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Abstract

Class incremental semantic segmentation (CISS) fo-
cuses on alleviating catastrophic forgetting to improve dis-
crimination. Previous work mainly exploits regularization
(e.g., knowledge distillation) to maintain previous knowl-
edge in the current model. However, distillation alone of-
ten yields limited gain to the model since only the repre-
sentations of old and new models are restricted to be con-
sistent. In this paper, we propose a simple yet effective
method to obtain a model with a strong memory of old
knowledge, named Endpoints Weight Fusion (EWF). In our
method, the model containing old knowledge is fused with
the model retaining new knowledge in a dynamic fusion
manner, strengthening the memory of old classes in ever-
changing distributions. In addition, we analyze the rela-
tionship between our fusion strategy and a popular mov-
ing average technique EMA, which reveals why our method
is more suitable for class-incremental learning. To facili-
tate parameter fusion with closer distance in the parameter
space, we use distillation to enhance the optimization pro-
cess. Furthermore, we conduct experiments on two widely
used datasets, achieving state-of-the-art performance.

1. Introduction
As a fundamental task, semantic segmentation plays a

key role in visual applications [10, 25]. Previous fully-
supervised works aim to segment fixed classes defined in
the training set. However, the trained segmentation model
is expected to recognize more classes in realistic applica-
tions. One straightforward solution is to re-train the model
on the entire dataset by mixing old and new data. Never-
theless, this strategy will bring huge labeling and training
costs. From the transfer learning perspective [22, 30], an-
other plain solution is to adjust the previously learned model
on the newly added data. But the model will overfit to new
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Figure 1. Illustration of different fusion strategies for incremen-
tal learning. Ensemble methods utilize multiple models to accu-
mulate more knowledge. Compression methods reduce the model
size and distill the knowledge into a small network. While Re-
parameterization methods use equivalent operations for model fu-
sion. Our Endpoints Weight Fusion (EWF) proposes model addi-
tion with a dynamic factor (αt) with no further training.

classes quickly, while forgetting previous old classes. This
phenomenon is also known as catastrophic forgetting [35].

To alleviate the problem of catastrophic forgetting with-
out extra labeling or training cost, class incremental se-
mantic segmentation (CISS) [3, 16, 50] aims at optimiz-
ing the trade-off between maintaining discrimination for
old classes and learning knowledge of new classes. Most
works [3, 16, 17, 37] designed regularization methods to
maintain a balance between memorizing old knowledge and
learning new one. We observe that existing works can still
suffer from catastrophic forgetting, resulting in a significant

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7204



performance drop in old classes. In the scenario of CISS,
not only the previous data is not accessible due to privacy
issues or data storage limitations, but regions of old classes
in the newly added dataset are labeled as background, which
further exacerbates the model over-fitting.

Besides, training a new model from the old one and fus-
ing them to obtain the final model is a common strategy
in continual learning. As shown in Fig. 1, we roughly di-
vide them into four categories with two stages of model ex-
pansion and fusion. Some methods [27, 33, 42, 47] propose
to expand the model in incremental steps and ensemble the
old and new outputs, which have large memory and infer-
ence costs. While some works apply compression [46, 47]
to compress the old and new model to a unified model with
fewer parameters. Nevertheless, these require further train-
ing on only new data, which can lead to a bias toward new
data. Subsequently, some works [50,53] explore knowledge
decoupling and perform linear parameter fusion with re-
parameterization. However, this is an intra-module fusion
strategy, which is restricted to certain operations. As the
last category, we propose Endpoints Weight Fusion (EWF)
in the form of parameter addition between the old and new
model with a dynamic factor, which requires no further
training and re-parameterization, and maintains a constant
model size as more tasks are encountered.

In this work, we adapt weight fusion to CISS and pro-
pose the EWF strategy, which aims at utilizing weight fu-
sion to find a new balance between old and new knowledge.
During incremental training, we choose a starting point and
an ending point model of the current task training trajectory.
The starting point represents the old knowledge, while the
ending point represents the new knowledge. After learn-
ing the current task, a dynamic weight fusion is proposed
for efficient knowledge integration. We aggregate them by
taking the weighted average of the corresponding parame-
ters of the two models. Nevertheless, the training procedure
without restraints on the model would increase the param-
eter distance between the start and end points, limiting the
performance improvement brought by the EWF strategy. To
overcome this shortcoming, we further enhance the EWF
strategy with a knowledge distillation scheme [16, 17, 50],
which can largely increase the similarity of the models at
the two points and boost the efficiency of EWF.

To summarize, the main contributions of this paper are:

• We propose an Endpoints Weight Fusion strategy,
which has no cost of further training and keeps the
model size the same. It can effectively find a new
balance between old and new categories and alleviate
catastrophic forgetting.

• Our method can be easily integrated with several state-
of-the-art methods. In several CISS scenarios of long
sequences, it can boost the baseline performance by

more than 20%.

• We conduct experiments on various CISS scenarios,
which demonstrate that our method achieves the state-
of-the-art performance on both PASCAL VOC and
ADE20K.

2. Related Work
Class Incremental Learning. Class incremental learn-

ing mainly focuses on alleviating catastrophic forgetting
while learning the discriminative information required for
the newly coming classes. It is most commonly analyzed in
image classification, and the techniques can be roughly di-
vided into three categories [11]. Many works [43–45] focus
on the structural properties of the model (i.e., Structural-
Based Method). The idea is to freeze old models and
expand the architecture space to learn new knowledge,
which normally results in a growing capacity and mem-
ory size of the model. Another way is to regularize
models during incremental learning (i.e., Regularization-
Based Method) [7, 8, 12, 17], strengthening memory via
constraints (e.g., knowledge distillation [39, 41] or gradient
penalty [26, 29]). These methods bring the negligible cost
to the learning process, but they allow for less freedom for
parameter updates. Some other methods [1,2,28] propose to
review knowledge through rehearsal (i.e., Rehearsal-Based
Method). They store old data and mix it with new data to
re-train the model [5, 21, 52].

Class Incremental Semantic Segmentation. Semantic
segmentation [19] aims at assigning different categories to
each single pixel, and has recently attracted attention for
learning in a class incremental learning scenario [3, 16].
Nevertheless, data for semantic segmentation takes more
space [24, 48] to be stored compared to the classification
problem. Therefore, recent work mainly concentrates on
utilizing distillation to transfer old knowledge to the new
model without saving exemplars from old tasks.

MiB [4] proposes to model the potential classes to tackle
semantic drift. PLOP [16] applies feature distillation to
restrict representation ability. SDR [37] uses prototype
matching to strengthen consistency in latent space. And
RC-IL [50] analyzes the disadvantages of strip pooling
and proposes average-pooling-based distillation to back up
training. On the contrary, SSUL [6] does not apply distil-
lation and proposes to fix the feature extractor instead of
updating its parameters. In addition, they introduce thou-
sands of extra data to help generate pseudo labels. But,
simply fixing the model definitely does damage to the bal-
ance between plasticity and stability, and it is not sustain-
able when facing huge amounts of newly coming data. On
the other hand, only applying distillation can restrict per-
formance, since it can just limit the representation of new
data to be the same. Summarizing the above thoughts and
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Figure 2. Illustration of our Endpoints Weight Fusion (EWF) framework. On the left side, we illustrate training and testing processes.
Training is enhanced by knowledge distillation and fusion is applied after training to accumulate all seen knowledge. On the right side,
given a 3×3 convolution layer and a normalization layer, they are fused by using a dynamic trade-off parameter αt. Note that there is no
computation cost for our fusion process.

inspired by RC-IL [50], we design a strategy different from
the above, cooperating with distillation and maintaining the
balance between the old and new knowledge with model
weight fusion.

Weight Fusion Method. Weight Fusion is widely used
in neural network training to improve performance. It can
be applied with both linear and nonlinear operations. In
linear mode, RCM [27] explores the additivity of convolu-
tion and applies it on multi-task learning. ACNet [14] and
RepVGG [15] first propose structural re-parameterization,
which is used to merge multi-branch Convolution-Batch
Normalization serial sequences to a plain Convolution layer.
RC-IL ingeniously exploits this operation to establish a rep-
resentation compensation mechanism in continual learning.
In nonlinear mode, weight averaging is commonly used to
bring closer connections between different models. Famous
methods like BYOL [20] use EMA [38] to improve the
knowledge transfer effect or model robustness. From this
point, we design a strategy to reach a new balance, which
has no effect on the current training process and fully re-
leases the learning ability of the model.

3. Method

3.1. Preliminaries

We consider a multi-step training process where T tasks
are sequentially learned by model fθ in a fully supervised
scenario for semantic segmentation, where f is parameter-
ized by parameter θ. Here fθt denotes the model at task t.
Each task contains a dataset Dt = {xi, yi}, where xi de-
notes the data and yi denotes the corresponding label. The
training label space of the task T is denoted as Ct

⋃
{cb},

where Ct includes all classes that appear in this task, and cb
represents the background. Since Ci∩Cj = ∅, the objective
of different tasks are not the same, easily leading to catas-
trophic forgetting. To save annotation costs, only the cate-
gories that need to be learned at this stage will be labeled.
Thus, cb contains not only the real background, but also the
classes appearing in past and future tasks. This complicates
the training of the model fθ since the background label cb
can refer to different classes at different tasks. This exacer-
bates the severity of forgetting.

3.2. Endpoints Weight Fusion (EWF)

As illustrated in Fig. 1, the existing model expansion-
fusion methods have their own drawbacks for enhancing the
model’s memory of old knowledge. Thus, to better retain
the old knowledge while boosting the learning ability of the
model, we introduce our Endpoints Weight Fusion strategy.
Considering the training process at step t, we choose a start-
ing point model and an ending point model. The final model
of the previous step (θold) is regarded as the best container
of old knowledge. While the model after training on the
current task (θnew) contains the discriminative information
for new classes. Additionally, we introduce another param-
eter α for the endpoints weight fusion, aiming at fusing two
sets of parameters in a certain ratio. This ratio can be seen
as a balance factor. Therefore, the operation of endpoints
weight fusion can be written as:

θbalanced = αtθnew + (1− αt)θold (1)

where the θbalanced denotes the final model of this task, and
the θold, θnew are defined as above. Furthermore, the num-
ber of incremental categories (denoted as Nnew) and orig-
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inal categories (denoted as Nold) to a certain extent repre-
sent the degree of emphasis on the θnew and θold. For the
selection of αt, we need to consider Nnew and Nold in the
current learning step. We decide to replace the constant ra-
tio with an equation related to Nnew and Nold. In detail,
this formula can be expressed as:

αt =

√
Nnew

Nnew +Nold
(2)

It can be used across different tasks and scenarios. It can
adapt to each task in CISS with a dynamic factor. We illus-
trate the main idea of our method in Fig. 2.
Knowledge distillation enhanced for EWF. In practice,
training without any constraint will significantly increase
the distance between different models and break the sim-
ilarity of model representations. That means it deterio-
rates the forgetting of the model, which further undermines
the model’s ability to discriminate new classes. Moreover,
guaranteeing a low error linear path between two distant
models is an overly strong assumption. Thus, choosing a
model trained without constraints as an ending point is po-
tentially harmful, and we, therefore, introduce knowledge
distillation to enhance the compatibility of the models of
our Endpoints Weight Fusion method.

Knowledge distillation is a commonly used technique to
prevent models from forgetting. As stated above, we uti-
lize distillation to back up our strategy, limiting the distance
between two endpoints and forcing them to be similar. In
general, distillation used in continual learning is mainly di-
vided into two categories, i.e., feature-based distillation and
logit-based distillation. They can be represented as:

LFD =
1

|D|
∑

(xi,yi)∼D

||Ψold(xi)−Ψnew(xi)||2

LLD =
1

|D|
∑

(xi,yi)∼D

KL(Φold(Ψold(xi)),Φnew(Ψnew(xi)))

(3)
Ψold/Φold and Ψnew/Φnew denote old and new feature ex-
tractor/classifier respectively, and D is the corresponding
dataset of the incremental learning step. In CISS, two
popular distillation losses (i.e., UNKD, POD) are proposed
by [3, 16], respectively. The former is a logit-based distilla-
tion and the latter is a feature-based distillation. They can
be easily integrated into our method.
Discussion on EMA v.s. EWF. An update strategy similar
to our method is using EMA [38] to update the model. Here
we will discuss the difference between our method EWF
and EMA, and the advantages of EWF. The EMA strategy
maintains a moving average model during training, and uses
this model to replace the final model for inference. The
moving average model can be represented as:

vi = βvi−1 + (1− β)θi (4)
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Figure 3. Representation similarity between old model θ1 before
training and being trained new model θi. The similarity measure
we use is cosine similarity. We extract the intermediate results of
the feature extractors of the old and new networks and calculate
the average of the cosine similarity between them.

where the vi denotes the moving average of the first i mod-
els, and θi denotes the model after ith iteration. β is the
moving average parameter, which is usually set as 0.9/0.99.
It is easy to see that the EMA is an inter-iteration operation,
which is easier to realize due to the low distance between
models. Since we use SGD as an optimizer, following Eq. 5,
the results of EMA and EWF can be represented as vn and
θbalanced in Eq. 6. Note that the learning rate does not af-
fect the result of the analysis, so we set the learning rate to
1. The more detailed derivations are in the Appendix.

θn = θn−1 −∇L(θ
n−1)

= θ1 −
n∑

k=1

∇L(θ
k)

(5)

vn = θ1 −
n−1∑
k=1

(1− βn−k)∇L(θ
k)

θbalanced = θ1 − α

n−1∑
k=1

∇L(θ
k)

(6)

Since the β is usually set to 0.9/0.99 and the α is set follow-
ing Eq. 2, α is always smaller than β. According to Eq. 6,
EMA gives more weight to the gradient of early time, and
then gradually attenuates the influence of gradients in sub-
sequent iterations. On the contrary, EWF gives the gradi-
ent of different parts a relatively uniform weight. Besides,
to better observe the stability of incremental learning step,
we calculate the representations similarity between θ1 and
θi. According to our observation in an incremental step, as
shown in Fig. 3, the similarity of representations between θ1

and θi first decreases and then increases, and gradually sta-
bilizes in the subsequent stages. This reveals that in order
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Algorithm 1 Pseudo Code for EWF in incremental steps

Require: f, θ0, T,DT and learning rate γ
t← 1
while t ≤ T do

Initialize Nnew, Nold

θ1 ← θt−1

αt ←
√

Nnew

Nnew+Nold

i← 1
while not converged do

Sample mini-batch {xi, yi} ∼ D
θi+1 ← θi − γ∇LCE+LKD

(fθi)
i← i+ 1

end while
θold ← θ1, θnew ← θi

θbalanced ← αtθnew + (1− αt)θold
θt ← θbalanced
t← t+ 1

end while

to learn new knowledge, the representation will first col-
lapse and then recover under the action of the distillation
and cross-entropy losses. Then EMA concentrates more
of the gradient on the early collapsed process, while our
method pays more attention to the useful gradient informa-
tion after the recovery. From this perspective, our method
is theoretically better than EMA in CISS.

3.3. Overall Framework

As stated above, to remember knowledge from old tasks,
we borrow knowledge distillation to strengthen the model’s
memory. To learn the discrimination of new classes, we use
the Cross-Entropy loss to optimize the model. In general,
the objective is given by:

min
θt
LCE(θt) + LKD(θt; θt−1) (7)

And the overall algorithm of EWF is shown in Alg. 1.

4. Experiments

We demonstrate experimental protocols, scenarios and
training details. Furthermore, we evaluate our algorithm
through quantitative and qualitative experiments.

4.1. Experimental setups

Protocols. In general, the training for CISS is divided into
T steps, and each step denotes a task, where the labeled
classes are disjoint in each of them. We adopt the over-
lapped setting as other works, in which the current training
data may contain potential classes labeled as background in
previous steps. The overlapped setting is more realistic, and

therefore we only evaluate on this setup as previous meth-
ods [6, 16]. Following existing works [3, 16, 50], we con-
duct experiments on two widely used segmentation datasets,
PASCAL VOC 2012 [18] and ADE20K [51]. The PASCAL
VOC 2012 dataset [18] contains 10,582 training images and
1449 validation images with 20 object classes and the back-
ground class. The ADE20K dataset [51] is composed of 150
classes and contains 20, 210 training images, and 2000 vali-
dation images. Following previous works [3,16,50], X−Y
denotes different settings for CISS. In the X−Y setting, the
model can recognize X classes in the initial step, and then
is supposed to learn Y newly added classes in each follow-
ing step. At each step, only current task data is available
for training. We perform experiments on PASCAL VOC
2012 [18] with four settings, 15-1, 10-1, 5-3 and 19-1. On
ADE20K [51], we verify the effectiveness of our method on
three settings, 100-5, 100-10, and 100-50.
Implementation Details. Following existing works [3, 16,
50], we apply Deeplab-v3 [9] as our segmentation model
with ResNet-101 [23] as a backbone. We also use in-place
activated batch normalization [40] in the backbone. In our
experiments, we use some data augmentations, including
horizontal flip and random crop. The ratio αt for EWF is
defined as Eq.2. Using SGD optimizer, we train the model
for 30 (PASCAL VOC 2012) and 60 (ADE20K) epochs in
each step with a batch size of 24. We set the initial learning
rate as 0.01 for the first training step and 0.001 for the next
continual learning steps. All experiments are conducted on
4 RTX 2080Ti GPUs. The learning rate is decayed with
poly schedule. During training, we use 20% of the training
set as validation, and report the mean Intersect over Union
(mIoU) on the original validation set.

4.2. Comparison to competing methods

In this section, we apply our method to MiB [3] and
PLOP [16]. Additionally, we also compare our method with
LwF [31], ILT [36], SDR [37], and RCIL [50].
PASCAL VOC 2012. In this dataset, we use the same
experimental settings as [3, 16, 50], we performed the ex-
periments with the class incremental learning settings 15-1,
10-1, 5-3, 19-1. As shown in Table 1, we report the result
of our experiments on the final task. From the results, we
can observe that our method improves the results of both
MiB and PLOP by a large margin, on the more challeng-
ing settings (e.g., 15-1, 10-1, 5-3. For instance, on the 15-1
setting, our algorithm obtains performance gains of 12.4%
and 33.3% mIoU for PLOP and MIB, respectively. Further-
more, on the longest learning sequence, the 10-1 setting, our
method obtains a large gain consistently, improving the per-
formance of PLOP and MIB by 21.4% and 24.7%, respec-
tively. In Table 1 we also report the performance of the old
and new classes for different settings. Our method achieves
significant performance gains for old classes. This demon-

7208



Method 15-1 (6 steps) 10-1 (11 steps) 5-3 (6 steps) 19-1 (2 steps)
0-15 16-20 all 0-10 11-20 all 0-5 6-20 all 0-19 20 all

LwF [31] (TPAMI2017) 6.0 3.9 5.5 8.0 2.0 4.8 20.9 36.7 24.7 53.0 8.5 50.9
ILT [36] (ICCVW2019) 9.6 7.8 9.2 7.2 3.7 5.5 22.5 31.7 29.0 68.2 12.3 65.5
SDR [37] (CVPR2021) 47.3 14.7 39.5 32.4 17.1 25.1 - - - 69.1 32.6 67.4
RCIL [50] (CVPR2022) 70.6 23.7 59.4 55.4 15.1 34.3 63.1 34.6 42.8 77.0 31.5 74.7
MiB [3] (CVPR2020) 38.0 13.5 32.2 12.2 13.1 12.6 57.1 42.5 46.7 71.2 22.1 68.9
MiB+EWF (Ours) 78.0 25.5 65.5 56.0 16.7 37.3 69.0 45.0 51.8 77.8 12.2 74.7
PLOP [16] (CVPR2021) 65.1 21.1 54.6 44.0 15.5 30.5 25.7 30.0 28.7 75.4 37.3 73.5
PLOP+EWF (Ours) 77.7 32.7 67.0 71.5 30.3 51.9 61.7 42.2 47.7 77.9 6.7 74.5
Joint 79.8 72.6 78.2 79.8 72.6 78.2 78.2 78.0 78.2 76.9 77.6 77.4

Table 1. The mIoU(%) of the last step on the Pascal VOC 2012 dataset for different class-incremental segmentation scenarios.
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Figure 4. The mIoU (%) at each step for the settings 10-1 (a) and 15-1 (b).

strates that our EWF strategy can enhance significantly the
model’s memory of old knowledge (by successfully coun-
tering forgetting). In the more challenging settings, e.g., 15-
1, 5-3, 10-1, our method also boosts the performance of new
classes. This shows that EWF can achieve high plasticity
on new steps, and that the proposed dynamically weighted
combination of the network allows achieving a good trade-
off between plasticity and stability. We also show dynamic
performance changes during the continual learning process
in Fig. 4. It is clear that with more learning steps, the gap
between our method and the best baseline is growing, and
that the curve of our method for different settings (15-1 and
5-3) is on the top throughout most of the learning trajectory.

Comparison with methods that introduce auxiliary data.
It is worth noting that there are several methods [6, 34, 49]
that introduce different forms of auxiliary data to assist con-
tinual semantic segmentation, helping the model build bet-
ter pseudo-labels or enhance memory for old knowledge.
RECALL [34] learns a generative model or retrieves from
web-crawled data for replay, while SSUL [6] leverages
salient object detectors (trained on MSRA-B dataset [32]
with 5000 images) to generate saliency maps as auxiliary

data. And ST-CIL [49] exploits unlabelled datasets with
pseudo labels as ground truth. Even if our algorithm is
designed to deal with extra-data-free scenarios, to further
demonstrate the effectiveness of our method, we integrate
our method to SSUL and compare it with the above meth-
ods in Table 2. Note that SSUL freezes the backbone com-
pletely and it is hard to directly apply our method on it.
Therefore, we learned part of the backbone network param-
eters when we apply our method to SSUL. In detail, we
set the second stage of the backbone in SSUL as learnable
parameters for model fusion. SSUL obtains the best perfor-
mance among these methods using auxiliary data, and our
method applied to SSUL can further improve it by about 1%
for all classes.
Visualization. As shown in Fig. 5, we compare our method
based on MiB, and we show a sample from the base task
(step 0) and a sample from step 2. From the top two rows,
the person and bike classes are largely preserved with our
method, but it forgets gradually for the baseline MiB. From
the bottom two rows, it shows an example with both old
classes and a new sheep class. Our method can keep the old
knowledge better while incorporating new knowledge.
ADE20K. In order to further evaluate the effectiveness of
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Figure 5. The qualitative comparison between different methods. All prediction results are from the last step of 15-1 overlapped setting.
In the initial step, 15 classes are learned and 5 tasks are learned incrementally with class potted plant, sheep, sofa, train and monitor.

15-1 (PASCAL VOC 2012) 10-1 (PASCAL VOC 2012)
Method Auxiliary Data 0-15 16-20 all 0-10 11-20 all
RECALL [34] (ICCV2021) GAN / Web-Data 65.7 47.8 62.7 59.5 46.7 54.8
ST-CIL [49] (TNNLS2022) Unlabeled Data 71.4 40.0 63.6 - - -
SSUL [6] (NeurIPS2021) Saliency Map 77.3 36.6 67.6 71.3 45.9 59.2
SSUL + EWF (Ours) Saliency Map 77.9 38.9 68.6 72.4 47.4 60.5

Table 2. The mIoU(%) of the last step on the Pascal VOC 2012 15-1 and 10-1 overlapped setting.

our method, we conduct experiments on ADE20K dataset.
In Table 3, we show the experimental results with settings
100-50, 100-10 and 100-5. As shown in Table 3, our
method reaches superior performance on this dataset. Es-
pecially on the most challenging settings 100-5 and 100-
10, our method achieves 6.2% and 3.0% improvement over
MiB [3], respectively. It also surpasses the state-of-the-art
method RC-IL by a large margin on 100-5 setting. This in-
dicates that our EWF is effective on large-scale datasets as
well.

4.3. Ablation Study

In this part, we demonstrate and analyze the effective-
ness of weight fusion and its dynamic factor selection. We
use MiB [3] for the ablation experiments.
Fusion Strategy. In Table 4, we demonstrate the perfor-
mance of different fusion strategies. These experiments are
conducted with the setting 15-1 on PASCAL VOC 2012.

Most of these methods perform continual learning by fusing
the information present in the previous step model. Among
these, EMA [38] updates a stored set of parameters with
moving average during training, and uses it for inference.
Model ensemble fuses the previous model’s prediction and
new prediction in an average way during inference. And
None denotes the model trained only with Distillation and
Cross-Entropy (i.e., MiB [3]). Compared with no fusion
method, EMA and model ensemble have 5.1% and 5.0%
performance improvement, respectively. While Our EWF
has a 33.3% improvement on the basis of a simple fusion
strategy, which again verifies the discussions in Sec. 3.2.

Fusion Factor Selection. In this part, we conduct experi-
ments on the fusion factor selection. To prove the advan-
tages of our parameter selection strategy, we use some fixed
values as balance parameters in the fusion process, and we
compare the difference between our method and theirs to
evaluate its advantage. In detail, we choose three scenarios
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100-50 (2 steps) 100-10 (6 steps) 100-5 (3 steps)
Method 1-100 101-150 all 1-100 101-110 111-120 121-130 131-140 141-150 all 1-100 101-150 all
ILT [36] (ICCVW2019) 18.3 14.8 17.0 0.1 0.0 0.1 0.9 4.1 9.3 1.1 0.1 1.3 0.5
PLOP [16] (CVPR2021) 41.9 14.9 32.9 40.6 15.2 16.9 18.7 11.9 7.9 31.6 39.1 7.8 28.7
RC-IL [50] (CVPR2022) 42.3 18.8 34.5 39.3 14.6 26.3 23.2 12.1 11.8 32.1 38.5 11.5 29.6
MiB [3] (CVPR2020) 40.7 17.7 32.8 38.3 12.6 10.6 8.7 9.5 15.1 29.2 36.0 5.6 25.9
MiB+EWF(Ours) 41.2 21.3 34.6 41.5 12.8 22.5 23.2 14.4 8.8 33.2 41.4 13.4 32.1
Joint 44.3 28.2 38.9 44.3 26.1 42.8 26.7 28.1 17.3 38.9 44.3 28.2 38.9

Table 3. The mIoU(%) of the last step on the ADE20K dataset for different overlapped continual learning scenarios.

Fusion strategy step1 step2 step3 step4 step5
None [3] 71.4 56.1 51.9 36.5 32.2

EMA [38] 74.0 59.6 59.8 40.9 37.3
model ensemble [13] 74.1 60.1 60.3 41.5 37.2

EWF (Ours) 76.1 73.8 70.5 68.3 65.6

Table 4. Ablation study of fusion strategies. All performances are
reported on PASCAL VOC 2012 15-1 setting.

Parameter Selection Ours 0.2 0.4 0.6 0.8
15-1 65.6 65.6 63.7 60.1 53.3
10-1 37.3 39.5 31.8 22.7 14.3
5-3 51.8 38.0 51.2 56.1 52.9

Average 51.6 47.7 48.9 46.3 40.2

Table 5. Comparison between our dynamic parameter fusion strat-
egy and fixed balance factors.

to conduct our experiments (i.e., 15-1, 10-1, 5-3), and we
calculate the average mIoU of different strategies for three
scenarios to measure the final performance. Since the bal-
ance factor α ∈ [0, 1], we take 0.2, 0.4, 0.6, and 0.8 as
the fixed values to compare to our parameter selection strat-
egy. As shown in Table 5, for the 15-1 setting, our method
reaches the highest performance compared with other fixed
parameters. In addition, although our method is slightly be-
low the highest performance for fixed parameters on other
settings, the parameters for the highest performance on dif-
ferent settings vary widely. It means that choosing a fixed
parameter for all scenarios is unrealistic and harmful to the
algorithm. Importantly, our method reaches the highest av-
erage performance among all other fixed values, which in-
dicates that our strategy can be easily applied to different
settings without tuning the hyper-parameters manually.
Robustness of Class Order. In the scenario of class incre-
mental semantic segmentation, the order of classes encoun-
tered by the model is significant in measuring the effective-
ness of an algorithm. Thus, to verify the effectiveness of our
algorithm and the robustness to different class orders, we
conduct experiments on five different class orders to calcu-
late the average performance and their standard deviation.
As shown in Fig. 6, our method significantly improves the
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Figure 6. Illustration on robustness with respect to different orders.

performance while also significantly enhancing the robust-
ness to different class orders.

5. Conclusions
In this work, we address the class incremental semantic

segmentation (CISS) problem with a simple yet effective
endpoints weight fusion method. It is enhanced by the ex-
isting distillation-based methods and easily integrated with
them. A dynamic parameter fusion strategy is proven to
be flexible for different settings and it avoids the further
tuning of hyper-parameters. Interestingly, we discuss the
relationship between our method and a popular weight fu-
sion method EMA, which reveals why our method is more
effective in incremental learning. The experimental re-
sults demonstrate that our method can obtain a significant
gain compared to the baselines and achieve superior per-
formance. In future work, we will investigate further the
underlining reasons why our simple EWF strategy works so
well in CISS. Moreover, we are planning to evaluate our in-
cremental learning strategies for other application domains.
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