵθ,
(19)

where λDDM controls the weight of the our regularizer.
During NeRF optimization we compute the gradient of

the loss as per eq. 19 and backpropagate as usual to obtain
gradients for the NeRF density and color field parameters.

3.4. Implementation Details

We use the training protocol of [8,39] to train our DDM
model. We optimize the DDM for 650,000 steps with batch
size 32 on 1 GPU.

We use the torch-ngp [36] implementation of Instant
NGP [19] with the tiny-cuda-nn [18] back-end as the
NeRF model for our experiments. NeRFs are optimized
for 12,000 steps, where the first 2500 steps are opti-
mized with λdist = 0 and the diffusion time parame-
ter τ smoothly interpolates from 0.1 to 0, hence we set
ᾱτ = cos(0.5π(τ + 0.008)/1.008) and other variables are
derived accordingly. By scheduling τ this way the diffu-
sion model is conditioned to expect progressively less noisy
inputs as the NeRF trains and generates increasingly more
accurate colors and depths. After 3000 steps, λdist linearly
increases from 0 until it reaches its maximum value at 8000
steps, where the maximum value is 1 × 10−4 for the DTU
dataset and 1.5×10−5 for the LLFF dataset. We empirically
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Method Setting PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

L
L

FF

mip-NeRF [1] Optimized per Scene 14.62 20.87 24.26 0.351 0.692 0.805 0.495 0.255 0.172 0.246 0.114 0.073
DietNeRF [11] Optimized per Scene 14.94 21.75 24.28 0.370 0.717 0.801 0.496 0.248 0.183 0.240 0.105 0.073
PixelNeRF ft [45] DTU + ft per Scene 16.17 17.03 18.92 0.438 0.473 0.535 0.512 0.477 0.430 0.217 0.196 0.163
MVSNeRF ft [3] DTU + ft per Scene 17.88 19.99 20.47 0.584 0.660 0.695 0.327 0.264 0.244 0.157 0.122 0.111
RegNeRF [21] Optimized per Scene 19.08 21.10 24.86 0.587 0.760 0.820 0.336 0.206 0.161 0.146 0.086 0.067
Geometric Baseline Optimized per Scene 19.88 24.28 25.10 0.590 0.765 0.802 0.192 0.101 0.084 0.118 0.071 0.060
DiffusioNeRF (Ours) Optimized per Scene 19.79 23.79 25.02 0.568 0.747 0.785 0.209 0.114 0.096 0.127 0.075 0.064

D
T

U

mip-NeRF [1] Optimized per Scene 8.68 16.54 23.58 0.571 0.741 0.879 0.353 0.198 0.092 0.323 0.148 0.056
DietNeRF [11] Optimized per Scene 11.85 20.63 23.83 0.633 0.778 0.823 0.314 0.201 0.173 0.243 0.101 0.068
PixelNeRF ft [45] DTU + ft per Scene 18.95 20.56 21.83 0.710 0.753 0.781 0.269 0.223 0.203 0.125 0.104 0.090
MVSNeRF ft [3] DTU + ft per Scene 18.54 20.49 22.22 0.769 0.822 0.853 0.197 0.155 0.135 0.113 0.089 0.069
RegNeRF [21] Optimized per Scene 18.89 22.20 24.93 0.745 0.841 0.884 0.190 0.117 0.089 0.112 0.071 0.047
Geometric Baseline Optimized per Scene 13.60 16.43 22.01 0.661 0.759 0.853 0.212 0.147 0.071 0.185 0.092 0.056
DiffusioNeRF (Ours) Optimized per Scene 16.20 20.34 25.18 0.698 0.818 0.883 0.160 0.093 0.046 0.135 0.052 0.033

Table 1. DiffusioNeRF vs. SOTA in novel view synthesis task on LLFF and DTU datasets with few input views [21, 45]. We report
scores on PSNR, SSIM, LPIPS and Average metrics averaged over all 8 scenes when NeRFs are fitted with 3, 6 and 9 training views. For
each view/metric combination the first and second scores are highlighted.

found that this schedule of τ and regularization weights pro-
duces best results. On a single Nvidia A100 GPU our NeRF
model trains in approximately 30 minutes per scene.

Furthermore, 25% of the time we use a training pose
for patch rendering, and sample the RGB component of the
RGBD patch directly from the training image. This is help-
ful in the early stages, when NeRF renderings are not yet
accurate.

4. Experiments
Datasets We experiment on two datasets: LLFF and DTU.

The LLFF [16] dataset has 8 scenes with 20-62 images
per scene captured with a handheld camera. The scenes are
reconstructed with COLMAP [30] to estimate camera in-
trinsics, camera poses and the 3D bounds of the scenes. A
few images are used for training and test images are used
to evaluate novel view synthesis quality. We select LLFF
for evaluations as it allows comparison against other SOTA
NeRF models, such as RegNeRF [21].

The DTU [12] dataset consists of images of objects
placed on a table against black background. Images and
depth maps are captured with structured light scanner
mounted on an industrial robot arm. The dataset provides
images, poses, and ground truth point clouds for evaluation.

For novel-view synthesis with few view setting on DTU,
we use the test set of 15 scans of PixelNeRF [45], allowing
comparison against other methods.

We use the test set of 15 scans defined in [23, 43, 46]
to evaluate geometry quality, e.g. via the surface method
of evaluation as described in UNISURF [23]. Tradition-
ally, geometry estimated by the density field of a NeRF may
not allow accurate surface reconstruction compared to occu-
pancy and SDF-based approaches [23], which score higher
on DTU, e.g. [23, 43, 44, 46].
Metrics For the task of novel-view synthesis, hold-out

views of the scene are used as ground truth to com-
pare against synthesized views. Image similarity met-
rics such as PSNR, SSIM [41] and LPIPS [47] are mea-
sured for each test view and average score per each scene
is reported. We also report an “Average” score, specifi-
cally the geometric mean of the three metrics as per [1]:
3
√
10−PSNR/10 ·

√
1− SSIM · LPIPS.

For the geometry estimation task, we convert an isosur-
face of the density field into a mesh using the marching
cubes. The mesh is culled to retain only parts that are visible
in at least one training view and the background surfaces are
masked out. We then sample the mesh to generate a point
cloud, and report the average chamfer L1 distance between
the estimated and ground truth point clouds.

4.1. Evaluations

Table 1 show a comparison of our geometric baseline
and our model against SOTA methods on LLFF and DTU
datasets when trained with 3, 6 and 9 views. When the num-
ber of views is low, the regularizer can have a large impact
on the final result, which allows easier comparison of reg-
ularizers. As seen from table 1, the geometric baseline and
our method both score favorably to other methods, achiev-
ing best scores in PSNR, LPIPS and Average metrics. Our
geometric baseline has higher metrics on LLFF, however
there are artifacts in the generated test views that can be
seen in Fig. 4. Our diffusion model-based method gener-
ates more plausible depths compared to the geometric base-
line, see section 4.2. One side-effect is over-smoothing of
thin-structures (e.g. the top row in Fig. 4). It is also note-
worthy that test views contain parts of the scene that are not
visible in any of the training views. These occluded parts
of the scene can impact reconstruction scores significantly
(see supplementary for details).

Table 2 shows an evaluation of reconstruction quality on
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Ground Truth RegNeRF Geometric Baseline DiffusioNeRF (Ours)

Figure 4. Qualitative results for the task of novel view synthesis on LLFF dataset. NeRF models are trained with 3 views and rendered
from one of test views. Our DDM model encourages more realistic geometry as seen in the depth maps.

15 scans of the DTU dataset when NeRFs are fitted with
all views. In the large number of views regime, the priors
are less important as training views provide more informa-
tion about the scene. Nevertheless, the priors should not
introduce any undesirable artifacts and can help with am-
biguous regions such as textureless table. Despite DDM
being trained on images of indoor room-sized scenes, it
shows good generalization to the object-centric reconstruc-
tion task. Our density-based method performs adequately
when compared to occupancy and SDF-based methods.

In Fig. 5 the qualitative results indicate that density based
methods struggle with shiny objects (rows 2 and 4) but can
have higher fidelity geometry on diffuse and textured sur-
faces (rows 1 and 3). The textured regions alone are not
sufficient for high quality output, e.g. our geometric base-
line struggles to complete the geometry of a house in row
1, and our DDM model provides a complementary signal
to the geometric regularizers resulting in fewer holes and
smoother surfaces.

4.2. Ablation studies

In table 3 we show contributions of each of our optimiza-
tion terms evaluated on LLFF and DTU datasets for novel

SDF-based Methods
Mean

Chamfer-
L1 ↓

NeRF-based Methods
Mean

Chamfer-
L1 ↓

UNISURF [23] 1.02 Instant NGP [19] 1.71
NeuS [40] 0.84 NeRF [17] 1.49
VolSDF [43] 0.86 Geometric Baseline 1.36
MonoSDF [46] 0.73 DiffusioNeRF 1.21

Table 2. DiffusioNeRF vs. SOTA in geometry reconstruction on
the DTU dataset with all views [5].

view synthesis and reconstruction quality. As reported, the
geometric baseline scores favorably on the LLFF dataset,
but has issues in geometry as reflected in DTU scores. Qual-
itative results in Fig. 4 demonstrate that the geometry esti-
mated by the geometric baseline is not realistic, even if the
appearance scores are high. Our DDM-based approach im-
proves on DTU scores, but its performance on the novel
view synthesis metrics is hampered by its tendency to intro-
duce details in areas of the scene that are not pictured in any
training view.

In table 3 we also show ablations of some of the finer de-
tails of our model. This table suggests that a model trained
on 24× 24 patches outperforms a model trained on 48× 48
patches on LLFF, but underperforms on DTU.

The ablations show the significance of feeding patches
from input images to DDM 25% of the time during NeRF
fitting. It can be especially important early on, when ren-
dered patches are very different from input images.

Unsurprisingly, reducing the amount of training data for
the DDM (only using 20% of the Hypersim scenes) slightly
reduces the scores. The RGB-only regularization with
DDMs is similar to RegNeRF’s normalizing flow model
regularization, but with larger patch sizes. Interestingly, the
RGBD regularizer trained with 20% of the data is still better
than the RGB-only regularizer that was trained with 100%
of the data. The last two rows of the ablation show that care-
ful scheduling of τ and DDM gradient weights is necessary
to produce good results. This is an active area of research,
having previously been noted in [24]. The DDM weight
λDDM trades off the accuracy of reconstruction around thin
structures against the overall depth smoothness.

4186



Scan # RGB NeuS [40] VolSDF [43] MonoSDF [46] Geom. Baseline Ours

24

69

83

110

Figure 5. Qualitative comparison of our method against SOTA on geometry reconstruction evaluated on DTU dataset.

LLFF DTU
Method Average ↓ Average ↓ Chamfer-L1 ↓

3-view 6-view 9-view 3-view 6-view 9-view All views

∇L = ∇Lphoto 0.210 0.128 0.090 0.203 0.142 0.119 2.87
∇L = ∇Lphoto + λfg∇Lfg 0.210 0.128 0.090 0.195 0.126 0.092 1.71
∇L = ∇Lphoto + λfg∇Lfg + λfr∇Lfr 0.135 0.089 0.072 0.215 0.128 0.093 1.71
∇L = ∇Lphoto + λfg∇Lfg + λfr∇Lfr − λDDMϵθ 0.145 0.085 0.066 0.190 0.097 0.072 1.67
∇L = ∇Lphoto + λfg∇Lfg + λfr∇Lfr + λdist∇Ldist 0.118 0.071 0.060 0.185 0.092 0.056 1.36
∇L = ∇Lphoto + λfg∇Lfg + λfr∇Lfr + λdist∇Ldist − λDDMϵθ 0.127 0.075 0.064 0.135 0.052 0.033 1.21
DDM regularizer using 24x24 patches 0.126 0.074 0.061 0.195 0.068 0.043 1.22
24x24 patch DDM & NeRF fitted with 4× λDDM 0.129 0.074 0.062 0.260 0.080 0.050 1.22
Patches from input images are not given to DDM 0.139 0.078 0.066 0.159 0.063 0.049 1.91
DDM trained with 20% of Hypersim scenes 0.132 0.078 0.066 0.163 0.057 0.035 1.65
RGB-only DDM regularizer 0.134 0.083 0.070 0.189 0.081 0.058 1.31
τ = 0 (no schedule) during NeRF fitting 0.137 0.081 0.067 0.152 0.055 0.042 1.31
NeRF fitted with 4× λDDM 0.146 0.088 0.076 0.220 0.134 0.071 2.56

Table 3. Ablation study of our method. Note that for DTU, λfr is set to 0, hence the 2nd and 3rd rows have identical scores on DTU.
Geometric baseline corresponds to the model in the 5th row.

5. Conclusions

In this paper we address the problem of regularization
of NeRFs. Our approach uses a DDM trained on RGBD
patches to approximate a score function, i.e. the gradient
of the logarithm of an RGBD patch distribution. Experi-
mentally, we demonstrate that the proposed regularization
scheme improves performance on novel view synthesis and
3D reconstruction.

While we show regularization using color and depth
patches as input, the proposed framework is versatile and
can be used to regularize the 3D voxel grid of densities,
density weights sampled along the ray, etc. Indeed, instead
of generating RGBD patches, we can generate 3D voxel
blocks of densities to train a DDM and use it during NeRF
optimization to regularize the density field directly. Early

results are shown in the supplementary materials.

One avenue of future work is formulating a principled
combination of the DDM gradient with the NeRF objective
to avoid heuristics-based τ and gradient scheduling.

Our work is focused on NeRF optimization, however the
general approach of using DDMs as a regularizer could po-
tentially be used for other tasks that are optimized with gra-
dient descent, e.g. self-supervised monocular depth estima-
tion [5], or self-supervised stereo matching [49, 50].
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