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(a) A LiDAR scan captured in a snowy day (b) Point-level annotations

Figure 1. We introduce SemanticSTF, an adverse-weather LiDAR point cloud dataset with dense point-level annotations that can be
exploited for the study of point cloud semantic segmentation under all-weather conditions (including fog, snow, and rain). The graph on
the left shows one scan sample captured on a snowy day, and the one on the right shows the corresponding point-level annotations.

Abstract

Robust point cloud parsing under all-weather condi-
tions is crucial to level-5 autonomy in autonomous driving.
However, how to learn a universal 3D semantic segmen-
tation (3DSS) model is largely neglected as most existing
benchmarks are dominated by point clouds captured under
normal weather. We introduce SemanticSTF, an adverse-
weather point cloud dataset that provides dense point-level
annotations and allows to study 3DSS under various ad-
verse weather conditions. We study all-weather 3DSS mod-
eling under two setups: 1) domain adaptive 3DSS that
adapts from normal-weather data to adverse-weather data;
2) domain generalizable 3DSS that learns all-weather 3DSS
models from normal-weather data. Our studies reveal the
challenge while existing 3DSS methods encounter adverse-
weather data, showing the great value of SemanticSTF in
steering the future endeavor along this very meaningful re-
search direction. In addition, we design a domain random-
ization technique that alternatively randomizes the geome-
try styles of point clouds and aggregates their embeddings,
ultimately leading to a generalizable model that can im-
prove 3DSS under various adverse weather effectively. The
SemanticSTF and related codes are available at https:
//github.com/xiaoaoran/SemanticSTF.

† Corresponding author

1. Introduction

3D LiDAR point clouds play an essential role in se-
mantic scene understanding in various applications such as
self-driving vehicles and autonomous drones. With the re-
cent advance of LiDAR sensors, several LiDAR point cloud
datasets [2, 11, 49] such as SemanticKITTI [2] have been
proposed which greatly advanced the research in 3D se-
mantic segmentation (3DSS) [19, 41, 62] for the task of
point cloud parsing. As of today, most existing point cloud
datasets for outdoor scenes are dominated by point clouds
captured under normal weather. However, 3D vision ap-
plications such as autonomous driving require reliable 3D
perception under all-weather conditions including various
adverse weather such as fog, snow, and rain. How to learn
a weather-tolerant 3DSS model is largely neglected due to
the absence of related benchmark datasets.

Although several studies [3, 33] attempt to include ad-
verse weather conditions in point cloud datasets, such as the
STF dataset [3] that consists of LiDAR point clouds cap-
tured under various adverse weather, these efforts focus on
object detection benchmarks and do not provide any point-
wise annotations which are critical in various tasks such as
3D semantic and instance segmentation. To address this
gap, we introduce SemanticSTF, an adverse-weather point
cloud dataset that extends the STF Detection Benchmark by
providing point-wise annotations of 21 semantic categories,
as illustrated in Fig. 1. Similar to STF, SemanticSTF cap-
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tures four typical adverse weather conditions that are fre-
quently encountered in autonomous driving including dense
fog, light fog, snow, and rain.

SemanticSTF provides a great benchmark for the study
of 3DSS and robust point cloud parsing under adverse
weather conditions. Beyond serving as a well-suited test
bed for examining existing fully-supervised 3DSS meth-
ods that handle adverse-weather point cloud data, Semantic-
STF can be further exploited to study two valuable weather-
tolerant 3DSS scenarios: 1) domain adaptive 3DSS that
adapts from normal-weather data to adverse-weather data,
and 2) domain generalizable 3DSS that learns all-weather
3DSS models from normal-weather data. Our studies reveal
the challenges faced by existing 3DSS methods while pro-
cessing adverse-weather point cloud data, highlighting the
significant value of SemanticSTF in guiding future research
efforts along this meaningful research direction.

In addition, we design PointDR, a new baseline frame-
work for the future study and benchmarking of all-weather
3DSS. Our objective is to learn robust 3D representations
that can reliably represent points of the same category
across different weather conditions while remaining dis-
criminative across categories. However, robust all-weather
3DSS poses two major challenges: 1) LiDAR point clouds
are typically sparse, incomplete, and subject to substantial
geometric variations and semantic ambiguity. These chal-
lenges are further exacerbated under adverse weather con-
ditions, with many missing points and geometric distortions
due to fog, snow cover, etc. 2) More noises are introduced
under adverse weather due to snow flicks, rain droplets, etc.
PointDR addresses the challenges with two iterative oper-
ations: 1) Geometry style randomization that expands the
geometry distribution of point clouds under various spatial
augmentations; 2) Embedding aggregation that introduces
contrastive learning to aggregate the encoded embeddings
of the randomly augmented point clouds. Despite its sim-
plicity, extensive experiments over point clouds of different
adverse weather conditions show that PointDR achieves su-
perior 3DSS generalization performance.

The contribution of this work can be summarized in three
major aspects. First, we introduce SemanticSTF, a large-
scale adverse-weather point cloud benchmark that provides
high-quality point-wise annotations of 21 semantic cate-
gories. Second, we design PointDR, a point cloud do-
main randomization baseline that can be exploited for future
study and benchmarking of 3DSS under all-weather condi-
tions. Third, leveraging SemanticSTF, we benchmark exist-
ing 3DSS methods over two challenging tasks on domain
adaptive 3DSS and domain generalized 3DSS. The bench-
marking efforts lay a solid foundation for future research on
this highly meaningful problem.

2. Related Works
3D semantic segmentation aims to assign point-wise se-
mantic labels for point clouds. It has been developed
rapidly over the past few years, largely through the devel-
opment of various deep neural networks (DNNs) such as
standard convolutional network for projection-based meth-
ods [9, 30, 46, 50, 59], multi-layer perceptron (MLP)-based
networks [19, 34, 34], 3D voxel convolution-based net-
works [7, 62], or hybrid networks [6, 27, 41, 51, 57]. While
existing 3DSS networks are mainly evaluated over normal
weather point clouds, their performance for adverse weather
point clouds is far under-investigated. The proposed Se-
manticSTF closes the gap and provides a solid ground for
the study and evaluation of all-weather 3DSS. By enabling
investigations into various new research directions, Seman-
ticSTF represents a valuable tool for advancing the field.
Vision recognition under adverse conditions. Scene un-
derstanding under adverse conditions has recently attracted
increasing attention due to the strict safety demand in var-
ious outdoor navigation and perception tasks. In 2D vi-
sion, several large-scale datasets have been proposed to
investigate perceptions tasks in adverse visual conditions
including localization [29], detection [56], and segmenta-
tion [36]. On the other hand, learning 3D point clouds of
adverse conditions is far under-explored due to the absence
of comprehensive dataset benchmarks. The recently pro-
posed datasets such as STF [3] and CADC [33] contain
LiDAR point clouds captured under adverse weather con-
ditions. However, these studies focus on the object detec-
tion task [15, 16] with bounding-box annotations, without
providing any point-wise annotations. Our introduced Se-
manticSTF is the first large-scale dataset that consists of Li-
DAR point clouds in adverse weather conditions with high-
quality dense annotations, to the best of our knowledge.
Domain generalization [4,31] aims to learn a generalizable
model from single or multiple related but distinct source do-
mains where target data is inaccessible during model learn-
ing. It has been widely studied in 2D computer vision
tasks [1, 21, 26, 61] while few studies explore it in point
cloud learning. Recently, [25] studies domain generaliza-
tion for 3D object detection by deforming point clouds via
vector fields. Differently, this work is the first attempt that
explores domain generalization for 3DSS.
Unsupervised domain adaptation is a method of transfer-
ring knowledge learned from a labeled source domain to a
target domain by leveraging the unlabeled target data. It has
been widely studied in 2D image learning [12,14,20,22–24]
and 3D point clouds [15, 16, 28, 39, 52, 53, 58]. Recently,
domain adaptive 3D LiDAR segmentation has drawn in-
creasing attention due to the challenge in point-wise an-
notation. Different UDA approaches have been designed
to mitigate discrepancies across LiDAR point clouds of
different domains. For example, [46, 60] project point
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clouds into depth images and leverage 2D UDA techniques
while [37, 48, 49, 55] directly work in the 3D space. How-
ever, these methods either work for synthetic-to-real UDA
scenarios [46, 49] or normal-to-normal point cloud adap-
tation [55], ignoring normal-to-adverse adaptation which
is highly practical in real applications. Our SemanticSTF
dataset fills up this blank and will inspire more development
of new algorithms for normal-to-adverse adaptation.

3. The SemanticSTF Dataset
3.1. Background

LiDAR sensors send out laser pulses and measure their
flight time based on the echoes it receives from targets. The
travel distance as derived from the time-of-flight and the
registered angular information (between the LiDAR sensors
and the targets) can be combined to compute the 3D coordi-
nates of target surface which form point clouds that capture
the 3D shape of the targets. However, the active LiDAR
pulse system can be easily affected by the scattering media
such as particles of rain droplets and snow [10, 18, 32, 35],
leading to shifts of measured distances, variation of echo
intensity, point missing, etc. Hence, point clouds captured
under adverse weather usually have clear distribution dis-
crepancy as compared with those collected under normal
weather as illustrated in Fig. 1. However, existing 3DSS
benchmarks are dominated by normal-weather point clouds
which are insufficient for the study of universal 3DSS un-
der all-weather conditions. To this end, we propose Seman-
ticSTF, a point-wise annotated large-scale adverse-weather
dataset that can be explored for the study of 3DSS and point
cloud parsing under various adverse weather conditions.

3.2. Data Selection and Split

We collect SemanticSTF by leveraging the STF bench-
mark [3], a multi-modal adverse-weather dataset that was
jointly collected in Germany, Sweden, Denmark, and Fin-
land. The data in STF have multiple modalities including
LiDAR point clouds and they are collected under various
adverse weather conditions such as snow and fog. How-
ever, STF provides bounding-box annotations only for the
study of 3D detection tasks. In SemanticSTF, we manu-
ally selected 2,076 scans captured by a Velodyne HDL64
S3D LiDAR sensor from STF that cover various adverse
weather conditions including 694 snowy, 637 dense-foggy,
631 light-foggy, and 114 rainy (all rainy LiDAR scans in
STF). During the selection, we pay special attention to the
geographical diversity of the point clouds aiming for min-
imizing data redundancy. We ignore the factor of day-
time/nighttime since LiDAR sensors are robust to lighting
conditions. We split SemanticSTF into three parts including
1,326 full 3D scans for training, 250 for validating, and 500
for testing. All three splits have approximately the same

proportion of LiDAR scans of different adverse weathers.

3.3. Data Annotation

Point-wise annotation of LiDAR point clouds is an ex-
tremely laborious task due to several factors, such as 3D
view changes, inconsistency between point cloud display
and human visual perception, sweeping occlusion, point
sparsity, etc. However, point-wise annotating of adverse-
weather point clouds is even more challenging due to two
new factors. First, the perceived distance shifts under ad-
verse weather often lead to various geometry distortions in
the collected points which make them different from those
collected under normal weather. This presents significant
challenges for annotators who must recognize various ob-
jects and assign a semantic label to each point. Second,
LiDAR point clouds collected under adverse weather often
contain a significant portion of invalid regions that consist
of indiscernible semantic contents (e.g., thick snow cover)
that make it difficult to identify the ground type. The exis-
tence of such invalid regions makes point-wise annotation
even more challenging.

We designed a customized labeling pipeline to handle
the annotation challenges while performing point-wise an-
notation of point clouds in SemanticSTF. Specifically, we
first provide labeling instructions and demo annotations and
train a team of professional annotators to provide point-
wise annotations of a set of selected STF LiDAR scans.
To achieve reliable high-quality annotations, the annotators
leverage the corresponding 2D camera images and Google
Street views as extra references while identifying the cate-
gory of each point in this initial annotation process. After
that, the annotators cross-check their initial annotations for
identifying and correcting labeling errors. At the final stage,
we engaged professional third parties who provide another
round of annotation inspection and correction.

Annotation of SemanticSTF is a highly laborious and
time-consuming task. For instance, while labeling down-
town areas with the most complex scenery, it took an anno-
tator an average of 4.3 hours to label a single LiDAR scan.
Labeling a scan captured in a relatively simpler scenery,
such as a highway, also takes an average of 1.6 hours. In ad-
dition, an additional 30-60 minutes are required per scan for
verification and correction by professional third parties. In
total, annotating the entire SemanticSTF dataset takes over
6,600 man-hours.

While annotating SemanticSTF, we adopted the same set
of semantic classes as in the widely-studied semantic seg-
mentation benchmark, SemanticKITTI [2]. Specifically, we
annotate the 19 evaluation classes of SemanticKITTI, which
encompass most traffic-related objects in autonomous driv-
ing scenes. Additionally, following [36], we label points
with indiscernible semantic contents caused by adverse
weather (e.g. ground covered by snowdrifts) as invalid. Fur-
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Figure 2. Number of annotated points per class in SemanticSTF.

thermore, we label points that do not belong to the 20 cat-
egories or are indistinguishable as ignored, which are not
utilized in either training or evaluations. Detailed descrip-
tions of each class can be found in the appendix.

3.4. Data Statistics

SemanticSTF consists of point-wise annotations of 21
semantic categories, and Fig. 2 shows the detailed statistics
of the point-wise annotations. It can be seen that classes
road, sidewalk, building, vegetation, and terrain appear
most frequently whereas classes motor, motorcyclist, and
bicyclist have clearly lower occurrence frequency. Such
class imbalance is largely attributed to the various object
sizes and unbalanced distribution of object categories in
transportation scenes, and it is also very common in many
existing benchmarks. Overall, the statistics and distribu-
tion of different object categories are similar to that of
other 2D and 3D semantic segmentation benchmarks such
as Cityscapes [8], ACDC [36], and SemanticKITTI [2].

To the best of our knowledge, SemanticSTF is the first
large-scale adverse-weather 3DSS benchmark that provides
high-quality point-wise annotations. Table 1 compares it
with several existing point cloud datasets that have been
widely adopted for the study of 3D detection and semantic
segmentation. We can observe that existing datasets are ei-
ther collected under normal weather conditions or collected
for object detection studies with bounding-box annotations
only. 3DSS benchmark under adverse weather is largely
blank, mainly due to the great challenge in point-wise an-
notations of adverse-weather point clouds as described in
previous subsections. From this sense, SemanticSTF fills
up this blank by providing a large-scale benchmark and test
bed which will be very useful to future research in universal
3DSS under all weather conditions.

3.5. Data illustration

Fig. 3 provides examples of point cloud scans captured
under adverse weather conditions in SemanticSTF (in row
1) as well as the corresponding annotations (in row 2).
Compared with normal-weather point clouds, point clouds
captured under adverse weather exhibit four distinct prop-
erties: 1) Snow coverage and snowflakes under snowy
weather introduce many white points (labeled as “invalid”)
as illustrated in Fig. 3(a). The thick snow coverage may lead
to object deformation as well; Rainy conditions may cause
specular reflection of laser signals from water on the ground

Dataset #Cls Type Annotation Fog Rain Snow
KITTI [13] 8 real bounding box ✗ ✗ ✗

nuScenes [5] 23 real bounding box ✗ ✗ ✗
Waymo [40] 4 real bounding box ✗ ✗ ✗

STF [3] 5 real bounding box ✓ ✓ ✓

SemanticKITTI [2] 25 real point-wise ✗ ✗ ✗
nuScenes-LiDARSeg [11] 32 real point-wise ✗ ✗ ✗

Waymo-LiDARSeg [40] 21 real point-wise ✗ ✗ ✗
SynLiDAR [49] 32 synth. point-wise ✗ ✗ ✗

SemanticSTF (ours) 21 real point-wise ✓ ✓ ✓

Table 1. Comparison of SemanticSTF against existing outdoor
LiDAR benchmarks. #Cls means the class number.

and produce many noise points as shown in Fig.3(b); 3)
Dense fog may greatly reduce the working range of LiDAR
sensors, leading to small spatial distribution of the collected
LiDAR points as illustrated in Fig. 3(c); 4) Point clouds un-
der light fog have similar characteristics as normal-weather
point clouds as illustrated in Fig. 3(d). The distinct prop-
erties of point clouds under different adverse weather intro-
duce different types of domain shift from normal-weather
point clouds which complicate 3DSS greatly as discussed
in Section 5. They also verify the importance of develop-
ing universal 3DSS models that can perform well under all
weather conditions.

4. Point Cloud Domain Randomization
Leveraging SemanticSTF, we explore domain general-

ization (DG) for semantic segmentation of LiDAR point
clouds under all weather conditions. Specifically, we de-
sign PointDR, a domain randomization technique that helps
to train a generalizable segmentation model from normal-
weather point clouds that can work well for adverse-weather
point clouds in SemanticSTF.

4.1. Problem Definition

Given labeled point clouds of a source domain S =
{Sk = {xk, yk}}Kk=1 where x represents a LiDAR point
cloud scan and y denotes its point-wise semantic annota-
tions, the goal of domain generalization is to learn a seg-
mentation model F by using the source-domain data only
that can perform well on point clouds from an unseen tar-
get domain T . We consider a 3D point cloud segmentation
model F that consists of a feature extractor E and a clas-
sifier G. Note under the setup of domain generalization,
target data will not be accessed in training as they could be
hard and even impossible to acquire at the training stage.

4.2. Point Cloud Domain Randomization

Inspired by domain randomization studies in 2D com-
puter vision research [42, 43], we explore how to employ
domain randomization for learning domain generalizable
models for point clouds. Specifically, we design PointDR,
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(a) Snow (b) Rain (c) Dense fog (d) Light fog
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Figure 3. Examples of LiDAR point cloud scans captured under different adverse weather including snow, rain, dense fog, and light fog
(the first row) and corresponding dense annotations in SemanticSTF (the second row).
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Figure 4. The framework of our point cloud randomization method
(PointDR): Geometry style randomization creates different point
cloud views with various spatial perturbations while embedding
aggregation encourages the feature extractor to aggregate random-
ized point embeddings to learn perturbation-invariant representa-
tions, ultimately leading to a generalizable segmentation model.

a point cloud randomization technique that consists of two
complementary designs including geometry style random-
ization and embedding aggregation as illustrated in Fig. 4.
Geometry style randomization aims to enrich the geome-
try styles and expand the distribution of training point cloud
data. Given a point-cloud scan x as input, we apply weak
and strong spatial augmentation to obtain two copies of x
including a weak-view xw = AW (x) and a strong-view
xs = AS(x). For the augmentation schemes of AW , we
follow existing supervised learning methods [41] and adopt
the simple random rotation and random scaling. While for
the augmentation schemes of AS , we further adopt random
dropout, random flipping, random noise perturbation, and
random jittering on top ofAW to obtain a more diverse and
complex copy of the input point cloud scan x.
Embedding aggregation aims to aggregate encoded em-
beddings of randomized point clouds for learning domain-

invariant representations. We adopt contrastive learn-
ing [17] as illustrated in Fig. 4. Given the randomized point
clouds xw and xs, we first feed them into the feature extrac-
tor E and a projector P (a two-layer MLP) which outputs
normalized point feature embeddings fw and fs, respec-
tively (f = P(E(x))). f

w

C ∈ RD×C (D: feature dimen-
sion; C: number of semantic classes) is then derived by
class-wise averaging the feature embeddings fw in a batch,
which is stored in a memory bank B ∈ RD×C that has
no backpropagation and is momentum updated by iterations
(i.e., B ← m×B+(1−m)×f

w

C with a momentum coeffi-
cient m). Finally, we employ each point feature embedding
fs
i of the strong-view fs as query and feature embeddings

in B as keys for contrastive learning, where the key sharing
the same semantic class as the query is positive key B+ and
the rest are negative keys. The contrastive loss is defined as

Lct =
1

N

N∑
i=1

− log
exp (fs

i B+/τ)∑C
j=1 exp (f

s
i Bj/τ)

(1)

where τ is a temperature hyper-parameter [47]. Note there
is no back-propagation for the “ignore” class in optimizing
the contrastive loss.

Contrastive learning pulls point feature embeddings of
the same classes closer while pushing away point feature
embeddings of different classes. Therefore, optimizing the
proposed contrastive loss will aggregate randomized point
cloud features and learn perturbation-invariant representa-
tions, ultimately leading to a robust and generalizable seg-
mentation model. The momentum-updated memory bank
provides feature prototypes of each semantic class for more
robust and stable contrastive learning.

Combining the supervised cross-entropy loss Lce for
weakly-augmented point clouds in Eq. 1, the overall train-
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Oracle 89.4 42.1 0.0 59.9 61.2 69.6 39.0 0.0 82.2 21.5 58.2 45.6 86.1 63.6 80.2 52.0 77.6 50.1 61.7 51.9 54.6 57.9 53.7 54.7

SemanticKITTI→SemanticSTF

Baseline 55.9 0.0 0.2 1.9 10.9 10.3 6.0 0.0 61.2 10.9 32.0 0.0 67.9 41.6 49.8 27.9 40.8 29.6 17.5 29.5 26.0 28.4 21.4 24.4
Dropout [38] 62.1 0.0 15.5 3.0 11.5 5.4 2.0 0.0 58.4 12.8 26.7 1.1 72.1 43.6 52.9 34.2 43.5 28.4 15.5 29.3 25.6 29.4 24.8 25.7
Perturbation 74.4 0.0 0.0 23.3 0.6 19.7 0.0 0.0 60.3 10.8 33.9 0.7 72.0 45.2 58.7 17.5 42.4 22.1 9.7 26.3 27.8 30.0 24.5 25.9
PolarMix [48] 57.8 1.8 3.8 16.7 3.7 26.5 0.0 2.0 65.7 2.9 32.5 0.3 71.0 48.7 53.8 20.5 45.4 25.9 15.8 29.7 25.0 28.6 25.6 26.0
MMD [26] 63.6 0.0 2.6 0.1 11.4 28.1 0.0 0.0 67.0 14.1 37.9 0.3 67.3 41.2 57.1 27.4 47.9 28.2 16.2 30.4 28.1 32.8 25.2 26.9
PCL [54] 65.9 0.0 0.0 17.7 0.4 8.4 0.0 0.0 59.6 12.0 35.0 1.6 74.0 47.5 60.7 15.8 48.9 26.1 27.5 28.9 27.6 30.1 24.6 26.4
PointDR (Ours) 67.3 0.0 4.5 19.6 9.0 18.8 2.7 0.0 62.6 12.9 38.1 0.6 73.3 43.8 56.4 32.2 45.7 28.7 27.4 31.3 29.7 31.9 26.2 28.6

SynLiDAR→SemanticSTF

Baseline 27.1 3.0 0.6 15.8 0.1 25.2 1.8 5.6 23.9 0.3 14.6 0.6 36.3 19.9 37.9 17.9 41.8 9.5 2.3 16.9 17.2 17.2 11.9 15.0
Dropout [38] 28.0 3.0 1.4 9.6 0.0 17.1 0.8 0.7 34.2 6.8 19.1 0.1 35.5 19.1 42.3 17.6 36.0 14.0 2.8 15.3 16.6 20.4 14.0 15.2
Perturbation 27.1 2.3 2.3 16.0 0.1 23.7 1.2 4.0 27.0 3.6 16.2 0.8 29.2 16.7 35.3 22.7 38.3 17.9 5.1 16.3 16.7 19.3 13.4 15.2
PolarMix [48] 39.2 1.1 1.2 8.3 1.5 17.8 0.8 0.7 23.3 1.3 17.5 0.4 45.2 24.8 46.2 20.1 38.7 7.6 1.9 16.1 15.5 19.2 15.6 15.7
MMD [26] 25.5 2.3 2.1 13.2 0.7 22.1 1.4 7.5 30.8 0.4 17.6 0.2 30.9 19.7 37.6 19.3 43.5 9.9 2.6 17.3 16.3 20.0 12.7 15.1
PCL [54] 30.9 0.8 1.4 10.0 0.4 23.3 4.0 7.9 28.5 1.3 17.7 1.2 39.4 18.5 40.0 16.0 38.6 12.1 2.3 17.8 16.7 19.3 14.1 15.5
PointDR (Ours) 37.8 2.5 2.4 23.6 0.1 26.3 2.2 3.3 27.9 7.7 17.5 0.5 47.6 25.3 45.7 21.0 37.5 17.9 5.5 19.5 19.9 21.1 16.9 18.5

Table 2. Experiments on domain generalization with SemanticKITTI [2] or SynLiDAR [49] as source and SemanticSTF as target.

ing objective of PointDR can be formulated by:

LPointDR = Lce + λctLct (2)

5. Evaluation of Semantic Segmentation
SemanticSTF can be adopted for benchmarking different

learning setups and network architectures on point cloud
segmentation. We perform experiments over two typical
learning setups including domain generalization and unsu-
pervised domain adaptation. In addition, we evaluate sev-
eral state-of-the-art point-cloud segmentation networks to
examine their generalization capabilities.

5.1. Domain Generalization

We first study domain generalizable point cloud segmen-
tation. For DG, we can only access an annotated source
domain during training and the trained model is expected
to generalize well to unseen target domains. Leveraging
SemanticSTF, we build two DG benchmarks and examine
how PointDR helps learn a universal 3DSS model that can
work under different weather conditions.

The first benchmark is SemanticKITTI [2] → Seman-
ticSTF where SemanticKITTI is a large-scale real-world
3DSS dataset collected under normal weather conditions.
This benchmark serves as a solid testing ground for eval-
uating domain generalization performance from normal to
adverse weather conditions. The second benchmark is Syn-
LiDAR [49] → SemanticSTF where SynLiDAR is a large-
scale synthetic 3DSS dataset. The motivation of this bench-
mark is that learning a universal 3DSS model from synthetic
point clouds that can work well across adverse weather
is of high research and application value considering the

challenges in point cloud collection and annotation. Note
this benchmark is more challenging as the domain discrep-
ancy comes from both normal-to-adverse weather distribu-
tion shift and synthetic-to-real distribution shift.
Setup. We use all 19 evaluating classes of SemanticKITTI
in both domain generalization benchmarks. The category
of invalid in SemanticSTF is mapped to the ignored since
SemanticKITTI and SynLiDAR do not cover this cate-
gory. We adopt MinkowskiNet [7] (with TorchSparse li-
brary [41]) as the backbone model, which is a sparse convo-
lutional network that provides state-of-the-art performance
with decent efficiency. We adopt the evaluation metrics of
Intersection over the Union (IoU) for each segmentation
class and the mean IoU (mIoU) over all classes. All ex-
periments are run over a single NVIDIA 2080Ti (11GB).
More implementation details are provided in the appendix.
Baseline Methods. Since domain generalizable 3DSS is
far under-explored, there is little existing baseline that can
be directly adopted for benchmarking. We thus select two
closely related approaches as baseline to evaluate the pro-
posed PointDR. The first approach is data augmentation
and we select three related augmentation methods includ-
ing Dropout [38] that randomly drops out points to simulate
LiDAR points missing in adverse weather, Noise perturba-
tion that adds random points in the 3D space to simulate
noise points as introduced by particles like falling snow, and
PolarMix [48] that mixes point clouds of different sources
for augmentation. The second approach is to adapt 2D do-
main generalization methods for 3DSS. We select two 2D
domain generalization methods including the widely stud-
ied MMD [26] and the recently proposed PCL [54].
Results. Table 2 shows experimental results over the valida-
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Method Lce Lct B mIoU

Baseline ✓ 24.4
PointDR-CT ✓ ✓ 27.4
PointDR ✓ ✓ ✓ 28.6

Table 3. Ablation study of PointDR over domain generalized seg-
mentation task SemanticKITTI→SemanticSTF.

tion set of SemanticSTF. For both benchmarks, the Baseline
is a source-only model that is trained by using the training
data of SemanticKITTI or SynLiDAR. We can see that the
Baseline achieves very low mIoU while evaluated over the
validation set of SemanticSTF, indicating the large domain
discrepancy between point clouds of normal and adverse
weather conditions. In addition, all three data augmentation
methods improve the model generalization consistently but
the performance gains are limited especially for the chal-
lenging benchmark SynLiDAR→ SemanticSTF. The two
2D generalization methods both help SemanticKITTI →
SemanticSTF clearly but show very limited improvement
over SynLiDAR → SemanticSTF. The proposed PointDR
achieves the best generalization consistently across both
benchmarks, demonstrating its superior capability to learn
perturbation-invariant point cloud representations and ef-
fectiveness while handling all-weather 3DSS tasks.

We also evaluate the compared domain generalization
methods over each individual adverse weather condition as
shown in Table 2. It can be observed that the three data
augmentation methods work for data captured in rainy and
snowy weather only. The 2D generalization method MMD
shows clear effectiveness for point clouds under dense fog
and rain while PCL works for point clouds under rainy and
snowy weather instead. We conjecture that the performance
variations are largely attributed to the different properties
of point clouds captured under different weather conditions.
For example, more points are missing in rain while object
points often deform due to the covered snow (more illus-
trations are provided in the appendix). Such data variations
lead to different domain discrepancies across weather which
further leads to different performances of the compared
methods. As PointDR learns perturbation-tolerant represen-
tations, it works effectively across different adverse weather
conditions. We also provide qualitative results, please refer
to the appendix for details.
Ablation study. We study different PointDR designs to
examine how they contribute to the overall generalization
performance. As Table 3 shows, we report three models
over the benchmark “SemanticKITTI→ SemanticSTF”: 1)
Baseline that is trained with Lce. 2) PointDR-CT that is
jointly trained with Lce and Lct without using the mem-
ory bank B. 3) The complete PointDR that is trained with
Lce, Lct and the memory bank B. We evaluate the three
models over the validation set of SemanticSTF and Table 3

shows experimental results. We can see that the Base-
line performs poorly at 24.4% due to clear domain dis-
crepancy between point clouds of normal weather and ad-
verse weather. Leveraging the proposed contrastive loss,
Lct achieves clearly better performance at 27.4%, indicat-
ing that learning perturbation-invariance is helpful for uni-
versal LiDAR segmentation of all-weather conditions. On
top of that, introducing the momentum-updated memory
bank B further improves the segmentation performance at
28.6%. This is because the feature embeddings in B serve
as the class prototypes which help the optimization of the
segmentation network, finally leading to more robust repre-
sentations of 3DSS that perform better over adverse weather
point clouds.

5.2. Domain Adaptation

We also study SemanticSTF over a domain adaptive
point cloud segmentation benchmark SemanticKITTI →
SemanticSTF. Specifically, we select four representative
UDA methods including ADDA [44], entropy minimiza-
tion (Ent-Min) [45], self-training [63], and CoSMix [37]
for adaptation from the source SemanticKITTI [2] to-
ward the target SemanticSTF. Following the state-of-the-
art [37, 48, 49] on synthetic-to-real adaptation, we adopt
MinkowskiNet [7] as the segmentation backbone for all
compared methods. Table 4 shows experimental results
over the validation set of SemanticSTF. We can see that all
UDA methods outperform the Source-only consistently un-
der the normal-to-adverse adaptation setup. At the other
end, the performance gains are still quite limited, showing
the great improvement space along domain adaptive 3DSS
from normal to adverse weather conditions.

In addition, we examined the adaptability of the four
UDA methods in relation to each individual adverse weather
condition. Specifically, we trained each of the four methods
for adaptation from SemanticKITTI to SemanticSTF data
for each adverse weather condition. Table 5 shows the ex-
perimental results over the validation set of SemanticSTF.
We can see all four methods outperform the Source-only
method under Dense-fog and Light-fog, demonstrating their
effectiveness in mitigating domain discrepancies. However,
for rain and Snow, only CoSMix achieved marginal perfor-
mance gains while the other three UDA methods achieved
limited performance improvements. We conjecture that
snow and rain introduce large deformations on object sur-
faces or much noise, making adaptation from normal to ad-
verse weather more challenging. CoSMix works in the in-
put space by directly mixing source and target points, allow-
ing it to perform better under heavy snow and rain which
have larger domain gaps. However, all methods achieved
relatively low segmentation performance, indicating the sig-
nificance of our research and the large room for improve-
ment in our constructed benchmarks.
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Oracle 89.4 42.1 0.0 59.9 61.2 69.6 39.0 0.0 82.2 21.5 58.2 45.6 86.1 63.6 80.2 52.0 77.6 50.1 61.7 54.7

Source-only 64.8 0.0 0.0 13.8 1.8 5.0 2.1 0.0 62.7 7.5 34.0 0.0 66.7 36.2 53.9 31.3 44.3 24.0 14.2 24.3
ADDA [44] 65.6 0.0 0.0 21.0 1.3 2.8 1.3 16.7 64.7 1.2 35.4 0.0 66.5 41.8 57.2 32.6 42.2 23.3 26.4 26.3
Ent-Min [45] 69.2 0.0 10.1 31.0 5.3 2.8 2.6 0.0 65.9 2.6 35.7 0.0 72.5 42.8 52.4 32.5 44.7 24.7 21.1 27.2
Self-training [63] 71.5 0.0 10.3 33.1 7.4 5.9 1.3 0.0 65.1 6.5 36.6 0.0 67.8 41.3 51.7 32.9 42.9 25.1 25.0 27.6
CoSMix [37] 65.0 1.7 22.1 25.2 7.7 33.2 0.0 0.0 64.7 11.5 31.1 0.9 62.5 37.8 44.6 30.5 41.1 30.9 28.6 28.4

Table 4. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI→SemanticSTF adaptation. SemanticKITTI serves
as the source domain and the entire SemanticSTF including all four weather conditions serves as the target domain.

Method Dense-fog Light-fog Rain Snow

Source-Only 26.9 25.2 27.7 23.5
ADDA [44] 31.5 27.9 27.4 23.4
Ent-Min [45] 31.4 28.6 30.3 24.9
Self-training [63] 31.8 29.3 27.9 25.1
CoSMix [37] 31.6 30.3 33.1 32.9

Table 5. Comparison of state-of-the-art domain adaptation meth-
ods on SemanticKITTI→SemanticSTF adaptation for individual
adverse weather conditions. We train a separate model for each
weather-specific subset of SemanticSTF and evaluate the trained
model on the weather condition it has been trained for.

5.3. Network Models vs All-Weather 3DSS

We also study how different 3DSS network architec-
tures generalize when they are trained with normal-weather
point clouds and evaluated over SemanticSTF. Specifically,
we select five representative 3DSS networks [9, 19, 41, 62]
that have been widely adopted in 3D LiDAR segmen-
tation studies. In the experiments, each selected net-
work is first pre-trained with SemanticKITTI [2] and then
evaluated over the validation set of SemanticSTF. We di-
rectly use the officially released code and the pre-trained
weights for evaluation. Table 6 shows experimental results.
We can observe that the five pre-trained models perform
very differently though they all achieve superior segmenta-
tion over SemanticKITTI. Specifically, RandLA-Net [19],
SPVCNN [41], and SPVNAS [41] perform clearly better
than SalsaNext [9] and Cylinder3D [62]. In addition, none
of the five pre-trained models perform well, verifying the
clear domain discrepancy between point clouds of normal
and adverse weather conditions. The experiments further
indicate the great value of SemanticSTF in the future explo-
ration of robust point cloud parsing under all weather con-
ditions. In addition, the supervised performance of these
3DSS networks over SemanticSTF is provided in the ap-
pendix.

6. Conclusion and Outlook
This paper presents SemanticSTF, a large-scale dataset

and benchmark suite for semantic segmentation of LiDAR

3DSS Model D-fog L-fog Rain Snow All

RandLA-Net [19] 26.5 26.0 25.1 22.7 25.3
SalsaNext [9] 16.0 9.6 7.8 3.5 9.1
SPVCNN [41] 30.4 22.8 21.7 18.3 22.4
SPVNAS [41] 25.5 18.3 17.0 13.0 18.0
Cylinder3D [62] 14.8 7.4 5.7 4.0 7.3

Table 6. Performance of state-of-the-art 3DSS models that are
pre-trained over SemanticKITTI and tested on validation set of
SemanticSTF for individual weather conditions and jointly for all
weather conditions.

point clouds under adverse weather conditions. Semantic-
STF provides high-quality point-level annotations for point
clouds captured under adverse weather including dense fog,
light fog, snow and rain. Extensive studies have been con-
ducted to examine how state-of-the-art 3DSS methods per-
form over SemanticSTF, demonstrating its significance in
directing future research on domain adaptive and domain
generalizable 3DSS under all-weather conditions.

We also design PointDR, a domain randomization tech-
nique that aims to use normal-weather point clouds to train
a domain generalizable 3DSS model that can work well
over adverse-weather point clouds. PointDR consists of two
novel designs including geometry style randomization and
embedding aggregation which jointly learn perturbation-
invariant representations that generalize well to various new
point-cloud domains. Extensive experiments show that
PointDR achieves superior point cloud segmentation per-
formance as compared with the state-of-the-art.
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