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Abstract

Recent methods for 3D reconstruction and rendering in-
creasingly benefit from end-to-end optimization of the entire
image formation process. However, this approach is cur-
rently limited: effects of the optical hardware stack and in
particular lenses are hard to model in a unified way. This
limits the quality that can be achieved for camera calibra-
tion and the fidelity of the results of 3D reconstruction. In
this paper, we propose NeuroLens, a neural lens model for
distortion and vignetting that can be used for point projec-
tion and ray casting and can be optimized through both
operations. This means that it can (optionally) be used to
perform pre-capture calibration using classical calibration
targets, and can later be used to perform calibration or re-
finement during 3D reconstruction, e.g., while optimizing a
radiance field. To evaluate the performance of our proposed
model, we create a comprehensive dataset assembled from
the Lensfun database with a multitude of lenses. Using this
and other real-world datasets, we show that the quality of
our proposed lens model outperforms standard packages
as well as recent approaches while being much easier to
use and extend. The model generalizes across many lens
types and is trivial to integrate into existing 3D reconstruc-
tion and rendering systems. Visit our project website at:
https://neural-lens.github. io.

1. Introduction

Camera calibration is essential for many computer vision
applications: it is the crucial component mapping measure-
ments and predictions between images and the real world.
This makes calibration a fundamental building block of 3D
reconstruction and mapping applications, and of any system
that relies on spatial computing, such as autonomous driving
or augmented and virtual reality. Whereas camera extrin-
sics and the parameters of a pinhole model can be easily
described and optimized, this often does not hold for other
parameters of an optical system and, in particular, lenses. Yet
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Figure 1. Method Overview. The optical stack leads to light ray
distortion and vignetting. We show that invertible residual networks
are a powerful tool to model the distortion for projection and ray
casting across many lenses and in many scenarios. Additionally,
we propose a novel type of calibration board (top left) that can
optionally be used to improve calibration accuracy. For evaluation,
we propose the ‘SynLens’ dataset to evaluate lens models at scale.’

lenses have a fundamental influence on the captured image
through distortion and vignetting effects.

Recent results in 3D reconstruction and rendering sug-
gest that end-to-end modeling and optimization of the im-
age formation process leads to the highest fidelity scene
reproductions [33, 34]. Furthermore, per-pixel gradients are
readily available in this scenario and could serve as a means
to optimize a model of all components of the optical stack
to improve reconstruction quality. However, modeling and
optimizing lens parameters in full generality and also differ-
entiably is hard: camera lenses come in all kinds of forms
and shapes (e.g., pinhole, fisheye, catadioptric) with quite
different optical effects.

So how can we create a flexible and general and differ-
entiable lens model with enough parameters to approximate
any plausible distortion? In classical parametric models, the
internals of the camera are assumed to follow a model with a
limited number of parameters (usually a polynomial approx-
imation). These approaches work well when the distortion
is close to the approximated function, but cannot general-
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ize beyond that specific function class. On the other hand,
non-parametric models that associate each pixel with a 3D
ray have also been explored. These models are designed
to model any type of lens, but tend to require dense key-
point measurements due to over-parameterization. Hence,
we aim to find models with some level of regularization
to prevent such issues, without unnecessarily constraining
the complexity of the distortion function. Our key insight
is to use an invertible neural network (INN) to model ray
distortion, combined with standard camera intrinsics and
extrinsics. This means that we model the camera lens as a
mapping of two vector fields using a diffeomorphism (i.e.,
a bijective mapping where both the mapping and its inverse
are differentiable), represented by an INN. This approach
usefully leverages the invertibility constraints provided by
INNs to model the underlying physics of the camera lens.

Our lens model has several advantages. Its formulation
makes it easy to differentiate point projection and ray cast-
ing operations in deep learning frameworks and it can be
integrated into any end-to-end differentiable pipeline, with
an inductive bias that serves as a useful regularizer for lens
models. It is flexible: we can scale the model parameters
to adapt to different kinds of lenses.using gradient-based
methods for point projection as well as ray casting. This
makes our model applicable to pattern-based camera cal-
ibration as well as to dense reconstruction where camera
parameter refinement is desired. In the case of (optional)
marker-based calibration, we suggest to use an end-to-end
optimized marker board and keypoint detector. The proposed
marker board outperforms several other alternatives in our
experiments, and can easily be adjusted to be particularly
robust to distortions of different sensor and lens types.

It is currently impossible to evaluate lens models at scale
in a standardized way: large-scale camera lens benchmarks
including ground truth data simply do not exist. We pro-
pose to address this issue by generating a synthetic dataset,
called SynLens, consisting of more than 400 different lens
profiles from the open-source Lensfun database. To create
SynLens, we simulate distortion and vignetting and (option-
ally) keypoint extraction noise using real lens characteristics
to account for a wide variety of lenses and cameras.

We provide qualitative and quantitative comparisons with
prior works and show that our method produces more ac-
curate results in a wide range of settings, including pre-
calibration using marker boards, fine-tuning camera models
during 3D reconstruction, and using quantitative evaluation
on the proposed SynLens dataset. We show that our model
achieves subpixel accuracy even with just a few keypoints
and is robust to noisy keypoint detections. The proposed
method is conceptually simple and flexible, yet achieves
state-of-the-art results on calibration problems. We attribute
this success to the insight that an INN provides a useful in-
ductive bias for lens modeling and validate this design choise

via ablations on ResNet-based models. To summarize, we
claim the following contributions:

* A novel formulation and analysis of an invertible ResNet-
based lens distortion model that generalizes across many
lens types, is easy to implement and extend;

* A new way to jointly optimize marker and keypoint de-
tectors to increase the robustness of pattern-based cali-
bration,;

* A large-scale camera lens benchmark for evaluating the
performance of marker detection and camera calibration;

¢ Integration of the proposed method into a neural ren-
dering pipeline as an example of purely photometric
calibration.

2. Related Work

Existing camera calibration methods. Many 3D com-
puter vision methods assume that lens distortion is radially
symmetric around the center of the image. Various camera
models such as the radial [13] (bicubic [25]), division [15],
FOV models [1 1], and rational model [8] are used to simulate
such radially symmetric distortion. Numerous calibration
toolboxes and pipelines [51,52,59] have been developed and
integrated to OpenCV [4]. Recently, BabelCalib [32] pro-
posed a robust optimization strategy for parametric models.
However, parametric models are only approximate models
of real lenses; in practice, the real distortion includes effects
caused by complex lens systems (which lead to combina-
tions of different types of distortions) determined by the
camera geometry and by the (not perfectly planar) shape of
the lens [53].

When calibrating a camera system with an unknown lens
it is difficult to decide in advance which particular model
fits the real type of camera projection best. To avoid having
to choose, one can instead use a single generic model to
approximate most common types of projection. A generic
camera model [0, 18, 19,37,43] associates each pixel with a
3D ray. These methods are designed for generality and flex-
ibility and introduce an extreme number of parameters. In
practice, classical sparse calibration patterns do not provide
enough measurements for such generic models. [2, 4] uses
these models to obtain dense matches using displays that can
encode their pixel positions or interpolate between sparse
features. However, interpolation leads to inaccurate and
sub-optimal performance. Therefore, models with lower
calibration data requirements have been proposed [42]. Re-
cently, Schops et al. [49] extends [42] with a new calibration
patterns and detectors to improve the calibration accuracy
for generic cameras. [39] replaces the explicit parametric
model with a regularization term that forces the underlying
distortion map to be smooth.

Neural network—based camera calibration. Several prior
works treat the optical components of displays and cam-
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eras as differentiable layers (neural network layers) that
can be trained jointly with the computational blocks of an
imaging/display system [20, 50, 54]. Other works estimate
camera parameters from single image observations using
CNNs [3, 56]. For multi-view, joint optimization of camera
parameters and neural scene representations, representative
works include BARF [30], NeRF—— [55], Self-Calibrating
Neural Radiance Fields [23] and the point-based neural ren-
dering pipeline of Riickert et al. [47]

Learned markers and keypoint detectors. Lens models
can either be optimized during 3D reconstruction or in a
separate calibration stage that uses keypoint positions corre-
sponding to a known 3D structure. Many calibration pack-
ages use a checkerboard pattern [5] due to its simplicity and
to be able to utilize line fitting to increase corner detection
accuracy. Schops et al. [49] propose a star-based pattern sim-
ilar to Siemens stars [45] to increase the amount of gradient
information available. They use AprilTags [38] to initialize
their point search, while we use ArUco tags [16,46] in a
similar way on our proposed marker board.

However, all these boards are manually designed. In
contrast, [29] uses a random pattern optimized to produce
strong feature responses for keypoint detectors. This leads to
significantly more points (on the order of thousands), albeit
with lower detection accuracy. Hu et al. [22] propose to use
a deep-learning based detector. Grinchuk et al. [ 1 7] propose
to use a learning-based approach for creating markers by
generating binary codes and rendering them on distorted
and transformed image patches. Peace et al. [41,57] use
end-to-end trainable systems for marker detection, but focus
on fiducial-like markers with a unique marker identification.
These systems usually require larger markers with a unique
identifier to enable direct estimation of camera pose relative
to a single marker. In contrast, we base our board on a
marker detector with very high accuracy keypoint detection,
as we only care about point detection accuracy and identify
points on the board using a few low-accuracy ArUco tags.
This leads to a higher number of extracted keypoints and
high center point extraction accuracy.

Invertible Neural Networks. Our paper models lens dis-
tortion using an invertible mapping enforced through the
neural network architecture. Invertible neural networks
have been studied extensively in the context of normaliz-
ing flows, where network inverses are required for comput-
ing log-likelihoods for generative models [1,7, 12,27, 28].
Since our application does not require the estimation of the
Jacobian for generative tasks, we opt to use an invertible
residual network due to its expressive power and conver-
gence speed. Invertible residual networks have been applied
to many tasks, such as shape deformation [24,40, 58], image
denoising [31], and tone mapping [36]. In this paper, we
explore their applicability to the problem of lens distortion.

3. Method

The goal of camera calibration is to recover the optimal
parameters that describe the camera model at hand given a
set of observations. The camera model describes the map-
ping between points X € R3 in the 3D world and their 2D
locations x € R? on the camera sensor. In this paper, we
assume the projection component of this mapping to be de-
scribed by the pinhole camera model. Under this model, the
2D pixel coordinate « can be obtained by:

x =C(X) =norm(K - (R-X+1t)), (1)

where norm(x) = (x[0]/x[2],x[1]/x[2]), R and t are the
rotation matrix and translation vector in world-to-camera
format, and K is the intrinsics matrix.

This pinhole model, however, captures only some as-
pects of the true mapping function for real-world cameras:
it assumes that light follows a straight line from the world
directly to the sensor plane. This is not the case for real cam-
eras: the optical stack consists of (multiple) lenses with of-
ten complex optical properties (e.g., fisheye and catadioptric
lenses with wide fields-of-view) that cause visible curvature
in the projection of straight lines—the distortion compo-
nent of the mapping. As illustrated in Fig. 2, this non-linear
distortion can be modeled by a diffeomorphic function D
that maps ideal coordinates (ug, u,) to distorted coordinates
(ds,dy). As illustrated in Fig. 2, let u = (u,,u,) be the
normalized coordinates obtained after perspective division
but before rescaling by camera intrinsics, the observed pixel
coordinate can be obtained by:

x = norm(K - hom(D(u))) ()

In contrast to (1) which contains a handful of parameters,
our camera model C contains a bijection which is much more
complex to model and D depends on the physical properties
of the camera optics. Hence, it is important to strike a bal-
ance between models with sufficiently many parameters that
are at the same time constrained to meaningful lens map-
pings. In our work, we propose to model D using invertible
residual networks and show that they are a strikingly sim-
ple, well-suited class of functions for modeling distortions.
Using such functions retains the ability to propagate gradi-
ents in either the projection (forward) or casting (backward)
operation, enabling end-to-end optimization of the camera
intrinsics K, extrinsics R, T, and the distortion mapping D.

In what follows, we will first explain how we param-
eterize the distortion mapping D using invertible residual
networks in Sec. 3.1. Then, we develop our training objec-
tives in Sec. 3.2, in which we consider a common lens effect
of vignetting and incorporate the camera response function
(CRF) into our model. Finally, we will describe how to ob-
tain keypoints and their corresponding 3D positions for the
case of marker-based calibration. In particular, we propose a
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Figure 2. Mapping Overview. We illustrate the mapping between three systems: World is the world coordinate/color system, View is
the local camera system, Sensor is the sensor coordinate/color system. hom and norm refer to homogenization and de-homogenization
operations, respectively. The figure can be read left-to-right to follow a projection operation, right-to-left to follow a ray casting operation.

new pattern that enables very accurate keypoint detection in
Sec. 3.3.

3.1. Camera Distortion Model

As illustrated in Fig. 2, the camera distortion model can
be defined as a transformation of a ray from undistorted to
distorted directions: (d,dy,) = D(uz, uy). In this section,
we describe how to parameterize the distortion mapping D.

Intuitively, the distortion transformation can be used in
both directions; therefore the process should be invertible.
Hence we propose to represent the non-linear distortion as
a diffeomorphism. We can write D as an invertible function
D : R? — R?, where its backward mapping D~ ' models the
undistortion process. We find that invertible neural networks
are a suitable model class for regularizing D as a smooth,
invertible function. Invertible neural networks (INNs) are
function approximators that effectively learn differentiable
bijections. Networks that are invertible by construction offer
a useful advantage: we can train them on a forward mapping
and can use the inverse function at no additional cost.

Specifically, we propose to parameterize the distortion
mapping D using Invertible Residual Networks (ResNets), a
subclass of INNs introduced by Behrmann et al. [1]. Invert-
ible ResNets are composed of residual blocks of the form
fo(x) = x+ go(x), where 0 denotes all trainable parameters.
Behrmann e al. show that fy is invertible if gy is Lipschitz-
bounded by 1. In that case, the inverse of fy can be obtained
by computing the fixed-point of function h(z) =y — gg(z),
where y is the output of fy(z). The fixed-point can be ob-
tained by using the iterative algorithm: x <+ y — gg(x).
In practice, we found that a network with width 1024 and
four residual blocks is sufficient. For more implementation
details, please refer to the supplementary material.

3.2. Optimization Objectives

Since we model D as a differentiable function, it can be
used in many optimization scenarios. For instance, it can
be used to optimize keypoints and their corresponding 3D
positions obtained using calibration targets introduced in

Sec. 3.3, or to optimize all camera parameters together with
world model parameters during 3D reconstruction.

Geometric loss. A calibration board contains N reference
points X,; whose 3D coordinates are known (in practice,
initial estimates for their 3D position can be found using,
for example, [60]). The points are assumed to lie in the
XY -plane, i.e., their Z-component is zero. Given a set of
3D-2D points pairs {X;,x;} ,, where x; is the detected
keypoint position in the image, we can minimize the per-
view reprojection error:

Lyi(0) = [[Co(Xi) — x5, 3)
where © includes the camera intrinsics K, extrinsics R, T,
and parameters 6 that define the distortion mapping Dy. To
improve robustness to outliers, we can optionally apply iter-
ative reweighting to Eq. 3 during optimization.

Photometric Loss. Our model can also be optimized using
the gradients from a set of 2D image observations, for ex-
ample as part of a 3D reconstruction. If the camera model
describes the image formation procedure correctly, then the
color at the pixel location predicted by Co(X) should match
the color of the actual 3D point X projected there (assuming
constant lighting, exposure and a Lambertian marker mate-
rial). Suppose L(X) € R3 is the reference color from the
calibration board at 3D location X and I; is the color of the
observed image at pixel location x. Their /5 difference can
be described by ||L(X) — I;(Co(X))]]3.

However, this comparison does not take into account
optical effects that influence the mapping from radiance to
the final image color. Most prominently, we also need to
model and estimate vignetting effects (radial falloff) present
in many zoom and wide angle lenses [26]. Furthermore,
we should take into account the camera response function
(CRF), the relationship between the radiance captured by the
camera and the resulting sensor readout [9].

To account for such optical effects, we define a function
M(x,¢) = f(V(x,c)) which takes a pixel location x and
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the incident radiance ¢ and returns a sensed color taking
into account CRF f and vignetting effect V. Specifically,
we parameterize the vignetting function V' by V,,(x,¢) =
c - o(interp(x, 7)), where v € R¥*W 'interp is bilinear
interpolation, and o is a sigmoid function. In our case, we
used a fixed CRF f that is known and uniform across the
spatial dimensions of the image. We include +y as part of the
camera parameters ©, which will be jointly optimized. More
general formulations can be used for more complex camera
response function and vignetting parameterizations that are
appropriate for the camera.

Finally, if keypoints with known radiance are available,
for example from the calibration board described in Sec. 3.3,
the photometric loss can be used to match the sensed colors
to match their expected values. Given n images {I;}7_, we
can sample color from m points on the calibration board
{(X;, L;j) }jL, and define the photometric loss as:

Lpno(0) = Z 1M (Co(X;), L) — Li(Co(X)))[3. 4

Alternatively, M can be used to map radiance values to color
while C'g are the rays cast for a gradient-based optimization
of a radiance field—in that case the gradients can be naturally
used to update all relevant parameters (see Sec. 5.4).

3.3. Marker-based Calibration

The most common optimization scenario for camera cali-
bration uses an established set of corresponding keypoints
to determine D. These are often obtained using a calibration
board with a known marker structure that allows for identify-
ing keypoints with high precision. The classical OpenCV [5]
library, as well as more recent methods [32,49] use different
calibration board types to achieve this. All these board types
are hand-designed: their respective patterns yield points with
high contrast that can be readily identified. Still, it is not
trivial to achieve sub-pixel accurate keypoint detections. In
particular, checkerboard corner detection utilizes line-fitting
to identify intersection points, and star-shaped pattern detec-
tors rely on symmetric features to identify keypoint centers.
All these strategies are non-trivial to implement and are ad-
versely affected by lens distortion.

To address this problem, we propose to optimize the key-
point marker design together with a deep-learning based key-
point detector end-to-end. To represent markers, we create
a three-channel tensor that stores an RGB image. To opti-
mize it, we create a simplified model of the image formation
process from the marker definition that can contain: printing
(small local distortions), lighting (slight intensity changes),
motion blur, perspective distortion (viewpoint changes), lens
distortion, and color aberration. In our experiments, we
use a single marker design optimized for fairly general use
by implementing some of the aforementioned effects using

i
i
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Figure 3. Keypoint Patterns & Markers. (a) Checkerboard
pattern, (b) Star-shaped pattern proposed in [49]. (¢) Our proposed
calibration pattern, allowing for unique localization using ArUco
tags [16,46], and containing high-contrast patterns for accurate
keypoint detection. The markers can be optimized specifically for
the camera and capture scenario; the size and ratio of markers and
tags can be adapted according to the resolution of the camera.

blurring, affine transformations, added noise and color dis-
tortion. The detector, a MobileNet-v3 [21] with a simplified
2D location prediction optimized using a Gaussian negative
log likelihood of the true keypoint location, has the task of
localizing the marker center. This means, we use a fully
supervised training for the entire detection process that can
be adjusted to match the capture scenario at hand.

The result is empirically superior to other marker shapes
and makes better use of color (as shown in Tab. 3): in con-
trast to the black and white patterns used in manual marker
design like checkerboards, our machine-optimized markers
use color to maximize cues about keypoint location (see
Fig. 3). The symmetry of the marker emerges from the
optimization to achieve rotation invariance. The center key-
point is marked black with a small white area around it to
maximize contrast and be robust to color bleeding; several
circles around it provide additional information to identify
and localize it. A pattern board can be readily assembled
using these markers by using ArUco [16, 46] markers to
identify planar areas and rough sizes, extracting candidate
areas and running the pre-trained detector to obtain marker
locations. In practice, the confidence prediction from the
predicted Gaussian variance helps to filter uncertain detec-
tions. Thanks to the high efficiency of MobileNet-v3, the
detector runs at multiple frames per second allowing live
data acquisition feedback.

4. The SynLens Dataset

Evaluating lens models is inherently hard: ground truth is
nearly impossible to obtain (since it would require a possibly
destructive analysis of equipment), and performing measure-
ments at scale requires a large supply of cameras and lenses.
On the other hand, over the last years the LensFun database’
has steadily grown and accumulated a large set of crowd-
sourced high-quality measurements of lens characteristics.
Hence, we propose to use it to create a large dataset of high
quality synthetic lenses that can be used to evaluate cali-
bration models. By creating the data synthetically, we can

Zhttps://lensfun.github.io/

8439



(@) (b) () (d)

Figure 4. An example from the SynLens Dataset: (a) dis-
torted frame, (b) corresponding undistorted and normalized view,
(c) initialization of keypoints and (d) keypoints after optimization.
Blue: ground truth keypoint positions, orange: predicted keypoint
positions. Hue: offset direction, saturation: offset magnitude.

Models Formulation (C)

Poly3 rg =1u(1— ki + k1r2)

Poly5 rqg = ru(1+ kir? + kord)
PTLens rq=r,(ard +br24+cr,+1—a—b—c)

Table 1. Analytic equations in LensFun.

perform calibration in perfect control of noise characteristics
and create informative estimates of calibration performance
on many consumer devices.

The Data. The LensFun database contains more than 3,500
lens models from 40 different camera makers, e.g., Canon,
Nikon, action cams, efc. For each lens profile, it specifies
lens model, focal length, lens distortion, vignetting and chro-
matic aberration (TCA). High-quality data was collected by
photography enthusiasts using the open-source Hugin soft-
ware. Of this data, we selected 400 lenses by choosing 10
different lens types for each camera maker.

Using this data, we offer dataset users an API to render
images, and specifically calibration boards, through these
lenses while automatically applying D and V. To test cali-
bration specifically, we provide options to obtain the ground
truth positions of projected keypoints. In the following, we
describe the API functionality.

Virtual camera set-up. We deploy a virtual perspective
camera in a synthetic scene using PyTorch3D [44]. It is
easy to adjust the virtual camera parameters and to control
its pose. We point the camera at a calibration target using
several in-plane rotation o and zenith § angles. For each
scene, we translate the camera off-center and obtain a series
of 200 non-parallel images at resolution of 1024 x 1024.

Lens distortion.  From the Lensfun database, lens dis-
tortion information is available in one of several predefined
formats: PTLens, poly3, poly5 or Adobe Lens (see Tab. 1).
According to each calibrated lens model in Lensfun, we syn-
thetically generate distorted and undistorted point pairs in
the normalized image domain.

Vignetting. The vignette function in the database is pa-
rameterized as the polynomial radial loss function V' (rg) =
1+ kird + kord + ksr§, where k1, k2, k3 are a set of vi-

gnetting parameters; these model parameters are identical for
all color channels. An example of a simulated lens recording
a calibration pattern from [49] including distortion and vi-
gnetting is shown in Fig. 4. The vignetting effects are clearly
visible in (a), whereas (b) shows a successful calibration
result. We show recorded and optimized keypoints as well
as a visualization of the lens model in subfigures (c) and (d).

5. Experiments

In our experiments, we compare the performance of our
lens models and marker board on the proposed SynLens
dataset with several established methods before presenting
results on real-world data for keypoint-based calibration and
radiance-field reconstruction on radial and fisheye lenses.

5.1. Evaluation on SynLens

Camera Models

Methods Poly3 Poly5 PTLens Avg
Schops et al. [49] 0.162 0.124  0.121  0.135
Ours 0.104 0.052 0.061 0.072

Table 2. Reprojection error (RMS) on SynLens by method and
lens model for ground truth keypoints.

Keypoint Types
Methods Checkboard  Star Ours
OpenCV [5] 0.152 0.175 0.129
Schops et al. [49] 0.178 0.141 0.158
Ours 0.154 0.130 0.114

Table 3. Reprojection error (RMS) on SynLens for detected
keypoints by model and keypoint type.

On SynLens, we establish baseline comparisons with two
widely used camera calibration methods and board patterns:
(1) the distortion model implemented in OpenCV [5] using
all distortion terms, and the board and method from Schops
et al. [49], a state-of-the-art generic calibration method with
an open-source implementation. Since we evaluate on a syn-
thetic dataset, the ground-truth locations of keypoints can be
obtained by transforming them using Eq. 2. We optimize a
lens model for each camera lens using the keypoint corre-
spondences; once using the ground-truth project locations of
the keypoints, once by using the respective keypoint detector.
We then measure the root-mean-squared (RMS) reprojec-
tion error (3) on a set of 20 held-out test images uniformly
sampled from each sequence.

Tab. 2 shows a breakdown of calibration performance
for [49] and our method for the different camera models in
the dataset for ground truth keypoint projections. We do not
use OpenCYV in this table since OpenCV uses the exact same
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ResNet

i-ResNet

Lens visualization Stage 1 Stage 2 Stage 3
Figure 5. Comparison between ResNet and invertible ResNet
lens models. Left to right: optimized lens model visualization, and
three stages during training, for each: ground-truth keypoints (blue)
and projected keypoints (orange) on test images. The rainbow
visualization is described in Fig. 4.

parameterization for its model as has been used to generate
the data, and therefore unsurprisingly achieves perfect fitting
in this scenario. Our method outperforms Schops et al. in
this setting for all camera models by a large margin, even
though Schops et al. also use a highly parameterized model.

Tab. 3 shows the performance of all methods, using dif-
ferent calibration targets and detection results from the re-
spective keypoint detectors. We expect the best results on
the diagonal of the table (each method performing best with
its own type of detector pattern and keypoint detector). This
mostly holds true, except for OpenCV does better with out
marker than with the checkerboard. Our proposed method
achieves the overall lowest RMS error with the proposed
calibration target in this setting. We analyze how different
levels of artificial keypoint noise as well as the severity of
the distortion affects the calibration performance of different
methods in the supplemental material.

i-ResNet ResNet
Ratio (tr: val) Train Val Train Val
1:1 0.16 0.16 030 045
1:4 0.15 028 032 0.60
1:8 0.15 033 037 1.56

Table 4. RMS error comparison between ResNet and i-ResNet
for different training set sizes. Total number of keypoints in the
validation set remains the same across all experiments.

5.2. Comparison with ResNet

The Lipschitz constraint on the invertible ResNet is a pow-
erful regularizer for the proposed model. Compared with
standard ResNets, we find that invertible ResNets are less
likely to be affected by outliers because they are implicitly
constrained to model a smooth function. In Fig. 5, we show
a comparison of a ResNet and invertible ResNet trained on
a lens with noisy keypoint detections. The ResNet overfits

(a) Captured image (b) Distortion correction

Figure 6. Undistortion of a GoPro super-wide recording.

(xd) 10110 uonoafordoy

© @
Figure 7. OCamCalib Fisheye camera calibration. (a) example
frame captured by the Fisheye camera, (b) lens distortion map (hue:
distortion direction; saturation: distortion magnitude), (c) undis-
torted image, (d) residuals of reprojected keypoints on test images.

to the noisy measurements present in the training data, for
example at the top left corner. In comparison, the invert-
ible ResNet can model accurate lens geometry ofand makes
continuous progress towards a reasonable solution over the
course of the optimization. In Tab. 4, we show that invertible
ResNets are robust to reduced amounts of supervision thanks
to their stronger priors.

5.3. Evaluation on Real Captures

To ensure that our evaluation results on synthetic data
carry over to real-world capture scenarios, we conduct sev-
eral experiments using challenging wide angle and fisheye
lenses. In the first experiment we attempt calibration for
a consumer GoPro camera with wide and super-wide lens
settings. For data collection, we captured a video of a board
with our proposed calibration pattern. We then run keypoint
detection and fit our lens model to each camera. Fig. 6
shows the undistortion result for the super-wide lens. For
both lenses we achieve slightly better result on super-wide
lens setting than OpenCV on held-out test frames: RMS
score of OCV 1.50 vs. Ours 1.46, while having comparable
results on wide lens settings, OCV 0.56 vs. Ours 0.61.

In the second setting, we extend our experiment to a very
challenging scenario: the OCamCalib [48] dataset, with
camera field of view ranging from 130° to 266° and the
UZH [10] dataset, which consists of eight wide-angle and
fisheye cameras with fields of view ranging from 124° to
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Figure 8. Neural Radiance Field results. Qualitative results on the FisheyeNeRF [23] and original NeRF datasets. Left: the FisheyeNeRF
dataset stretches the capabilities of in-the-wild calibration without keypoint correspondence to the limits. Baseline method SC-NeRF [23], to
the best of our knowledge, only shows results on training views, for which our model fares remarkably well. Right: Results on a scene from
the NeRF dataset. We used a Blender scene and added significant barrel distortion (as visible in the “Ground truth” setting). NeRF [34] fails
to reconstruct the scene. Our method manages to retrieve the lens parameters well, resulting in high-quality reconstruction and depth.

166°. Keypoint detections are available from a planar chess-
board target marked with AprilTags. We compare our results
with the state-of-the-art camera calibration framework Ba-
belCalib [32]. As shown in Tab. 5, our method outperforms
BabelCalib on most cameras from the UZH dataset. We also
visualize the residuals of the reprojected keypoints of test
images in Fig. 7 from OCamCalib, on which our method
achieves an unweighted reprojection error of 0.91 (all points
contribute equally to the error metric). This is a compara-
ble score with the BabelCalib system with a significantly
simpler model on this challenging data.

UZH-DAVIS UZH-Snapdragon
Methods 1 2 O1 02 I1 I2 O-1 O0-2 Mean

BabelCalib 0.31 0.69 158 044 0.28 1.10 0.68 0.28 0.67
Ours 025 052 049 036 0064 057 034 108 053

Table 5. RMS score comparison between BabelCalib and our
method on UZH camera dataset.

5.4. Neural Radiance Fields

A significant advantage of our proposed lens model is
its two-way differentiability, making it simple to deploy
in 3D reconstruction workflows. Neural radiance fields
(NeRFs) [34] are a state-of-the-art approach for novel-view
synthesis. They optimize a scene model directly from RGB
images, given the camera intrinsics and poses. While NeRF
achieves high-quality novel views, it requires accurate cam-
era parameters, which can be difficult to obtain in practice,
particular for lens parameters, which often require an addi-
tional calibration stage. We integrate our neural lens model
into a neural rendering framework [35] such that the camera
poses, pinhole intrinsics and lens distortion are optimized
together with the appearance model, given only RGB ob-
servations. The camera intrinsic and extrinsic parameters
are initialized using values obtained from a photogrammetry
software package, Metashape, yet undistorted. As can be
seen in Fig. 8, our approach achieves a high-quality repre-

sentation of camera views and successfully recovers the lens
distortion, even in the case of extremely distorted recordings
from the FisheyeNeRF dataset [23].

To experiment with significant distortion, but still in a
non-fisheye setting, we use the NeRF dataset and augment
a Blender scene with barrel distortion. The NeRF recon-
struction fails completely in this setting; augmented with our
proposed model it succeeds in reconstruction and undistor-
tion without any other changes to the training pipeline.

6. Limitations and Future Work

In cases of very extreme lens distortion, it could be helpful
to initialize the model with a prior expectation as opposed
to starting from an identity initialization. This could help
the convergence rate as well as lead to even better solutions.
Incorporating lens priors for specific models could also be
used for model regularization if that’s desired for the specific
application, though we found the proposed model to be very
stable and usually not needing additional regularizers.

7. Conclusion

In this paper, we presented a novel approach for neural
lens modelling with a focus on end-to-end optimization, gen-
erality and ease-of-use in existing deep learning pipelines. It
includes distortion as well as vignetting effects and, thanks
to being based on invertible residual network models, can
be optimized for projection and raycasting. The model can
directly be used to improve the results for 3D reconstruc-
tions for radiance field models with hardly any changes to
existing implementations. We also introduced an end-to-end
differentiable marker-board and point detector that can be
used to perform offline calibration. Using our proposed syn-
thetic lens dataset as well as results on GoPro and fisheye
camera, we showed that the proposed model generalizes
across lenses, cameras and applications and can be a reliable
calibration component for future applications and research.
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