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Abstract

This paper presents a neural incremental Structure-
from-Motion (SfM) approach, Level-S2fM, which estimates
the camera poses and scene geometry from a set of uncali-
brated images by learning coordinate MLPs for the implicit
surfaces and the radiance fields from the established key-
point correspondences. Our novel formulation poses some
new challenges due to inevitable two-view and few-view
configurations in the incremental SfM pipeline, which com-
plicates the optimization of coordinate MLPs for volumetric
neural rendering with unknown camera poses. Neverthe-
less, we demonstrate that the strong inductive basis convey-
ing in the 2D correspondences is promising to tackle those
challenges by exploiting the relationship between the ray
sampling schemes. Based on this, we revisit the pipeline
of incremental SfM and renew the key components, includ-
ing two-view geometry initialization, the camera poses reg-
istration, the 3D points triangulation, and Bundle Adjust-
ment, with a fresh perspective based on neural implicit sur-
faces. By unifying the scene geometry in small MLP net-
works through coordinate MLPs, our Level-S2fM treats the
zero-level set of the implicit surface as an informative top-
down regularization to manage the reconstructed 3D points,
reject the outliers in correspondences via querying SDF,
and refine the estimated geometries by NBA (Neural BA).
Not only does our Level-S2fM lead to promising results on
camera pose estimation and scene geometry reconstruction,
but it also shows a promising way for neural implicit ren-
dering without knowing camera extrinsic beforehand.

1. Introduction

Structure-from-Motion (SfM) is a fundamental 3D vi-
sion problem that aims at reconstructing 3D scenes and
estimating the camera motions from a set of uncalibrated
images. As a long-standing problem, there have been a
tremendous of studies that are mostly established on the
keypoint correspondences across viewpoints and the theo-
retical findings of Multi-View Geometry (MVG) [11], and
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Figure 1. SfM calculations on neural level sets. We learn to
do geometric calculations including Triangulation, PnP, and Bun-
dle Adjustment above neural level sets, which easily help to re-
ject the outliers in the matches especially in the texture repeated
scenes. Also, due to the continuous surface priors of neural level
sets, we achieve better pose estimation accuracy and our recon-
structed points are sticking on the surface which are painted with
color in the figure. While, there are a lot of outlier 3d points re-
constructed by COLMAP [32] which are painted by black.

have formed three representative pipelines of Incremental
SfM [32], Global SfM [4, 43], and Hybrid SfM [5].

In this paper, we focus on the incremental pipeline of
SfM and we will use SfM to refer to the incremental SfM.
Given an unordered image set, an SfM system initializes
the computation by a pair of images that are with well-
conditioned keypoint correspondences to yield an initial set
of feature tracks, then incrementally adds new views one
by one to estimate the camera pose from the 2D-3D point
correspondences and update the feature tracks with new
matches. Because the feature tracks are generated by group-
ing the putative 2D correspondences across viewpoints in
bottom-up manners, they would be ineffective or inaccurate
to represent holistic information of scenes. Accordingly,
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Bundle Adjustment (BA) is necessary to jointly optimize
the camera poses and 3D points in a top-down manner. The
success of BA indicates that a global perspective is vital
for accurate 3D reconstruction, however, their input feature
tracks are the bottom-up cues without enough holistic con-
straints for the 3D scenes. To this end, we study to integrate
the top-down information into the SfM system by propos-
ing a novel Level-S2fM. Fig. 1 illustrates a representative
case for the classic SfM systems that generate more flying
3D scene points, which can be addressed by our method.

Our Level-S2fM is inspired by the recently-emerged
neural implicit surface that could manage all 3D scene
points as the zero-level set of the signed distance function
(SDF). Because the neural implicit surfaces can be param-
eterized by Multi-Layer Perceptrons (MLPs), it could be
viewed as a kind of top-down information of 3D scenes and
is of great potential for accurate 3D reconstruction. How-
ever, because both the 3D scene and camera poses are to be
determined, it poses a challenging problem:

How can we optimize a neural SDF (or other neu-
ral fields such as NeRF) from only a set of uncal-
ibrated images without any 3D information?

Most recently, the above problem was partially answered
in BARF [18] and NeRF- - [42] that relaxed the requirement
of optimizing Neural Radiance Fields [24] without know-
ing accurate camera poses, but they can only handle the un-
known pose configurations in small-scale face-forwarding
scenes. Moreover, when we confine the problem in the in-
cremental SfM pipelines, it would be more challenging as
we need to optimize the neural fields with only two over-
lapped images at the initialization stage. To this end, we
found that the optimization of neural SDF can be accom-
plished by the 2D matches at the initialization stage, and
facilitate the management of feature tracks by querying the
3D points and tracing the 2D keypoints in a holistic way.

As shown in Fig. 1, we define a neural network that pa-
rameterizes an SDF as the unified representation for the
underdetermined 3D scene and accomplishes the computa-
tions of PnP for camera pose intersection, the 3D points tri-
angulation as well as the geometry refinement on the param-
eterized SDF. In the initialization stage with a pair of over-
lapped images, Level-S2fM uses the differentiable sphere
tracing algorithm [19] to attain the corresponding 3d points
of the keypoints and calculate the reprojection error to drive
the joint optimization. For the traced 3d points with small
SDF values and 2D reprojection errors for its feature track,
they are added into a dynamic point set and take the point
set with feature tracks as the Lagrangian representation for
the level sets. Because the pose estimation and the scene
points reconstruction are sequentially estimated, the estima-
tion errors will be accumulated. To this end, we present an
NBA (i.e., Neural Bundle Adjustment) that plays a similar

role as in Bundle Adjustment, but it optimizes the implicit
surface and camera poses from the explicit flow of points
by the energy function of the reprojection errors, which can
be viewed as an evolutionary step between Lagrangian and
Eulerian representations as discussed in [23].

In the experiments, we evaluate our Level-S2fM on a va-
riety of scenes from the BlendedMVS [45], DTU [14], and
ETH3D [34] datasets. On the BlendedMVS dataset, our
proposed Level-S2fM clearly outperforms the state-of-the-
art COLMAP [32] by significant margins. On the DTU and
ETH3D datasets [14, 34], our method also obtains on-par
performance with COLMAP for both camera pose estima-
tion and dense surface reconstruction, which are all com-
puted in one stage.

The contributions of this paper are in two folds:

• We present a novel neural SfM approach Level-S2fM,
which formulates to optimize the coordinate MLP net-
works for implicit surface and radiance field and esti-
mate the camera poses and scene geometry. To the best
of our knowledge, our Level-S2fM is the first implicit
neural SfM solution on the zero-level set of surfaces.

• From the perspective of neural implicit fields learning,
we show that the challenging problems of two-view
and few-view optimization of neural implicit fields can
be addressed by exploiting the inductive biases con-
veyed in the 2D correspondences. Besides, our method
presents a promising way for neural implicit rendering
without knowing camera extrinsics beforehand.

2. Related Works
2.1. Structure from Motion

There has been a vast body of literature on Structure
from Motion. Since an SfM system consists of many com-
ponents, tremendous efforts have been devoted to improv-
ing the core components of SfM. In particular, the learning
techniques were introduced in a variety of subproblems in-
cluding image matching [7, 31], feature track mining and
management [39], two-view 3D reconstruction [38,44], rel-
ative and absolute camera pose estimation [13] and Bundle
Adjustment [3, 37]. Those studies indicated that the learn-
ing paradigms are promising to improve the quality of 3D
reconstruction. However, to the best of our knowledge, the
learning paradigms are not fully equipped in SfM systems.
One possible reason for such a fact is that the many learn-
ing approaches are designed in a supervised learning fash-
ion, which remains some risks on the out-of-distribution
samples. The self-supervised learning approaches [9, 22]
in 3D vision alleviated the requirement of data annotations,
however, they have not been fully exploited in the whole
pipeline of SfM. In contrast to the aforementioned studies,
in this paper, we are interested in integrating the learning
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ability into the SfM system without incurring any external
data annotations. From the perspective of system design in
SfM, we verified that the strong inductive biases conveying
in the 2D correspondences are promising and meaningful to
drive the learning and optimization of SfM.

2.2. Neural Implicit Representation for 3D Scene

Recently, the advent of neural implicit fields [24, 28, 29,
40,41,46] have greatly advanced many 3D vision problems
such as novel-view synthesis [1,24] and surface reconstruc-
tion [28, 29, 40, 46] by learning to optimize the coordinate
MLPs from a set of posed RGB images of which the key to
success is that the inductive biases of 3D are exploited by
the neural networks. However, when the camera poses are
invalid, it is hard to optimize the coordinate MLPs for neu-
ral implicit fields. To remedy this, the state-of-the-art SfM
system, COLMAP [32], is extensively used to compute the
camera poses as a preprocessing step.

To train the neural field from unknown poses directly,
recently, BARF [18] and NeRF [42] explored to jointly op-
timize the camera poses and neural fields by the volumetric
rendering with promising results obtained in forward-facing
scenes. BARF can also work in some scenes of highly
overlapped and dense image collections with the initialized
poses as inputs. This problem was also studied in the RGB-
D SLAM systems [2, 36, 47], however, their works mainly
rely on the known depth information and focus on the cam-
era pose tracking by the neural implicit fields. Therefore,
how to optimize implicit neural fields from only a set of un-
calibrated images without any 3D information input is still
a challenging and open problem.

In this paper, we study the unknown-pose neural fields
optimization and SfM together and present a unified so-
lution that simultaneously learns the implicit surfaces and
radiance fields alongside the camera pose estimation and
scene reconstruction from a set of images.

3. Preliminaries
In this section, we introduce the preliminaries on neural

implicit surface rendering and the notations in SfM, which
are all extensively used in our method.

3.1. Neural Implicit Surface Rendering

The volumetric rendering of neural implicit surface [46]
aims at learning a signed distance function dΩ : R3 → R
by the volumetric rendering from a set of posed images and
then extracting the zero-level set of ϕ as the reconstructed
surface model of the image set. The state-of-the-art ap-
proach, VolSDF [46], integrates SDF representations with
neural volume rendering via Laplacian distribution by

σ(x) =
1

β
Ψβ(−dΩ(x)), (1)

where β is a learnable parameter in VolSDF [46]. Based on
Eq. (1), the volume rendering equation renders a ray x(t)
emanating from a camera position o ∈ R3 in unit direction
v, defined by x(t) = o+ tv by

I(o,v) =

∫ ∞

0

L(x(t),n(t),v)σ(x(t))T (t)dt, (2)

where L(x,n,v) is the radiance field and n(t) is the normal
direction of the point x(t) defined by n(t) = ∇xdΩ(x(t)).
In the learning of volume rendering, two coordinate MLP
(Multi-Layer Perceptron) networks parameterize the SDF
by ϕ(x) = (d(x), z(x)) ∈ R1+256 and the radiance
field by Lψ(x,n,v, z) ∈ R3, and train them by the
color loss LRGB(ϕ, ψ, β) and the Eikonal loss Leik(ϕ) =
Ez(|∇d(z)∥ − 1).

In this paper, we use the equations (1) and (2) as the ba-
sic tools for Level-S2fM. To make the optimization of SDF
and radiance networks easier, we set β as a small constant
number and use the multi-resolution grid representations to
avoid the potential of slow convergence and catastrophic
forgetting since the scene scale is unknown and the origi-
nal VolSDF [46] requires to normalize the known camera
poses in a certain scale.

3.2. Ray Sampling and Sphere Tracing

Iterative Ray Sampling. In the implementation, the con-
tinuous form of Eq. (2) is approximated in

I(o,v) ≈
m−1∑
i=1

τ̂iL(x(ti),n(ti),v), (3)

where {ti}mi=1 is the discrete samples, 0 = t1 < t2 < . . . <
tm = M , M is some large constant. τ̂i ≈ τ(si)∆s is
the approximated PDF multiplied by the interval length. In
VolSDF [46], {ti}mi=1 is adaptively computed according to
the opacity approximation error. Please move to [46] for
its detail. In our method, we keep using this iterative sam-
pling strategy when the rendering loss and the Eikonal loss
is used. However, because the sampling set {ti} would be
large, we do not use this strategy to compute the 3D points
from 2D keypoints in our Level-S2fM and in turn to use the
sphere tracing [10] as a faster way since our initial develop-
ment of this work.
Sphere Tracing. Sphere tracing is a geometric method to
render the depth from a signed distance function. Different
from iterative ray sampling, sphere tracing is designed to hit
the surface point along the ray x(t) with queries as few as
possible. To make it clear, we use si to denote the ray stamp
of the queried point x(si). With the queried point x(si),
the next ray stamp si+1 is computed by si+1 = ϕ(x(si)).
In our study, we sample at most Ns = 20 points with the
stop criterion |ϕ(si)| < ε, where ε is set to 0.002 in our
experiment.
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Remarks. Although both the iterative ray sampling [46]
and sphere tracing [10] share the same target of computing
the surface point along a ray, they have different behaviors
in the neural implicit surface optimization. In detail, be-
cause VolSDF [46] aims at approximating the opacity by
SDF, it updates the SDF network ϕ(x) by the rendering loss
Lcolor. As for sphere tracing, it is a geometric approach that
only takes the SDF values into account for the computa-
tion. Such a difference is trivial to some extent, however,
we found that their different focuses induce a loss function
in our Level-S2fM to constraint the rendered depth values
(or 3D points) for two-view initialization and 3D point tri-
angulation.

3.3. Notations in SfM

Correspondence Search. Given the image set I =
{Ii|i = 1 . . . NI} for reconstruction, the keypoint fea-
tures of the image Ii computed by SIFT [21] is denoted
in Fi = {(xj , fj)}, where xj ∈ R2 is the 2D coor-
dinate and fj ∈ R128 is the feature descriptor of xj .
Based on the SIFT features, we follow the schema in
COLMAP [32] to establish the feature correspondences
across views, in which we first do the exhaustive match-
ing for all possible image pairs and then use the geomet-
ric verification to filter out the non-overlapped image pairs.
After this, the potentially overlapped image pairs are de-
noted in C = {(Ia, Ib)|Ia, Ib ∈ I}, and the keypoint
correspondences in the pair (Ia, Ib) are denoted in the set
Mab = {{(xk, fk), (x′l, f ′l )} |(xk, fk ∈ Fa, (x′l, f ′l ) ∈ Fb}.
Finally, all the prepared correspondences are organized as
the scene graph [32, 35], which stores images as the graph
nodes and the overlapped image pairs as the graph edges. In
our Level-S2fM, we use the established correspondences to
drive the learning of MLPs, estimate the camera poses, and
reconstruct a sparse point set of correspondences.

3D Scene Points and Feature Tracks. Because SfM is
designated to simultaneously estimate the scene geometry
from 2D correspondences, every successfully reconstructed
3D scene point is sourced from multiple 2D keypoint ob-
servations. To facilitate the representation, we denote the
expected 3D point set in X = {Xk ∈ R3|k = 1, . . . , N3d}.
For each point Xk ∈ X , if it is reconstructed from the 2D
keypoint xj ∈ Fi, we denote such a relationship in a tuple
(k, i, j). T = {(k, i, j)} is the set of feature tracks.

4. The Proposed Level S2fM

In this section, we present the details of our Level-S2fM.
As shown in Fig. 2, our method consists of three classical
components including 1) the two-view geometry initializa-
tion, 2) the new frame registration, and 3) the new frame
pose refinement, an implicit surface and a radiance field that
are parameterized by neural networks. In what follows, we

will show how to solve the SfM problem by learning the
implicit fields with 2D correspondences. We assume the
intrinsic matrix K is known and fixed.

4.1. Two-view Initialization

We first select two good views {Ia, Ib} for initialization
from the scene graph and get their 2D matches Mab =
{{(xk, fk), (x

′

l, f
′

l )}|(xk, fk) ∈ Fa, (x
′

l, f
′

l ) ∈ Fb}. Based
on the 2D matches Mab, we leverage the 5-point algo-
rithm [27] and RANSAC to obtain the poses Pa, Pb ∈
SE(3).

With the estimated camera poses Pa, Pb, it is straightfor-
ward to optimize the SDF network ϕ(x) and the radiance
field network Lψ(x,n,v, z) defined in Sec. 3 by minimiz-
ing the loss items LRGB and Leik as done in VolSDF [46].
However, it should be noted that the learning of volumet-
ric surface rendering in such a way for the two-view in-
puts would trap into the local minimal by overfitting. To
this end, we propose to use the differentiable sphere track-
ing [10, 19] for the corresponding rays in image Ia and Ib,
which provides strong inductive biases for the optimization
of networks.

Specifically, denoted by a pair of feature match (xk, x
′
l)

in the image pair (Ia, Ib), the sphere tracing obtains the
surface point Xk

a = oa + t̂ada from the SDF and Xl
b =

ob+t̂bdb, where (oa,da) is the ray of xk, (ob,db) is the ray
of x′l. For the computation of t̂a and t̂b, please move to our
supplementary materials. Ideally, the Xk

a and Xl
b should be

as close as possible, therefore, we introduce a reprojection
loss

Lreproj =
1

2V

∑
(∥x̂k − x′l∥2 + ∥x̂′l − xk∥2), (4)

where V is the number of correspondences, x̂k =
Π(Xk

a,K, Pb) and x̂′l = Π(Xl
b,K, Pa) are the projected

2D coordinates of the traced 3D points by the projection Π.
Considering the fact that the correspondences are sparse

when the SDF network is not well optimized at some rays,
the sparse sample points by sphere tracing on the SDF net-
work may be either inaccurate or erroneous as shown in
Fig. 3. Therefore, we use a depth consistency loss Ldc to
minimize the depth estimated by the sphere tracing and the
volumetric rendering by

Ldc =
1

B

∑
∥t̂i −

∫ ∞

0

T (t)σ(x(t))dt∥, (5)

where the rays x(t) are randomly sampled from the im-
ages, and those rays are also used to compute the color loss
LRGB. For the computation of Eikonal loss Leik, all the 3D
points visited by sphere tracing and dense ray marching are
used.

In summary, our two-view initialization of Level-S2fM
computes the total loss Linit

total by

Linit
total = α1Lreproj + α2Leik + α3LRGB + α4Ldc, (6)
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Figure 2. Overview of Level-S2fM.
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Figure 3. An illustrative comparison for the depth consistency loss
Ldc in two-view initialization. As it is shown, when we remove
Ldc, the 3D points traced from all putative 2D keypoints corre-
spondences will contain more flying 3D points.

where α1, α2, α3, and α4 are the hyperparameters and use
ADAM optimizer to optimize the networks.

When the initialization is finished, we compute the two
3D points X and X′ for each correspondence by sphere
tracing for image Ia and Ib. For an accurate correspon-
dence, ∥X −X′∥ and their SDF values should be all small
enough, thus providing a good criterion to check the puta-
tive matches to initialize the 3D point set X and the feature
track set T for all the verified two-view correspondences.

4.2. New Frame Registration

For every newly added frame, we will first construct the
3D-2D correspondence from the existing pointset and its
feature tracks. After that, we calculate a coarse pose of the
new frame with the standard PnP algorithms [17], and then
refine it with both the reprojection error and the rendering
loss. The registration loss can be calculated as follow:

Lregist = β1Lreproj + β2LRGB, (7)

where the β1, β2 are two hyper-parameters, and the Lreproj
here are calculated by the 3D-2D correspondences.

In this optimization, the pose of the newly added frame,
the SDF network, and the radiance field network are jointly

optimized. While during the changes in the pose and SDF,
the original location in the pointset will maybe not be the
right one on the surface. For this problem, we design a
Neural Bundle Adjustment (NBA) strategy to dynamically
update the pointset with respect to the SDF after the points
triangulation and refinement in the next section. Therefore,
we leave the details of NBA in Sec. 4.4.

4.3. Points Triangulation and Refinement

Once the pose of the newly added frame is obtained, we
step into the next procedure of refining the retrieved 2D
points from the point set X and triangulating new 2D points
into 3D space to extend X . This problem was formulated in
the classical SfM frameworks, however, they are suffering
from the following issues:

- The 2D Mismatches: This issue could be alleviated
by geometric verifications like RANSAC [8] or better
2D keypoint matching approaches, however, when en-
countering the symmetry structures or repeated texture
regions, those efforts are hard to work efficiently.

- Tiny Triangulation Angle: This issue will lead to an
ill-conditioned problem for points triangulation [12].
Therefore, the classical SfM approaches will directly
discard those points to avoid the ill-conditioned prob-
lem configuration.

We address those issues by proposing an SDF-based
triangulation. Similar to the two-view initialization in
Sec. 4.1, we compute the 3D points for all the potential 2D
keypoints in the first step. Then, for the 2D keypoints that
have correspondences in the current feature track set T , we
use the tracing loss Ltracing

Ltracing =
1

V ′

∑
j

∥Xst
j −Xj∥, (8)

where Xj ∈ X is the retrieved 3D point of the 2D key-
point in the current frame, V ′ is the number of retrieved 3D
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points. This loss function acts as the similar role of Ldc
in two-view initialization. Without it, similar phenomenon
like Fig. 3 will happen.

For the new 2D keypoints that are matched to the added
images but without 3D information, both the reprojection
loss similar to the two-view initialization and the tracing
loss is used to yield the triangulation loss Ltri by

Ltri = Lmask
reporj + Ltracing, (9)

where Lmask
reporj only considers the 2D correspondences of

which their distance between the 2D projections of the
traced 3D points traced in different views are smaller than a
loose threshold (45 pixels in our implementation).

4.4. Neural Bundle Adjustment on Surfaces

Because the camera pose estimation and the points tri-
angulation are separated, which will involve accumulative
errors for pose estimation and triangulation, as well as the
implicit networks. Motivated by the Bundle Adjustment
that is extensively used in classical approaches, we present a
Neural Bundle Adjustment (NBA) that jointly optimizes the
estimated camera points, the 3D point set, and the implicit
networks as a refinement step. To avoid costly computation,
our NBA step finds the closest surface points to dynamically
update those variables.

Denoted by the reconstructed 3D point set X and the
feature track T , the camera poses P = {P1, . . . , PK} and
the corresponding images {I1, . . . , IK}, as well as the net-
works ϕ(x) and Lψ , in each step of NBA, we update the 3D
point X ∈ X by

X← X− ϕ(X)∇ϕ(X), (10)

and then compute the reprojection loss according to the fea-
ture track T to jointly optimize the ϕ the SDF network, P
the estimated camera poses, and X the updated 3D point
set. For the radiance network Lψ , the rendering loss for
randomly sampled rays is computed.

In our implementation, we leverage our NBA by three
times, which we call the 1-frame NBA, local NBA, and
global NBA. Because the rendering loss involves more rays,
we only use it for the 1-frame NBA after the camera regis-
tration and point triangulation. In terms of local NBA, for
the newly added view, only the related views with corre-
spondences are considered. After running the 1-frame and
local NBA schemes, we globally update all reconstructed
views and the point set. By leveraging the backpropagation,
all the mentioned variables are updated as the refinement.

5. Experiments
5.1. Implementation Details, Datasets, and Metrics

Implementation Details. In our implementation, we pa-
rameterize the SDF ϕ(x) by a multi-resolution features grid

and a two-layers MLP. To accelerate the computation, we
follow InstantNGP [26] to use a hash table [25] for the fea-
ture grids. The radiance field Lψ is also implemented in
a multi-resolution feature grid and a three-layer MLP. Be-
cause our end task is the geometric 3D reconstruction, we
use a high-resolution multi-scale feature grid for the SDF
to ensure the accuracy of scene geometry but use a low-
resolution feature grid to avoid the unnecessary computa-
tion cost for the radiance field. The specifications of the net-
work architecture are given in supplementary material due
to the limited space. All of these above are implemented in
PyTorch [30], and we used the Adam [16] as the optimizer
for the geometric calculations. For the 2D image matching
and pose graph, we keep them the same with our baseline,
COLMAP [32] for fair comparisons.
Datasets. Three datasets are used for our evaluation.
Firstly, we use 5 representative scenes including the Ly-
ingStatue, Stone, Fountain, Horse, and Statues from the
BlendedMVS dataset [45] in our evaluation because it pro-
vides accurate ground truth of camera poses and contains a
number of challenging scenes for SfM. Secondly, the DTU
dataset for the MVS task is also used. The five representa-
tive scenes (scans of 24, 37, 65, 110 and 114) are used in our
experiments. Finally, we evaluate our proposed method on
the five scenes from the challenging ETH3D [34] dataset.
Evaluation Metrics. In our evaluation, we use the Ro-
tation error and ATE to quantitatively benchmark the pose
accuracy, which simply depicts the difference between the
ground truth and the aligned pose. During our evalua-
tion, we used the provided API of Reconstruction Align in
COLMAP [32] to do that. In terms of the reconstructed
scene geometry, we use accuracy (Acc) and the precision
(Prec) rate to evaluate the accuracy of our recovered 3D
points and Chamfer-l1 distance to depict the accuracy of the
reconstructed surface. Detailed definitions of these evalua-
tion metrics are given in the supplementary material.

5.2. Results on the BlendedMVS Dataset

Tab. 1 reports the quantitative evaluation results for the
two versions of Level-S2fM and COLMAP [32]. The full
version of Level-S2fM used all the mentioned components
while the wo/render version removed the rendering loss for
optimization. As it is reported, our Level-S2fM (full) con-
sistently outperforms COLMAP [32] for camera pose es-
timation and sparse 3D point cloud reconstruction. It also
reveals that rendering losses are required.

In detail, our Level-S2fM (full) averagely reduced the
estimation error from 1.54◦ by COLMAP [32] to 0.86◦, ob-
taining a relative improvement of 55.84%. For the trans-
lation error, our Level-S2fM (full) decreases the error from
3.54 cm to 3.36 cm. For the sparse 3D point cloud recon-
struction, the ACC metric is reduced from 3.16 to 2.25 for
the full model and 2.63 for the wo/render version.
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Scenes

Camera Pose Evaluation Points Cloud Results Evaluation

Rotation (◦) ↓ Translation (cm) ↓ Acc(cm)↓, Prec(≤3.5cm)↑

COLMAP [32]
Level-S2fM

(full)
Level-S2fM
(wo/render) COLMAP [32]

Level-S2fM
(full)

Level-S2fM
(wo/render) COLMAP [32]

Level-S2fM
(full)

Level-S2fM
(wo/render)

LyingStatue 1.20 1.12 1.31 0.89 2.18 2.67 Acc:0.83 Prec:0.99 Acc:1.35 Prec:0.99 Acc:1.76 Prec:0.98
Stone 0.63 0.31 0.54 6.28 5.51 9.17 Acc:5.44 Prec:0.66 Acc:3.61 Prec:0.68 Acc:5.04 Prec:0.64

Fountain 4.34 1.65 2.32 7.41 2.87 4.11 Acc:1.91 Prec:0.91 Acc:1.13 Prec:0.98 Acc:1.14 Prec:0.96
Horse 0.33 0.94 0.92 1.18 5.71 7.58 Acc:3.99 Prec:0.86 Acc:4.18 Prec:0.71 Acc:4.18 Prec:0.70

Statues 1.21 0.36 0.44 1.98 0.56 0.62 Acc:1.31 Prec:0.98 Acc:0.95 Prec:0.99 Acc:1.02 Prec:0.99

Mean 1.54 0.86 1.11 3.54 3.36 4.83 Acc:3.16 Prec:0.85 Acc:2.25 Prec: 0.87 Acc:2.63 Prec:0.85

Table 1. Quantitative results on the BlendedMVS dataset. For our Level-S2fM, we report the results by full version and an wo/render
version that removes the rendering loss during optimization.

Figure 4. The reconstructed meshes, point clouds and camera
poses for the Fountain and Horse scenes on the BlendedMVS
dataset by our Level-S2fM (full). In the first column, the recon-
structed scene geometry and the camera poses are shown together.
For the 3D models, we show the different views of the sparse 3D
points during the training and the textured meshes refused from
the zero-level set surface.

Pose Source LyingStatue Stone Fountain Horse Statues Mean

COLMAP 29.1 28.4 25.4 23.5 29.2 27.12
Level-S2fM (Ours) 29.5 28.9 27.1 23.6 30.2 27.86

GT 29.5 29.4 27.4 24.1 31.1 28.3

Table 2. Novel View Synthesis Comparison. The PSNR is used
to compare the camera poses computed by COLMAP, Level-S2fM
and the GT poses on the BlendedMVS dataset.

Fig. 4 shows the reconstruction results by our method.
Apart from the direct evaluation of the SfM results on

the BlendedMVS dataset, we further compare the camera
poses estimation results for different methods by training
the NGP [26] (a fast version of NeRF [24]) to compare the
performance of novel view synthesis in Tab. 2. As it is re-
ported, the rendered images by our camera poses are con-
sistently better than the ones by COLMAP poses.

5.3. Results on the DTU Dataset

We conducted the evaluation on the DTU to illustrate
the promising future of our Level-S2fM to unify the pose
estimation, dense reconstruction, and novel view synthesis
problems in one stage. For the comparison to COLMAP,
we use their built-in PatchMatch MVS [33] functionality to
obtain the dense surface points and then leverage its default
surface reconstruction method (i.e., Poisson surface [15])

Scan COLMAP [32] Level-S2fM (Ours)
Chamfer-ℓ1 Rot. Err. Trans. Err. Chamfer-ℓ1 Rot. Err. Trans. Err.

24 2.176 0.38 2.87 2.442 0.81 4.60
37 3.837 0.41 4.86 3.023 0.31 4.29
65 4.394 0.45 4.23 3.190 0.74 5.81
110 3.389 0.65 6.36 5.902 0.82 6.82
114 3.577 0.35 3.58 2.092 0.14 1.85

Mean 3.330 0.448 4.38 3.474 0.564 4.67

Table 3. Quantitative results on DTU dataset. The Chamfer-
ℓ1 distance of the dense reconstruction results and as the errors of
rotation and translation for camera pose estimation, are compared
for COLMAP and our Level-S2fM. The unit of Chamfer-ℓ1 and
Translation errors are in millimetres.

Scene Detector & Matcher courtyard relief door terrace2 facade
COLMAP [32] SIFT [21] 0.10°/0.016m 0.10°/0.003m 0.16°/0.002m 0.14°/0.002m 0.06°/0.016m

Level-S2fM (Ours) 0.21°/0.047m 0.09°/0.003m 0.19°/0.006m 0.13°/0.003m 0.12°/0.059m
COLMAP [32] SP [7]+SG [31] – 0.36°/0.007m 0.37°/0.003m 0.16°/0.003m 0.04°/0.014m

Level-S2fM – 0.42°/0.003m 0.34°/0.007m 0.12°/0.002m 0.10°/0.051m

Table 4. Quantitive results of pose estimation on the five scenes
in ETH3D dataset for COLMAP [32] and our proposed Level-
S2fM by using different keypoint detector and matcher.

to obtain the mesh model. For our Level-S2fM, we use
the MarchingCubes [20] to extract the mesh models from
the zero-level set of the implicit surface. The quantitative
evaluation results are shown in Tab. 3. In this dataset, our
Level-S2fM obtains on-par performance with COLMAP.

5.4. Results on the ETH3D Dataset

We test our method on a more challenging dataset,
ETH3D [34], which includes both sparse view collections
for multi-scale outdoor and indoor scenes. To show the
influence of different keypoint detection and matching al-
gorithms for our method, we additionally make a compar-
ison with SuperPoint (SP) [7] for detection and SuperGlue
(SG) [31] for keypoint matching. As reported in Tab. 4, our
method achieves comparable results with COLMAP [32].
However, we observe that our method gets slightly inferior
results in some large-scale outdoor scenes, because of the
limited representative capability of a single network for a
large-scale scene.

5.5. Ablation Study

In this section, we elaborate on why and how the SDF-
based Triangulation (short in SDF-Tri) and NBA work in
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w/o SDF-Tri. w/o NBA w/o SDF-Tri & w/o NBA Full
1.23◦ / 0.498m 0.46◦ / 0.113m 3.48◦ / 0.846m 0.21◦ / 0.047m

Figure 5. Two-views Triangulated Point Clouds by Traditional triangula-
tion and SDF-Based Triangulation, courtyard@ETH3D.

our system. We first conduct the two-view triangulation
with SDF-Tri and the traditional method respectively. Fig. 5
shows SDF-Tri can easily filter out the incorrect triangula-
tion from wrong matches. One explanation is that the neu-
ral network distills inliers in a continuous zero-level set of
surfaces (e.g., the planes in Fig. 5). Therefore, the trian-
gulated outliers (the blue points flying off the planes) can
be easily detected and filtered by their large SDF values.
Similarly, NBA also benefits from the global level sets of
surfaces, which average the errors among the inliers trian-
gulated points and differs the outliers by their large SDF
values. The quantitative results for SDF-Tri and NBA are
shown at the bottom of Fig. 5.

5.6. Limitations of Level-S2fM

In order to explore the clear boundary of Level-S2fM
and point out the potential future development, we discuss
the limitation of Level-S2fM on the most typical indoor
dataset, scannet [6]. In the Scannet [6], there are a lot of
challenges including blurry images, and textureless areas.
Because of the less texture, the SIFT-based keypoint cor-
respondences may contain a large portion of outliers or in-
sufficient matches. Meanwhile, the blur in images will also
influence the accuracy of the 2d matches. Therefore, most
SfM easily fails on this dataset. Our method is also limited
by this because of SIFT matches.

To make the discussion clear, we run four scenes of
Scannet [6] that were used for NICESLAM [47]. For the
image sequence of each scene, the input image set for SfM
is constructed by sampling for every 10 frames. Tab. 5 re-
ports the pose accuracy of COLMAP and our Level-S2fM
for results by adding 60 frames, 120 frames, and all the
frames, which are concatenated by the “slash”. As it is
reported, our method usually performs well in the first 60
frames but its pose estimation accuracy suddenly decreases

Scene ID 0000 0059 0169 0207

iMAP [36] rot◦↓ – – – –
trans. (cm) ↓ 197.1 18.9 96.4 28.7

NICESLAM [47] rot◦↓ – – – –
trans. (cm) ↓ 11.3 12.0 12.0 12.8

COLMAP [32] rot◦↓ 1.47/2.71/2.71 1.40/2.52/2.66 2.64/1.84/2.52 failed
trans. (cm) ↓ 8.20/16.8/14.1 7.20/10.8/11.5 10.6/9.22/10.6 –

Level-S2fM
full

rot◦↓ 1.44/2.23/1.98 1.50/2.59/3.72 2.94/9.09/14.3 failed
trans. (cm) ↓ 6.50/11.8/26.7 8.20/32.9/35.7 6.35/14.3/44.8 –

Table 5. Quantitative results of pose estimation on ScanNet [6].
For the COLMAP and Level-S2fM, we report their pose accuracy
metrics when the 60/120/all frames are registered. For the last
scene (i.e., 0207), both COLMAP and our method failed.

when adding some new frames. The textureless matches
cause the matches very sparse and therefore hard to give a
good registration of images. Meanwhile, since the radiance
field learning is also challenging in the Scannet dataset, the
bad initialized pose can not be refined well by the rendering
loss. All of these limitations are basically from sparse 2D
image matches. Besides, we observed that the ADAM opti-
mizer will make the optimization of camera poses and scene
points unstable, which would also affect the final results.

6. Conclusion
This paper studies the longstanding problem of

Structure-from-Motion by exploring and exploiting several
important yet challenging issues including the two-view
neural rendering in the initialization stage and few-view
neural rendering in the early camera registration stage of in-
cremental SfM for integrating the recent advances of neural
implicit field learning into an SfM pipeline. We show that
although the few-view neural rendering problem is chal-
lenging enough, it can be tackled by the 2D correspon-
dences as they convey strong inductive biases for 3D scenes.
Based on this, we present the first neural SfM solution that
renews several key components of two-view geometry ini-
tialization, camera pose registration, and triangulation, as
well as the Bundle Adjustment problem with neural implicit
fields. In the experiments, we show that Level-S2fM outper-
forms the traditional SfM pipeline and set a new state-of-
the-art for 3D reconstruction on the BlendedMVS dataset.
We believe that our study will encourage the 3D vision com-
munity to rethink and reformulate Structure-from-Motion
with learning-based new findings.
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