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Abstract

Given the large-scale data and the high annotation cost,
pretraining-finetuning becomes a popular paradigm in mul-
tiple computer vision tasks. Previous research has covered
both the unsupervised pretraining and supervised finetuning
in this paradigm, while little attention is paid to exploiting
the annotation budget for finetuning. To fill in this gap, we
formally define this new active finetuning task focusing on
the selection of samples for annotation in the pretraining-
finetuning paradigm. We propose a novel method called Ac-
tiveFT for active finetuning task to select a subset of data
distributing similarly with the entire unlabeled pool and
maintaining enough diversity by optimizing a parametric
model in the continuous space. We prove that the Earth
Mover’s distance between the distributions of the selected
subset and the entire data pool is also reduced in this pro-
cess. Extensive experiments show the leading performance
and high efficiency of ActiveFT superior to baselines on
both image classification and semantic segmentation. Our
code is released at https://github.com/yichen928/ActiveFT.

1. Introduction

Recent success of deep learning heavily relies on abun-

dant training data. However, the annotation of large-scale

datasets often requires intensive human labor. This dilemma

inspires a popular pretraining-finetuning paradigm where

models are pretrained on a large amount of data in an unsu-

pervised manner and finetuned on a small labeled subset.

Existing literature pays significant attention to both the

unsupervised pretraining [7,13,14,18] and supervised fine-

tuning [26]. In spite of their notable contributions, these

researches build upon an unrealistic assumption that we al-
ready know which samples should be labeled. As shown in

Fig. 1, given a large unlabeled data pool, it is necessary to

pick up the most useful samples to exploit the limited an-

notation budget. In most cases, this selected subset only
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Figure 1. Pretraining-Finetuning Paradigm: We focus on the

selection strategy of a small subset from a large unlabeled data

pool for annotation, named as active finetuning task, which is

under-explored for a long time.

counts a small portion (e.g. <10%) of this large unlabeled

pool. Despite the long-standing under-exploration, the se-

lection strategy is still crucial since it may significantly af-

fect the final results.

Active learning algorithms [34, 38, 39] seem to be a

potential solution, which aims to select the most suit-

able samples for annotation when models are trained

from scratch. However, their failures in this pretraining-

finetuning paradigm are revealed in both [4] and our ex-

periments (Sec. 4.1). A possible explanation comes from

the batch-selection strategy of most current active learn-

ing methods. Starting from a random initial set, this strat-

egy repeats the model training and data selection processes

multiple times until the annotation budget runs out. De-

spite their success in from-scratch training, it does not fit

this pretraining-finetuning paradigm well due to the typi-

cally low annotation budget, where too few samples in each

batch lead to harmful bias inside the selection process.

To fill in this gap in the pretraining-finetuning paradigm,

we formulate a new task called active finetuning, concen-

trating on the sample selection for supervised finetuning. In

this paper, a novel method, ActiveFT, is proposed to deal

with this task. Starting from purely unlabeled data, Ac-

tiveFT fetches a proper data subset for supervised finetuning

in a negligible time. Without any redundant heuristics, we
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directly bring close the distributions between the selected

subset and the entire unlabeled pool while ensuring the di-

versity of the selected subset. This goal is achieved by con-

tinuous optimization in the high-dimensional feature space,

which is mapped with the pretrained model.

We design a parametric model pθS to estimate the distri-

bution of the selected subset. Its parameter θS is exactly

the high-dimensional features of those selected samples.

We optimize this model via gradient descent by minimizing

our designed loss function. Unlike traditional active learn-

ing algorithms, our method can select all the samples from

scratch in a single-pass without iterative batch-selections.

We also mathematically show that the optimization in the

continuous space can exactly reduce the earth mover’s dis-

tance (EMD) [35, 36] between the entire pool and selected

subset in the discrete data sample space.

Extensive experiments are conducted to evaluate our

method in the pretraining-finetuning paradigm. After pre-

training the model on ImageNet-1k [37], we select subsets

of data from CIFAR-10, CIFAR-100 [23], and ImageNet-

1k [37] for image classification, as well as ADE20k [50] for

semantic segmentation. Results show the significant perfor-

mance gain of our ActiveFT in comparison with baselines.

Our contributions are summarized as follows:

• To our best knowledge, we are the first to iden-

tify the gap of data selection for annotation and

supervised finetuning in the pretraining-finetuning

paradigm, which can cause inefficient use of annota-

tion budgets as also verified in our empirical study.

Meanwhile, we formulate a new task called active fine-
tuning to fill in this gap.

• We propose a novel method, ActiveFT, to deal with the

active finetuning task through parametric model opti-

mization which theoretically reduces the earth mover’s

distance (EMD) between the distributions of the se-

lected subset and entire unlabeled pool. To our best

knowledge, we are the first to directly optimize sam-

ples to be selected in the continuous space for data se-

lection tasks.

• We apply ActiveFT to popular public datasets, achiev-

ing leading performance on both classification and seg-

mentation tasks. In particular, our ablation study re-

sults justify the design of our method to fill in the data

selection gap in the pretraining-finetuning paradigm.

The source code will be made public available.

2. Related Work

Unsupervised Learning aims to learn the feature rep-

resentation without the participation of labels. Both con-

trastive and generative methods achieve great success in this

field. Contrastive methods model the similarity and dissimi-

larity between different input samples. Some early work re-

sorts to a large batch size [7] or memory bank [15,46] to in-

clude enough negative samples in each iteration. Challeng-

ing the necessity of negative samples, some following study

tries to train the network only with positive samples. To

this end, they introduce the momentum encoder [13], clus-

tering strategy [5], or stop-gradient operation [8] into con-

trastive learning frameworks. Based on the success of prior

arts, [6, 9] succeed in transplanting contrastive learning to

vision transformers [10]. Some recent research [2,14,19,45]

explores generative methods that predict the missing con-

tent inside input samples, also achieving promising perfor-

mance over vision transformers.

For both kinds of methods, prior research has well inves-

tigated their positive roles in downstream supervised fine-

tuning. Of particular interest, they can bring significant per-

formance gain in semi-supervised learning settings, where

only a small part (e.g. 1%) of data samples are annotated.

Active Learning selects useful samples to fill up the

limited annotation budget most beneficial for model train-

ing. Despite the existence of query-synthesizing [29,31,52]

and stream-based [11,32] methods, current mainstream ap-

proaches are pool-based. Given an unlabeled data pool, the

pool-based algorithms choose a part of samples for anno-

tation. There are two different selection criteria: uncer-
tainty [3, 27, 49] and diversity [1, 38, 39]. Based on the un-

certainty inside model prediction, the algorithm can select

the most difficult data samples. Early work estimates the

uncertainty with various heuristics such as posterior prob-

ability [25, 44], entropy [20, 28], and classification mar-

gin [41]. Some following research directly measures the

uncertainty by estimating the training loss [17, 48] or influ-

ence on model performance [12, 27] of each sample. Many

other algorithms focus on the diversity of selected samples

so that the distribution of this selected subset could become

close to the original unlabeled pool. To be specific, Sener

and Savarese [38] theoretically formulate the data selection

process as a k-Center problem and proposes a CoreSet al-

gorithm. Agarwal et al. [1] replace the Euclidean distance

with context-aware KL-divergence. Sinha et al. [39] train

an adversarial network to discriminate labeled and unla-

beled samples. Previous work [30, 38] also tries to formu-

late active learning as an optimization problem. They typ-

ically pay attention to the discrete space, since it trivially

matches the sample distribution inside a dataset. However,

discrete optimization problem tends to be much more diffi-

cult to solve than continuous problems. Some recent efforts

also pay attention to the combination between active learn-

ing and unsupervised learning. For example, Yi et al. [47]

guides the data selection with self-supervised learning loss,

but their methods only work for some very simple pretext
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Figure 2. Parametric Model Optimization Process: By optimiz-

ing the loss in Eq. 11, each parameter θjS is appealed by nearby

sample features (orange in the figure, Eq. 9) and repelled by other

parameters θkS , k �= j (green in the figure, Eq. 10).

task (e.g. colorization, rotation).

Most above active learning algorithms are designed for

from-scratch training. Prior research [4] reveals their nega-

tive effect in finetuning after unsupervised pretraining.

3. Methodology

We first formulate this new task called active finetuning
in Sec. 3.1. Our novel method, ActiveFT, to solve this prob-

lem based on continuous space optimization is proposed in

Sec. 3.2. Afterward, we elaborate on how to optimize this

model by minimizing the loss function in Sec. 3.3. An illus-

tration of our method is shown in Fig. 2. We also clarify the

correlation between our method and earth mover’s distance

in Sec. 3.4. Finally, the implementation of this method to

deep learning model is explained in Sec. 3.5.

3.1. Formulation of Active Finetuning Task

We formally define the active finetuning task. As is

demonstrated in Fig. 1, a deep neural network model

f(·;w0) : X → R
C with pretrained weight w0 is given,

where X is the data space and R
C is the normalized high-

dimensional feature space. We also have access to a large

unlabeled data pool Pu = {xi}i∈[N ] ∼ pu inside data

space X with distribution pu, where [N ] = {1, 2, . . . , N}.

The subset Pu
S for supervised finetuning is selected from

Pu. It is worth noting that f(·;w0) can be pretrained either

on Pu or other data sources, e.g. pretrained on ImageNet-

1k [37] and finetuned on a subset of CIFAR-10 [23].

In the active finetuning task, we should design a sam-

pling strategy S = {sj ∈ [N ]}j∈[B] to select a subset

Pu
S = {xsj}j∈[B] ⊂ Pu from Pu, where B is the an-

notation budget size for supervised finetuning. The model

would have access to the labels {ysj}j∈[B] ⊂ Y of this sub-

set through the oracle, obtaining a labeled data pool P l
S =

{xsj ,ysj}j∈[B], where Y is the label space. Afterward, the

model f is finetuned on P l
S supervisedly and the model pa-

rameter is updated to wS after the finetuning. The goal of

active finetuning is to find the sampling strategy Sopt mini-

mizing the expectation model error error(f(x;wS),y).

Sopt = argmin
S

E
x,y∈X×Y

[error(f(x;wS),y)] (1)

Our active finetuning is different from traditional active

learning in: 1) We have access to the pretrained model

f(·;w0), which will be finetuned, before data selection. 2)

The selected samples are applied to the finetuning of the

pretrained model f(·;w0) instead of from-scratch training.

3) The sampled subset size |P l
S | is relatively small, less than

10% in most cases. 4) We have no access to any labels such

as a random initial labeled set before data selection.

3.2. Data Selection with Parametric Model

We select samples under the guidance two basic intu-

itions: 1) bringing close the distributions between the se-
lected subset Pu

S and the original pool Pu ∼ pu. 2) main-
taining the diversity of Pu

S . The former ensures the model

finetuned on the subset performs similarly with that trained

on the full set, while the latter allows the subset to cover

corner cases in the full set. In comparison to distribution

pu(x) in the data space, it is more feasible to work on

its corresponding distribution pfu(f) in the feature space.

Through the agency of pretrained model f(·;w0), we map

each data sample xi to the high dimensional feature space

as fi = f(xi;w0), where fi is the normalized feature of xi.

As a result, we can derive the pool Fu = {fi}i∈[N ] from

Pu and corresponding distribution pfu of Fu.

Similarly, the feature pool Fu
S is also associated with the

selected data subset Pu
S . We define the corresponding dis-

tribution over Fu
S in the feature space as pfS . Our goal is to

find the optimal selection strategy S as follows.

Sopt = argmin
S

D(pfu , pfS )− λR(Fu
S ) (2)

where D(·, ·) is some distance metrics between distribu-

tions, R(·) is to measure the diversity of a set, and λ is a

scale to balance these two terms. The first term aims to

bring close these two distributions pfu , pfS while the sec-

ond term is to ensure the diversity of subset.

Unfortunately, it is difficult to directly optimize the dis-
crete selection strategy S , so we alternatively model pfS
with pθS , where θS = {θjS}j∈[B] are the continuous pa-

rameters and B is the annotation budget size. Each θjS after

optimization corresponds to the feature of a selected sample

fsj . We would find fsj closest to each θjS after optimization

to determine the selection strategy S . Therefore, our goal

in Eq. 2 is written as follows.

θS,opt = argmin
θS

D(pfu , pθS )− λR(θS) s.t. ||θjS ||2 = 1

(3)

The difference between extracted sample features Fu
S =

{fsi} and our define parameters θS = {θjS} is that fsi is
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Figure 3. Similarity between Features and Parameters: On

CIFAR100 and ImageNet, we find the Top-20 most similar pa-

rameters θjS with each sample feature fi, and calculate the av-

erage exponential similarity Ei∈[N ][exp(sim(fi, θ
j
S)/τ ]. Here

θS = {θjS}j∈[B] is randomly sampled following the distribution

pfu . The model f(·;w0) is DeiT-Small [42] pretrained on Ima-

geNet [37] with DINO framework [6]. The results verify Assump-

tion 1 that the Top-1 similarity is significantly larger than others.

a discrete feature corresponding to a sample in the dataset

while θjS is continuous in the feature space.

3.3. Parametric Model Optimization

In the parametric model pθS , the distribution is repre-

sented by B parameters {θjS}j∈[B]. We consider it as a

mixture model with B components in Eq. 4.

pθS (f) =
B∑

j=1

φjp(f |θjS) (4)

where φj is the mixture weight or prior probability p(θjS) of

the j-th component, satisfying
∑B

j=1 φj = 1. Since f and

θjS both lie in the feature space, we formulate the distribu-

tion of each component based on their similarity as Eq. 5.

p(f |θjS) =
exp(sim(f , θjS)/τ)

Zj
(5)

where Zj is a normalizing constant, sim(·, ·) is a similarity

metric, and τ is the temperature scale. We follow the pro-

tocol in [6, 46] to apply the cosine similarity between nor-

malized features as the metric sim(f1, f2) = f�1 f2, ||f1||2 =
||f2||2 = 1 and set the temperature τ = 0.07 [6,46] through-

out the paper. For each fi ∈ Fu, there exists a θciS most

similar (and closest) to fi, i.e.

ci = arg max
j∈[B]

sim(fi, θ
j
S) (6)

where we keep updating ci in the optimization process.

Since there is a very low temperature (τ = 0.07), the

gap between the exponential similarity exp(sim(fi, θ
j
S)/τ)

with different θjS is significant. Therefore, it is safe to make

the following assumption.

Assumption 1 ∀i ∈ [N ], j ∈ [B], if τ is small, the follow-
ing far-more-than relationship holds that

exp(sim(fi, θ
ci
S )/τ) � exp(sim(fi, θ

j
S)/τ), j �= ci

Although it is hard to mathematically prove, this assump-

tion is empirically verified by the results in Fig. 3. In an-

other word, p(fi|θciS ) � p(fi|θjS), j �= ci, j ∈ [B]. We can

approximate the parametric model for fi ∈ Fu in Eq. 4.

pθS (fi) ≈ φcip(fi|θciS )

=
exp(sim(fi, θ

ci
S )/τ)

Zci/φci

=
exp(sim(fi, θ

ci
S )/τ)

Z̃ci

(7)

where Z̃ci = Zci/φci is a new normalizing constant. We

can derive pθS (fi) ∝ exp(sim(fi, θ
ci
S )/τ) from Eq. 7.

The two distributions pfu , pθS can be brought close by

minimizing the KL-divergence.

KL(pfu |pθS ) =
∑

fi∈Fu

pfu(fi) log
pfu(fi)

pθS (fi)

= E
fi∈Fu

[log pfu(fi)]− E
fi∈Fu

[log pθS (fi)]

(8)

where the first term E
fi∈Fu

[log pfu(fi)] is a constant with-

out the parameter θS . Then, minimizing the KL-divergence

KL(pfu |pθS ) equals to maximizing the second term

E
fi∈Fu

[log pθS (fi)], and according to Eq. 7, it is also equiv-

alent with maximizing E
fi∈Fu

[log exp(sim(fi, θ
ci
S )/τ)] =

E
fi∈Fu

[sim(fi, θ
ci
S )/τ ]. Therefore, we derive the first term

in Eq. 3 as follows.

D(pfu , pθS ) = − E
fi∈Fu

[sim(fi, θ
ci
S )/τ ] (9)

However, directly carrying out this optimization leads to

a severe collapse problem, i.e. most θjS , j ∈ [B] converge

to the same position with the highest density of fi, i ∈ [N ],
losing the diversity inside the selected data. To this end, as

shown in Eq. 2, we introduce an extra regularization term

to ensure the diversity of selected subset. Without bells and

whistles, this regularization is implemented by minimizing

the similarity between selected samples. We also add an ex-

ponential operation to make the optimization process more

stable, otherwise some θjS may become outliers.

R(θS) = − E
j∈[B]

⎡
⎣log ∑

k �=j,k∈[B]

exp
(
sim(θjS , θ

k
S)/τ

)⎤⎦
(10)

At this point, we are able to solve Eq. 3 by optimizing

the following loss function continuously.

L = D(pfu , pθS )− λ ·R(θS)

= − E
fi∈Fu

[sim(fi, θ
ci
S )/τ ] + E

j∈[B]

⎡
⎣log ∑

k �=j,k∈[B]

exp
(
sim(θjS , θ

k
S)/τ

)⎤⎦
(11)
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where the balance weight λ is empirically set as 1.

Finally, we directly optimize the loss function in Eq. 11

by gradient descent. When the optimization is finished, we

find feature {fsj}j∈[B] with the highest similarity to θjS .

fsj = arg max
fk∈Fu

sim(fk, θ
j
S) (12)

The corresponding data samples {xsj}j∈[B] are selected as

the subset Pu
S with selection strategy S = {sj}j∈[B].

3.4. Relation to Earth Mover’s Distance

In this part, we show that optimizing the loss in Eq. 11 is

actually minimizing the earth mover’s distance between the

distributions of selected subset and full set. This justifies

that our optimization in the continuous space is equivalent

with bringing close the distribution gap in the discrete data

sample space.

After the optimization, we get the features fsj of selected

samples. We deliberately assign the discrete probability dis-

tribution pfS as Eq. 13.

pfS (fsj ) =
|Cj |
N

,Cj = {fi|ci = j}, fsj ∈ Fu
S (13)

where Cj is the set of features closest to fsj with ci de-

fined in Eq. 6. The distribution pfu is modeled as a uniform

distribution over Fu, i.e. pfu(fi) =
1
N , fi ∈ Fu.

The earth mover’s distance (EMD) between pfu , pfS is

written as [24]:

EMD(pfu , pfS ) = inf
γ∈Π(pfu ,pfS

)

E
(fi,fsj )∼γ

[||fi − fsj ||2
]

(14)

where Π(pfu , pfS ) is the set of all possible joint distribu-

tions whose marginals are pfu and pfS . It is intuitive to

come up with the infimum, i.e. each fi ∼ pfu transports

to their closest fsj ∼ pfS . The detailed derivation is in the

supplementary material.

γfu,fS (fi, fsj ) =

{
1
N fi ∈ Fu, fsj ∈ Fu

S , ci = j

0 otherwise
(15)

In this case, the distance in Eq. 14 becomes

EMD(pfu , pfS ) = E
(fi,fci )∼γ

[||fi − fsci ||2
]

=
1

N

N∑
i=1

[√
2− 2sim(fi, fsci )

] (16)

In Eq. 11, we minimize −sim(fi, θ
ci
S ), and fsci is set as

the closest fk ∈ Fu to θciS in Eq. 12 after optimization.

Then, the distance in Eq. 16 is actually also minimized.

Therefore, our optimization method in Sec. 3.3 is equivalent

with reducing the earth mover’s distance between the distri-

butions of the original unlabeled pool and selected subset.

Algorithm 1: Pseudo-code for ActiveFT
Input: Unlabeled data pool {xi}i∈[N ], pretrained

model f(·;w0), annotation budget B,

iteration number T for optimization

Output: Optimal selection strategy

S = {sj ∈ [N ]}j∈[B]

1 for i ∈ [N ] do
2 fi = f(xi;w0)

/* Construct Fu = {fi}i∈[N ] based on Pu,

normalized to ||fi||2 = 1 */

3 Uniformly random sample {s0j ∈ [N ]}j∈[B], and

initialize θjS = fs0j
/* Initialize the parameter θS = {θjS}j∈[B]

based on Fu
*/

4 for iter ∈ [T ] do
5 Calculate the similarity between {fi}i∈[N ] and

{θjS}j∈[B]: Simi,j = f�i θjS/τ
6 MaxSimi = maxj∈[B] Simi,j = Simi,ci

/* The Top-1 similarity between fi and

θjS , j ∈ [B] */

7 Calculate the similarity between θjS and

θkS , k �= j for regularization:

RegSimj,k = exp(θjS
�
θkS/τ), k �= j

8 Loss = − 1
N

∑
i∈[N ] MaxSimi +

1
B

∑
j∈[B] log

(∑
k �=j RegSimj,k

)
/* Calculate the loss function in Eq. 11

*/

9 θS = θS − lr · �θSLoss
/* Optimize the parameter through

gradient descent */

10 θjS = θjS/||θjS ||2, j ∈ [B]
/* Normalize the parameters to ensure

||θjS ||2 = 1 */

11 Find fsj closest to θjS : sj = argmaxk∈[N ] f
�
k θjS for

each j ∈ [B]
12 Return the selection strategy S = {sj}j∈[B]

3.5. Implementation as a Learning Model

Alg. 1 shows how to implement this method to deep

learning models. Given a pretrained model, for each im-

age sample xi ∈ Pu, we extract the last layer [CLS] to-

ken feature in the transformer model or global pooling fea-

ture in the convolutional model, which is normalized as the

high-dimensional feature fi = f(xi;w0). Before the op-

timization process, the parameter θS is initialized by uni-

formly sampling θjS , j ∈ [B] at random from the feature

pool Fu = {fi}i∈[N ]. If |Fu| is extremely large, we would

randomly select M elements from Fu (e.g. M=100,000

for ImageNet dataset) for the each training iteration of our
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parametric model. In each iteration, we calculate the simi-

larity between sample features and parameters, then update

ci in Eq. 6 for each fi and positive feature set {fi|ci = j}
for each θjS . Afterwards, we can compute the loss function

in Eq. 11 and update the parameters θS by gradient descent.

When the optimization process is finished, we find the sam-

ple feature fsj most similar to each parameter θjS (Eq. 12).

Those corresponding samples {xsj}j∈[B] are selected for

annotation for the following supervised finetuning.

4. Experiments
Our method is evaluated on image classification

(Sec. 4.1) and semantic segmentation (Sec. 4.2) tasks. The

performance is compared with some baselines and tradi-

tional active learning algorithms. We make some qualita-

tive and quantitative analyses of our method in Sec. 4.3.

Finally, the roles of different modules inside our method

are examined in Sec. 4.4. Experiments are run on GeForce

RTX 3090 (24GB) and AMD Ryzen Threadripper 3970X

32-Core Processor.

4.1. Image Classification Results

Datasets and Benchmarks For classification task, we

choose three classical datasets CIFAR10, CIFAR100 [23],

and ImageNet-1k [37] for experiments. CIFAR10 and CI-

FAR100 contain 60,000 images of 32x32 scale with 10 and

100 categories separately, among which 50,000 images are

in the training set and 10,000 images are for test. ImageNet-

1k is a large-scale dataset spans 1000 classes, containing

1,281,167 training images and 50,000 validation images.

Their training sets are considered as the unlabeled pool Pu

for selection. We evaluate the performance with the Top-1
Accuracy metric.

Implementation Details Our method is agnostic with

pretraining frameworks and networks. We apply DeiT-

Small [42] pretrained with DINO [6] framework on

ImageNet-1k [37] in the experiments for its verified pop-

ularity and effectiveness. We also attempt other architec-

tures in Sec. 4.3. For all three datasets, we resize images

to 224x224 consistent with the pretraining for both data se-

lection and supervised finetuning. In the data selection pro-

cess, the parameters θS are optimized with Adam [22] op-

timizer (learning rate 1e-3) until convergence. The exper-

iment details of supervised finetuning are available in the

supplementary materials.

Baselines We compare our method with eight counter-

parts including the following three baselines and five tradi-

tional active learning methods.

1. Random: The samples for annotation are selected uni-

formly at random.

2. FDS: a.k.a K-Center-Greedy algorithm. It selects the

next sample feature farthest from current selections.

Proved in [38], it minimizes the gap between the ex-

pected loss over the entire pool and the selected sub-

set. In accordance with the pretraining process [6], we

apply cosine distance as the distance metric.

3. K-Means: We conduct K-Means over the feature pool

Fu and choose samples closest to the centers. K
equals to the budget size B.

We transplant five active learning algorithms CoreSet [38],

VAAL [39], LearnLoss [48], TA-VAAL [21] and ALFA-

Mix [33] to our active finetuning task. The former three

are classical and the latter two are newer, all equipped with

open-source codes. We refer readers to the supplementary

materials for transplantation details.

Results and Comparison We average our results over

three independent runs. The results are shown in Tab. 1.

Traditional active learning methods typically fail in the

pretraining-finetuning paradigm, which is consistent with

the results in [4]. In contrast, our ActiveFT outperforms

counterparts on all three datasets with different sampling

ratios. On each dataset, the performance gain is espe-

cially significant when the sampling ratio is low, since our

method can select the most representative samples. This

phenomenon is of great practical use because the sampling

number for supervised finetuning is usually much smaller

than the pool size to save the annotation cost.

4.2. Semantic Segmentation Results

Datasets and Benchmarks For segmentation task, we

apply ADE20k dataset [50]. It contains 20,210 images for

training, 2,000 images for validation, and 3,352 images for

test. All images have fine-grained labels with 150 seman-

tic classes. The training set is considered as the unlabeled

pool Pu for selection. We evaluate the performance with

the mIoU metric.

Implementation Details Same with image classifica-

tion task, we apply DeiT-Small [42] model pretrained with

DINO framework [6] for data selection. The images are

resized to 224x224 as well. Since the semantic segmenta-

tion task relies more on the local information inside images,

we concatenate the [CLS] token features with the average

features of other tokens as fi for data selection. For the

segmentation task, Segmenter [40] is adopted for finetun-

ing, which is a pure transformer model. We use the same

pretrained DeiT-Small [6] as its backbone. The finetuning

details are also available in supplementary materials.

Results and Comparison In Tab. 2, we report the per-

formance of our method when choosing 5%, 10% of train-

ing samples for finetuning. Our results are averaged over

three independent trials. We compare to three baselines

same with image classification. The traditional active learn-

ing methods are not included due to their failure on image

classification. The performance gain of our data selection
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Table 1. Image Classification Results: Experiments are conducted on natural images with different sampling ratios. We report the mean

and std over three trials. Explanation of N/A results (“-”) is in our supplementary materials.

Methods CIFAR10 CIFAR100 ImageNet
0.5% 1% 2% 1% 2% 5% 10% 1% 5%

Random 77.3±2.6 82.2±1.9 88.9±0.4 14.9±1.9 24.3±2.0 50.8±3.4 69.3±0.7 45.1±0.8 64.3±0.3

FDS 64.5±1.5 73.2±1.2 81.4±0.7 8.1±0.6 12.8±0.3 16.9±1.4 52.3±1.9 26.7±0.6 55.5±0.1

K-Means 83.0±3.5 85.9±0.8 89.6±0.6 17.6±1.1 31.9±0.1 42.4±1.0 70.7±0.3 - -

CoreSet [38] - 81.6±0.3 88.4±0.2 - 30.6±0.4 48.3±0.5 62.9±0.6 - 61.7±0.2

VAAL [39] - 80.9±0.5 88.8±0.3 - 24.6±1.1 46.4±0.8 70.1±0.4 - 64.0±0.3

LearnLoss [48] - 81.6±0.6 86.7±0.4 - 19.2±2.2 38.2±2.8 65.7±1.1 - 63.2±0.4

TA-VAAL [21] - 82.6±0.4 88.7±0.2 - 34.7±0.7 46.4±1.1 66.8±0.5 - 64.3±0.2

ALFA-Mix [33] - 83.4±0.3 89.6±0.2 - 35.3±0.8 50.4±0.9 69.9±0.6 - 64.5±0.2

ActiveFT (ours) 85.0±0.4 88.2±0.4 90.1±0.2 26.1±2.6 40.7±0.9 54.6±2.3 71.0±0.5 50.1±0.3 65.3±0.1

Table 2. Semantic Segmentation Results: experiments are con-

ducted on ADE20k with sampling ratios 5%, 10%. Results are

averaged over three trials.

Sel. Ratio Random FDS K-Means ActiveFT (ours)

5% 14.54 6.74 13.62 15.37±0.11

10% 20.27 12.65 19.12 21.60±0.40

Table 3. Data Selection Efficiency: We compare the time cost to

select different percentages of samples from the CIFAR100 train-

ing set.

Sel. Ratio K-Means CoreSet VAAL LearnLoss ours

2% 16.6s 1h57m 7h52m 20m 12.6s
5% 37.0s 7h44m 12h13m 1h37m 21.9s
10% 70.2s 20h38m 36h24m 9h09m 37.3s

method is not as significant as the image classification task.

This is understandable because semantic segmentation is a

fine-grained vision task, focusing on subtle local visual pat-

tern. In this case, it is hard for a global feature to represent

all the details in a scene. However, despite the difficulty, our

method still shows notable superiority in comparison with

other baselines, reflecting the generality of our method to

different tasks.

4.3. Analysis

Data Selection Efficiency It is desirable that the data se-

lection method operates in a time-efficient manner, as close

as possible to random selection. In Tab. 3, we compare the

required time to select different percentages of training sam-

ples from CIFAR100. We do not take FDS into account

due to its very poor performance. For those traditional ac-

tive learning algorithms, both the repetitive model training

and data sampling should be counted into the running time,

and the former takes the majority. In contrast, our method

chooses all the samples in a single-pass, so we do not have

(a) CoreSet (b) VAAL

(c) LearnLoss (d) ActiveFT (ours)

Figure 4. tSNE Embeddings of CIFAR10: We visualize the em-

bedding of selected samples using different algorithms. Different

colors denote categories, and the black dots are the 1% samples

selected by our method.

to train the model again in the selection process. As a result,

our method’s speed is faster than traditional active learning

methods by a notable margin. Besides, unlike some active

learning methods [38,48], our method does not need access

to ground-truths before the end of all selection, which en-

ables more flexibility of annotator assignment.

Visualization of Selected Samples In Fig. 4, we visual-

ize the feature fi of each sample in CIFAR10 training set.

The dimension of features is reduced by tSNE. The black

dots represent the 1% samples selected by different meth-

ods. Results demonstrate that our selected samples dis-

tribute more similarly with the entire pool in the feature

space than other counterparts. It reflects that optimizing our

proposed parametric model helps to reduce the distribution

gap between the selected subset and original unlabeled pool.
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Table 4. Generality on Pretraining Frameworks and Model
Architectures: We examine the performance of ActiveFT on dif-

ferent pretraining frameworks and models on CIFAR-10.

(a) Performance on DeiT-Small Pretrained with iBOT

Methods 0.5% 1% 2%

Random 81.7 83.0 89.8

CoreSet [38] - 82.8 89.2

LearnLoss [48] - 83.6 89.2

VAAL [39] - 85.1 89.3

ActiveFT (ours) 87.6±0.8 88.3±0.2 90.9±0.2

(b) Performance on ResNet-50 Pretrained with DINO

Methods 0.5% 1% 2%

Random 64.8 76.2 83.7

CoreSet [38] - 70.4 83.2

LearnLoss [48] - 71.7 81.3

VAAL [39] - 75.0 83.3

ActiveFT (ours) 68.5 ±0.4 78.6 ±0.7 84.9 ±0.3

Table 5. Ablation Study: We examine the effect of two modules

in our method. Experiments are conducted on CIFAR100 with

pretrained DeiT-Small model.

(a) ci Update Manner

Ratio No-Update Update

2% 20.6 40.7
5% 52.8 54.6

(b) Regularization Design

Ratio S1 S2 ours

2% 33.1 26.8 40.7
5% 51.5 46.9 54.6

Generality of our Method ActiveFT can fit different

pretraining frameworks and models well. In addition to

DINO [6] framework and DeiT-Small [42] model, we also

apply ActiveFT to a DeiT-Small [42] trained with gener-

ative unsupervised pretraining framework iBOT [51] and

CNN model ResNet-50 [16] trained with DINO [6]. The

models are pretrained on ImageNet-1k and would be fine-

tuned in CIFAR10. Other implementation details are ex-

actly same with Sec. 4.1. Tab 4 shows the significant supe-

riority of our results in comparison with random sampling

baseline with different sampling ratios. The results reflect

the compatibility of ActiveFT with different unsupervised

pretraining frameworks and model architectures.

4.4. Ablation Study

We discuss the importance of different modules in our

method including the update manner of ci, the design of

diversity regularization, and the effect of temperature.

Update Manner of ci In this part, we discuss the ways

to update ci (Eq. 6) which denotes the parameter closest to

each sample fi in the feature space. In Alg. 1, it is updated in

each iteration. Alternatively, we remain ci unchanged as the

Table 6. Effect of Temperatures: We try different temperatures

in our method. Experiments are conducted on CIFAR10 with pre-

trained DeiT-Small model.

Ratio τ = 0.04 τ = 0.07 τ = 0.2 τ = 0.5

0.5% 85.6 85.0 84.1 83.5

1% 87.4 88.2 85.3 86.1

2% 90.3 90.1 89.6 89.0

initial state in the optimization process. Results in Tab. 5a

shows that this stationary strategy does not work well. In

this case, it would rely heavily on the initial state. The fre-

quent update of ci could help to relieve some harmful biases

inside the initial state.

Regularization Design We try two alternative strategies

to design the regularization term R(·) in Eq. 11. S1) No
Regularization: We only optimize the first term D(·, ·) in

Eq. 11. S2) InfoNCE [43]: We get inspiration from [43] to

design a contrastive loss to approximate the distribution pfu

with pθS : L = − E
fi∈Fu

[
log

exp(fTi θ
ci
S /τ)

∑
k∈[N] exp(sim(fTk θ

ci
S /τ)

]
. In

Tab. 5b, we evaluate these three strategies. We find that both

S1 and S2 fails, and only our applied strategy S3 succeeds.

It justifies our design of the regularization strategy.

Temperature τ We analyze the effect of different tem-

peratures in Eq. 11. Pointed out in Assumption 1, a small τ
is a pre-requisite for our derivation. Tab. 6 shows the results

on CIFAR10 with different temperatures. When the tem-

perature is relatively low (e.g. τ <0.1), the performance

of ActiveFT is great. However, as it becomes higher (e.g.

τ = 0.5), the performance drops. The results are in line

with our theoretical derivation.

5. Conclusion

To fill in the gap inside the pretraining-finetuning

paradigm, we define the active finetuning task, which se-

lects samples from an unlabeled data pool for supervised

model finetuning. To solve this problem, we propose a

model-agnostic algorithm, ActiveFT. By optimizing a para-

metric model, ActiveFT chooses diverse data samples dis-

tributing similarly with the original pool for annotation. It is

mathematically justified that ActiveFT helps to bring close

the distributions of the selected subset and entire data pool

by reducing the Earth Mover’s distance. Our experiments

on classification and segmentation show the state-of-the-art

performance of ActiveFT, with an extremely high data se-

lection efficiency. We believe ActiveFT can help to exploit

the annotation budget for supervised finetuning in practical

use and make a solid contribution to the popular pretraining-

finetuning paradigms in various tasks.
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