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Abstract

Face retouching aims to remove facial blemishes, while
at the same time maintaining the textual details of a giv-
en input image. The main challenge lies in distinguishing
blemishes from the facial characteristics, such as moles.
Training an image-to-image translation network with pixel-
wise supervision suffers from the problem of expensive
paired training data, since professional retouching need-
s specialized experience and is time-consuming. In this
paper, we propose a Blemish-aware and Progressive Face
Retouching model, which is referred to as BPFRe. Our
framework can be partitioned into two manageable stages
to perform progressive blemish removal. Specifically, an
encoder-decoder-based module learns to coarsely remove
the blemishes at the first stage, and the resulting interme-
diate features are injected into a generator to enrich lo-
cal detail at the second stage. We find that explicitly sup-
pressing the blemishes can contribute to an effective col-
laboration among the components. Toward this end, we
incorporate an attention module, which learns to infer a
blemish-aware map and further determine the correspond-
ing weights, which are then used to refine the intermediate
features transferred from the encoder to the decoder, and
from the decoder to the generator. Therefore, BPFRe is able
to deliver significant performance gains on a wide range of
face retouching tasks. It is worth noting that we reduce the
dependence of BPFRe on paired training samples by impos-
ing effective regularization on unpaired ones.

1. Introduction
With the development of social media, there is an in-

creased demand for facial image beautification from selfies
to portraits and beyond. Facial skin retouching aims to re-
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Figure 1. Visual comparison of the activation maps produced by a
generic attention module [47] (second row) and the blemish-aware
module used in BPFRe (third row), given a number of images of
faces with blemishes (top row). BPFRe is capable of applying
attention on the regions close to the manual retouching regions
(bottom row).

move any unexpected blemishes from facial images, while
preserving the stable characteristics that associate with face
identity [2, 38, 41]. The main challenge is due to the wide
range of blemishes including from small spots to severe ac-
ne. Conventional methods are based on blind smoothing,
such that the facial characteristics, such as moles and freck-
les, may be removed. Professional face retouching can be
expensive and needs specialized experience, which impedes
the collection of large-scale paired data for model training.

Deep neural networks have been widely used for image-
to-image translation, especially based on Generative Adver-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5599



sarial Networks (GANs) [6, 12, 22]. The translation per-
formance has witnessed rapid progress in style transfer [7],
image restoration [45, 48], image inpainting [47], and so
on. The existing models are typically based on an encoder-
decoder architecture. The source image is encoded into a
latent representation, based on which a task-specific trans-
formation is performed by the decoder. Different from the
above image enhancement tasks, the regions needed to be
retouched may be small, and most of the pixels are un-
changed in this case. Generic encoder-decoder-based trans-
lation methods can preserve irrelevant content but tend to
overlook large blemishes and produce over-smoothed im-
ages. Considering that StyleGAN-based methods have the
capability of rendering the complex textual details [1, 11],
we design a two-stage progressive face retouching frame-
work to make use of the advantage of these types of archi-
tectures, and learn the blemish-aware attention (as shown in
Figure 1) to guide the image rendering process.

More specifically, we propose a Blemish-aware Progres-
sive Face Retouching model (BPFRe), which consists of t-
wo stages: An encoder-decoder architecture is applied at the
first stage to perform coarse retouching. The intermediate
features from the encoder are integrated into the decoder via
skip connections for better reconstruction of image content.
At the second stage, we modify the generator architecture
of StyleGAN [22] to operate on the multi-scale intermedi-
ate features of the decoder and render an image with finer
details. We consider that blemish removal cannot be ef-
fectively achieved by simply transferring the intermediate
features between the components, since there is no mecha-
nism to suppress the blemishes before being passed to the
next components. To address this issue, we incorporate t-
wo blemish-aware attention modules between the encoder
and decoder, and between the decoder and generator, re-
spectively. This design enables progressive retouching by
leveraging and refining the information from the previous
components. In addition to the paired training images, we
use the unpaired ones to optimize the discriminator, which
in turn guides the generator to synthesize realistic detail-
s. We perform extensive experiments to qualitatively and
quantitatively assess BPFRe on both standard benchmarks
and data in the wild.

The main contributions of this work are summarized as
follows: (a) To deal with a wide range of facial blemishes,
we exploit the merits of both encoder-decoder and genera-
tor architectures by seamlessly integrating them into a uni-
fied framework to progressively remove blemishes. (b) A
blemish-aware attention module is incorporated to enhance
the collaboration between the components by refining the
intermediate features that are transferred among the com-
ponents. (c) We leverage unpaired training data to regular-
ize the proposed framework, which effectively reduces the
dependence on paired training data.

2. Related Work

2.1. Generic Image-to-Image Translation

The capability of Generative Adversarial Networks
(GANs) [12] to synthesize high-fidelity image leads to con-
siderable success in a variety of computer vision tasks, such
as style transfer [7,8,28], image colorization [17,44], image
inpainting [42, 46, 47], super-resolution [3, 26], and so on.

As one of the earliest GAN-based image-to-image trans-
lation methods, Isola et al. [17] proposed a conditional
GAN, Pix2Pix, to learn the mapping across different do-
mains in a supervised manner. Pix2Pix was based on an
encoder-decoder architecture and trained on paired training
data. In addition to the adversarial training loss with a do-
main discriminator, the consistency regularization between
the synthesized image and the ground-truth was imposed
on the model. To better balance the high-level contextual
information and spatial details, Zamir et al. [47] designed
a multi-stage image translation structure to progressively
restore the degraded images, and the model was referred
to as MPRNet. On the other hand, there are a number
of image translation models that focus on unpaired data-
based training paradigm. Liu et al. [33] trained the cou-
pled GANs [34] to approximate the joint distribution of im-
ages from different domains in a shared latent space, and
synthesized domain-specific images with the associated de-
coder. Zhu et al. [50] extended Pix2Pix by performing two-
way transformation, and the resulting model was referred to
as CycleGAN, in which the unpaired training images were
used to impose the cycle consistency regularization on the
translation network. A similar strategy was also adopted
to learn cross-domain transformations in DiscoGAN [23].
To efficiently learn the mappings among multiple domain-
s, Choi et al. [7, 8] proposed a StarGAN framework, in
which a single generator was trained to translate an input
image into different domains. The style transfer was per-
formed via adaptive feature normalization [35], conditioned
on the learnable domain label embedding. When dealing
with multiple conditions, Bhattarai and Kim [5] applied a
graph convolutional network [25] to integrate these condi-
tions, and the resulting vector was injected into a transla-
tion network to perform a single step transformation. In
AttGAN [15], the domain information was encoded as a
part of the latent representation, and an auxiliary classifier
was incorporated to ensure the correct modification of target
content. Furthermore, a selective translation network [32]
was used to edit image content according to the domain dis-
crepancies between the input and reference images.

Another research direction is to leverage the pre-trained
GANs due to their capability of high-fidelity image synthe-
sis, and significant progress has been made recently [30,43].
An essential step is to map the input image back to the latent
space. Perarnau et al. [36] adopted an encoder to learn the
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mapping from the data space to the latent space, and the im-
age translation was performed by transforming the resulting
latent vector. For severely degraded images, the latent codes
inferred by an encoder may be insufficient to synthesize rea-
sonable results, and Yang et al. [45] proposed a GAN Pri-
or Embedded Network (GPEN) to inject the encoder fea-
tures into the generator blocks. To discover semantically
meaningful latent directions without supervision, an effec-
tive approach was to perform principal component analysis
on the latent vectors of the training images [13, 14]. Shen
and Zhou [40] performed factorization on the matrix of the
generator weights to determine the latent directions which
cause substantial variations. In addition, Ding et al. [11]
applied sparse dictionary learning to analyze the intra-class
variations and discover the class-irrelevant latent direction-
s. However, the semantics associated with the latent direc-
tions may not be well-defined. To semantically control the
translation, Shen et al. [39] employed support vector ma-
chine [9] to determine a latent direction, which effectively
classify the instances with and without the target attribute.
In [51], a set of latent directions were learnt to manipulate
the content, which were required to be identified by a pre-
trained regressor. To perform complex manipulation, Abdal
et al. [1] proposed a conditional normalizing flow model to
infer the latent transformation, which corresponds to a non-
linear path in the latent space.

2.2. Face Retouching

Face image beautification is an interesting application
of image processing in media and entertainment industry.
Conventional face retouching methods are typically based
on nonlinear digital filters. In [2], a variety of smoothing
filters were designed to remove roughness and small spots.
Layvand et al. [27] improved facial attractiveness by search-
ing for similar face images with higher predicted attractive
ratings, and determined a 2D warp field for transformation
accordingly. For freckle removal, Lipowezky and Cahen
[31] extracted them according to color, shape and texture
features and replaced them with the surrounding skin. Ba-
tool and Chellappa [4] proposed a bimodal Gaussian mix-
ture model to detect facial blemishes, based on Gabor fil-
ter responses and texture orientation. Lin et al. [29] model
the densities of melanin and hemoglobin as Gaussian, and
modify the skin color by adjusting the means and variance.
Velusamy et al. [41] adopted a dynamic smoothing filter to
remove blemishes and restore the skin texture via wavelet
transform. Recently, as a specific image-to-image transla-
tion task, GAN-based methods are applied to face retouch-
ing. Shafaei et al. [38] established a large-scale and profes-
sionally retouched dataset, and built a base model, which
is based on the Relativistic Average GAN [19] as well as
perceptual and pixel-level consistency regularization.

3. Proposed Method
3.1. Motivation

The main challenge of face retouching lies in detecting
and removing blemishes, while at the same time maintain-
ing close similarity with the original. Generic encoder-
decoder-based image translation models are typically opti-
mized by perceptual and pixel-level consistency regulariza-
tion. These models tend to approximate the mean of local
skin and thus fail to remove large blemishes. To address
this issue, we partition face retouching into two manage-
able stages. As shown in Figure 2, there are an encoder and
a decoder at the first stage for encoding the global structure,
background and local detail together with coarsely retouch-
ing. A generator at the second stage aims to achieve more
desirable results, conditioned on the decoder features. We
consider that precisely suppressing blemishes is crucial to
guide the model to fill and replace the contents within the
blemish area. Toward this end, we design blemish-aware
attention modules to suppress blemishes by weighting the
multi-scale intermediate feature maps transferred between
the components, rather than simply concatenating the com-
ponents. As a result, the two stages are seamlessly integrat-
ed, and are able to remove the blemishes naturally while
making the skin look smooth and clear without affecting
other content in the images.

3.2. Notations

We concentrate on the challenging case where a lim-
ited amount of paired training images are provided. Let
Xpair = {(xpraw, x

p
ret)} denote the set of the raw im-

ages xpraw and paired retouching images xpret. In addition,
there are a large amount of unpaired data: the raw images
Xunp

raw = {xuraw} and retouched images Xunp
ret = {xuret}.

We typically have |Xpair| � |Xunp
raw | + |X

unp
ret |. For sim-

plicity, we use xraw and xret to represent any raw and re-
touched images, respectively. The first stage of BPFRe con-
tains a blemish-aware attention module AE2D connecting
an encoder E and a decoder Ddeco for coarse retouching.
The second stage consists of a generator G, a discrimina-
tor Ddisc, and an attention module AD2G connecting Ddeco

and G for high-fidelity image synthesis.

3.3. Blemish-aware Attention Module

To better reconstruct the global structure, background
and textual detail of a given input image, we transfer the
intermediate features of the encoder to the decoder, and fur-
ther transfer those of the decoder to the generator. The skip
connection widely used in the U-Net architectures cannot
achieve our purpose of suppressing blemishes and other un-
desirable skin components. To address this issue, we in-
corporate a blemish-aware attention module to weight the
features before propagating them to the next components.
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Figure 2. The framework of BPFRe for face retouching. At the first stage, an encoder E and a decoder Ddeco are trained to coarsely
retouch the raw image and retain the global information. To further improve the realism of the content, especially in the blemish regions, a
generator G is conditioned on the latent code inferred by E and the intermediate features of Ddeco. To guide Ddeco and G to focus more
on the blemish regions, two blemish-aware attention modules AE2D and AD2G are incorporated to weight the features transferred from E
to Ddeco and from Ddeco to G, where the activation parameters, α and β, are adaptively learnt for local attention.

The module AE2D = {hparam, hmap, hweight} takes
the encoder features fE(xraw) and produces a soft mask
ME2D, which is expected to highlight blemishes. Accord-
ing to our observation, identifying blemishes heavily de-
pends on the surrounding skin. In view of this, we adopt
the convolutional block hparam to learn the parameters α
and β of the sigmoid activation at local regions as follows:

[α,β] = hparam(xraw), (1)

and normalize the attention map produced by hmap as:

ME2D|u,v =
1

1 + exp−αhmap(fE(xraw))−β

∣∣∣
u,v
, (2)

where (u, v) denotes a pixel location. To recalibrate the
encoder features, we can suppress the blemishes by reduc-
ing the response in the attention map, and adopt the block
hweight to infer the weighting maps as follows:

WE2D = hweight(1−ME2D), (3)

where WE2D have the same dimension as fE(xraw).
AE2D is jointly optimized with the other components in the
training process. In addition, we construct an explicit super-
vision in the form of the difference between the raw image
and the retouched one as follows:

Lcoarse
blem = Exp

raw

[
|ME2D −∆coarse|1

]
, (4)

where ∆coarse = |xpraw−x
p
ret|1. Training with the supervi-

sion delivers more reliable attention-guided features for the
retouching task. Similarly, we adopt the same architecture

to build the other attention module AD2G, and define the
corresponding loss as follows:

Lrefine
blem = Exp

raw

[
|MD2G −∆refine|1

]
, (5)

whereMD2G denotes the attention map yielded by AD2G,
and ∆refine = |x̃praw − x

p
ret|1 represents the difference be-

tween the output of Ddeco and retouching ground truth.

3.4. Progressive Retouching

At the first stage, the decoder Ddeco performs coarse re-
touching on a raw image, conditioned on the weighted en-
coder features. For the paired training data Xpair, the re-
touching ground truth is available, and Ddeco is encouraged
to infer the ground truth as accurately as possible. For any
retouched image xret, Ddeco is required to recover them.
By integrating the two aspects, the training loss of the de-
coder is defined as follows:

Lcoarse
cons = Exp

raw

[
|x̃praw − x

p
ret|1 + |φ(x̃praw)− φ(xpret)|1

]
+ λExret

[
|x̃ret − xpret|1 + |φ(x̃ret)− φ(xret)|1

]
,

(6)

where x̃praw represents the output of Ddeco:

x̃praw = Ddeco

(
WE2D ⊗ fE(xpraw)

)
, (7)

⊗ is the Hadamard product, φ(·) denotes the features as-
sociated with a VGG network pre-trained on ImageNet
[10, 18], and the weighting factor λ is used to control the
impact of unpaired training data.

When the blemishes are large (e.g., the acne is severe),
the first stage may perform less satisfactorily in synthesiz-
ing clear face images. Considering the desirable generation
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capability of StyleGAN [21, 22], we exploit the merits of
StyleGAN2 and design the second stage, where the genera-
tor receives the latent code inferred by the encoder as well
as the weighted intermediate features from the decoder. We
represent the synthesized image as follows:

x̂raw = G(E(xraw),WD2G ⊗ fdeco(xraw)), (8)

where E(·) denotes the latent representation learnt by E,
WD2G represents the weighting maps, and fdeco(·) are the
intermediate features of Ddeco. Similar to StyleGAN2,
E(xraw) is fed into a MLP to obtain a style code that is
broadcasted to each block for feature normalization. On
the other hand, fdeco(xraw) provides rich image informa-
tion, largely alleviating the difficulty of synthesizing high-
fidelity images, andWD2G prevents the generation process
from producing blemishes. We impose the pixel-level and
perceptual consistency regularization on G, and the corre-
sponding loss is defined as follows:

Lrefine
cons = Exp

raw

[
|x̂praw − x

p
ret|1 + |φ(x̂praw)− φ(xpret)|1

]
.

(9)
Furthermore, we adopt an adversarial training approach, in
which a discriminator Ddisc is trained to distinguish the re-
touched images from the raw ones, and G aims to deceive
Ddisc. We define the adversarial training loss as follows:

Ldisc
adv = Exraw

[
MD2G ⊗ log(1−Ddisc(xraw))

+MD2G ⊗ log(1−Ddisc(x̂raw))
]

+ Exret

[
logDdisc(xret)

]
,

(10)

Lsynt
adv = Exraw

[
MD2G ⊗ log(1−Ddisc(x̂raw))

]
, (11)

where Ddisc(·) represents the pixel-wise real-fake identi-
fication result. Different from generic adversarial loss, we
use the produced attention map to weight the real-fake iden-
tification result, such that the generator is induced to apply
more attention on the regions that correspond to blemishes.

By integrating the above aspects, the optimization for-
mulation of the constituent networks can be expressed as
follows:

min
AE2D,E,Ddeco

Lcoarse
blem + Lcoarse

cons ,

min
AD2G,G,Ddisc

Lrefine
blem + Lrefine

cons + Lsynt
adv ,

max
Ddisc

Ldisc
adv .

(12)

All the consistent networks in the proposed model are joint-
ly optimized from scratch.

4. Experiments
We evaluate BPFRe on a variety of face retouching tasks.

The experiments mainly involve four aspects: (1) We verify

the effectiveness of the attention module in specifying the
blemishes. (2) We investigate the relative contributions of
the main components on face retouching. (3) We further
quantitatively and qualitatively compare BPFRe with state-
of-the-art image translation models. (4) We finally explore
the applicability of BPFRe to image inpainting tasks.

4.1. Datasets and Evaluation Metrics

Datasets. The main experiments are conducted on a
large-scale face retouching dataset: FFHQR [38], which
is derived from the Flickr-Face-HQ (FFHQ) dataset [21]
and covers a wide range of ethnicities and ages. There are
56,000, 7,000 and 7,000 pairs of raw and retouched images
for training, validation and testing, respectively. In addition,
we collect 1,000 images of faces with large blemishes in the
wild to evaluate the performance of the proposed model and
competing methods. There are no retouching ground truth
available, and we purely use in-the-wild data for testing.

Evaluation metrics. We perform quantitative evaluation
based on Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM), which are both widely
used metrics in various vision tasks. To further measure the
diversity and degree of realism of the synthesized data, we
report the Fréchet Inception Distances (FID) [16] and the
Learned Perceptual Image Patch Similarity (LPIPS) [49].

4.2. Implementation Details

BPFRe consists of a U-Net {E,Ddeco}, a genera-
tor G, a discriminator Ddisc and two attention modules
{AE2D, AD2G}. We adopt the architecture of [37] for the
U-Net, and there are 16 and 16 blocks for the encoder and
decoder, respectively. In addition, we adopt the StyleGAN2
architecture for the generator and discriminator. AE2D and
AD2G have the same light weight architecture that contain-
s 7 convolutional layers. We implement BPFRe using Py-
Torch on a NVIDIA Tesla V100 GPU. The weighting factor
λ in Eq.(6) is set to 0.001. We adopt the Adam optimiz-
er [24] with a learning rate of 0.002. BPFRe is trained for
120k iterations with a batch size of 2.

4.3. Effectiveness of Blemish-aware Attention

We begin by visually verifying the effectiveness of the
attention modules AE2D and AD2G in identifying the re-
gions that could be blemishes. In the proposed model, the
two modules are expected to suppress the blemishes by
weighting the intermediate features transferred from the en-
coder to the decoder, and from the decoder to the gener-
ator, such that the content in the blemish regions can be
synthesized from contextual information. In Figure 3, we
visualize the attention maps ME2D and MD2G and the
corresponding synthesized images x̃raw and x̂raw at the
two stages. We observe that both attention maps cover
most of the blemish regions indicated in the difference map
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Figure 3. Visualization of attention maps and corresponding retouching results at the two stages of BPFRe.

Figure 4. Face retouching results of BPFRe and the ablative models.

∆coarse = |xpraw − x
p
ret|1 between the raw image and re-

touching ground truth. Compared to the first stage, the sec-
ond stage focuses more on synthesizing the details, and the
high response area inMD2G is greater than that inME2D.
As a result, the second stage is able to produce clear face
images with realistic details.

4.4. Ablation Study

To analyze the roles of the main components of BPFRe,
we perform ablative experiments by constructing three vari-
ants. The first variant is built by disabling the decoder and
denoted by ‘BPFRe w/o AE2D & Ddeco’. The encoder fea-
tures are weighted by AD2G and transferred to the gener-
ator. We build the second variant by removing the gener-
ator, and the resulting model is referred to as ‘BPFRe w/o
AD2G & G’. In addition to minimizing Lcoarse

cons in Eq.(6),
the U-Net also competes with the discriminator. ‘BPFRe
w/o AE2D & AD2G’ is the third variant, which refers to our
model without the blemish-aware attention modules.

We summarize the PSNR, SSIM and LPIPS results of the
proposed BPFRe and its three variants in Table 1. One can
observe that the full model is able to achieve better quan-
titative results than its variants in terms of all the metrics.
Both ’BPFRe w/o AD2G & G’ and ‘BPFRe w/o AE2D &

Table 1. Results of BPFRe and the ablative models on FFHQR.

Method PSNR ↑ SSIM ↑ LPIPS ↓

BPFRe w/o AE2D & Ddeco 40.70 0.9883 0.0140
BPFRe w/o AD2G & G 43.80 0.9915 0.0135
BPFRe w/o AE2D & AD2G 44.38 0.9923 0.0101

BPFRe 45.29 0.9935 0.0092

Ddeco’ are single-stage models. When compared to ’BPFRe
w/o AD2G & G’, the second stage of BPFRe leads to a P-
SNR gain of 1.49. When disabling the first stage of BPFRe,
the performance drop reaches 4.59 PSNR points, although
‘BPFRe w/o AE2D & Ddeco’ also includes the generator.
This implies that the two-stage architecture plays an impor-
tant role in the generation process. In addition, we consider
that without the blemish-aware attention modules, the result
of ‘BPFRe w/o AE2D & AD2G’ is not as good as BPFRe.
We also show representative results of the methods in Fig-
ure 4, and find that ‘BPFRe w/o AE2D & AD2G’ produces
a better retouching image than the other variants but cannot
completely remove the blemishes. This demonstrates the
effectiveness of the combination of our two-stage architec-
ture and blemished-aware attention mechanism.
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Figure 5. Visual comparison of BPFRe and the competing methods on the FFHQR images.

Table 2. Results of BPFRe and competing methods on FFHQR.

PSNR ↑ SSIM ↑ LPIPS ↓

Method All Hard All Hard All Hard

Raw images 43.89 37.69 0.9910 0.982 0.9906 0.0310

Pix2PixHD [17] 29.38 30.10 0.9181 0.9035 0.0766 0.0844
GPEN [45] 43.12 37.88 0.9911 0.9792 0.0141 0.0697
AutoRetouch [38] 44.18 38.01 0.9910 0.9812 0.0133 0.0292
MPRNet [47] 44.35 38.67 0.9931 0.9854 0.0129 0.0301

BPFRe 45.29 38.98 0.9935 0.9856 0.0092 0.0205

4.5. Comparison

To demonstrate the superiority of BPFRe, we compare
the proposed model with a number of representative com-
peting methods, including Pix2PixHD [17], MPRNet [47],
GPEN [45] and AutoRetouch [38]. Pix2PixHD is a typ-
ical image-to-image translation method, MPRNet and G-
PEN serve as state-of-the-art image restoration methods,
and AutoRetouch focuses on the face retouching task.

4.5.1 Results on FFHQR

To demonstrate the capability of our framework to remove
blemishes, we manually select about 1.4k comparatively d-
ifficult images to build a subset: FFHQR-Hard. We sum-
marize the results of BPFRe and the competing methods in
Table 2. One can find that BPFRe outperforms the com-
peting methods in terms of PSNR, SSIM and LPIPS. Com-
pared to AutoRetouch that serves as a customized method
for this task, BPFRe still achieves a competitive advantage
in terms of all the metrics. We visually compare the meth-
ods on challenging images in Figure 5. BPFRe is effective
in removing blemishes of different types and scales, and the
produced images are visually pleasant and consistent with
the ground-truth data. On the other hand, the competing

Figure 6. The impact of the amount of paired training data on the
performance of BPFRe and competing methods on FFHQR-Hard.

methods do not completely remove the blemishes. We fur-
ther compare with MPRNet and GPEN when the amount of
paired training images decreases. The proportion of paired
data is limited in the range of {1%, 5%, 10%, 20%, 50%
100%}. Figure 6 demonstrates that BPFRe consistently ob-
tains better PSNR scores than the competing methods on
FFHQR-Hard. Although GPEN adopts the StyleGAN gen-
erator, our improvement over GPEN is as large as 0.78 to
1.19 PSNR point(s).

4.5.2 Results on Images in the Wild

We further evaluate BPFRe and the competing methods on
in-the-wild face images. It is worth noting that all the meth-
ods are trained only on FFHQR. Figure 7 presents the rep-
resentative synthesized images. These results lead to sim-
ilar conclusions as the experiment on FFHQR. GPEN fails
to perform retouching on the images. AutoRetouch over-
smoothes the content and has limited generalization capa-
bility to synthesize realistic content in the blemish regions.
MPRNet is able to restore the textual detail but fails to re-
move severe acne. In contrast, BPFRe removes blemishes
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Figure 7. Visual comparison of BPFRe and the competing meth-
ods on the in-the-wild face images.

Table 3. The voting result (%) of user study on in-the-wild data.

Method Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

Pix2PixHD [17] 0.001 0.005 5.303 5.650 88.258
GPEN [45] 0.387 1.053 15.909 74.388 9.589
AutoRetouch [38] 0.003 9.298 71.022 16.384 1.566
MPRNet [47] 14.401 74.211 7.576 3.577 0.587
BPFRe 85.208 15.433 0.190 0.001 0.000

Table 4. The image inpainting results of BPFRe and the competing
methods on CelebA-HQ.

1% 5% 10% 20%

Method FID ↓ PSNR ↑ FID ↓ PSNR ↑ FID ↓ PSNR ↑ FID ↓ PSNR ↑

MPRNet [47] 41.73 25.79 27.27 28.02 28.45 28.76 28.41 28.21
GPEN [45] 14.21 26.02 10.56 26.37 10.88 26.26 10.47 26.30

BPFRe 7.57 28.17 7.20 28.19 7.16 28.21 7.29 28.32

naturally, and make the skin look clear and smooth, which
demonstrates the strong generalization capability.

4.6. User Study

We perform a subjective evaluation on in-the-wild data,
and there are 50 questions constructed. Given a raw image,
the workers are required to rank the retouching results of
BPFRe and the competing methods, and high-ranking re-
sults should represent delightful content with realistic de-
tails. For a fair assessment, the results of the methods are
presented in a random order. We employ 80 validated work-
ers to answer each question, and Table 3 presents the aver-
age ranking result. BPFRe achieves the best performance
on in-the-wild data, which demonstrates that our results are
consistent with human visual perception.

4.7. Applied to Image Inpainting

Although BPFRe is originally designed for face retouch-
ing, the attention-guided two-stage architecture is capable
of performing image inpainting with limited paired data,
and the training loss and optimization scheme can be used
directly in this task. We compare BPFRe with the represen-

Figure 8. Visualization of the attention maps and corresponding
inpainting results on the CelebA-HQ images.

tative state-of-the-art image restoration methods: MPRNet
and GPEN. These models are trained on FFHQ for the cas-
es where 1%, 5%, 10% and 20% of the training images are
paired. We adopt the image degradation method [45], and e-
valuate the trained models on CelebA-HQ [20]. The results
are summarized in Table 4. As the amount of paired training
data decreases, the superiority of BPFRe over the compet-
ing methods becomes significant (up to 6.64 FID and 2.15
PSNR points). Figure 8 shows that BPFRe is still able to
produce reasonable results for severely degraded images.

5. Conclusion
In this paper, we propose an attention-guided progressive

face retouching framework to remove blemishes naturally
and synthesize high-fidelity content. We design a two-stage
structure to exploit the merit of the U-Net architecture in
restoring the image details and that of the GAN generator
architecture in generating realistic images. The core idea is
to explicitly suppress blemishes when transferring the inter-
mediate features from the encoder to the decoder, and from
the decoder to the generator. Toward this end, we adop-
t a blemish-aware attention module to learn the weighting
maps. Our model can be effectively trained on partially
paired data, and the experimental results demonstrate the
effectiveness qualitatively and qualitatively.

Acknowledgments
This work was supported in part by the China Scholar-

ship Council, in part by the National Natural Science Foun-
dation of China (Project No. 62072189), in part by the Re-
search Grants Council of the Hong Kong Special Adminis-
tration Region (Project No. CityU 11206622), and in part
by the Natural Science Foundation of Guangdong Province
(Project No. 2022A1515011160).

5606



References
[1] Rameen Abdal, Peihao Zhu, Niloy J. Mitra, and Peter

Wonka. StyleFlow: attribute-conditioned exploration of
StyleGAN-Generated images using conditional continuous
normalizing flows. ACM Transactions on Graphics, 40(3):1–
21, 2021. 2, 3

[2] Kaoru Arakawa. Nonlinear digital filters for beautifying fa-
cial images in multimedia systems. In Proc. IEEE Interna-
tional Symposium on Curcuits and Systems, 2004. 1, 3

[3] Yuval Bahat and Tomer Michaeli. Explorable super reso-
lution. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 2020. 2

[4] Nazre Batool and Rama Chellappa. Detection and inpainting
of facial wrinkles using texture orientation fields and Markov
random field modeling. IEEE Transactions on Image Pro-
cessing, 23(9):3773–3788, 2014. 3

[5] Binod Bhattarai and Tae-Kyun Kim. Inducing optimal at-
tribute representations for conditional GANs. In Proc. Euro-
pean Conference on Computer Vision, 2020. 2

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natual image synthesis.
In Proc. International Conference on Learning Representa-
tion, 2019. 2

[7] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. StarGAN: unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In Proc. IEEE conference on Computer Vision
and Pattern Recognition, pages 8789–8797, 2018. 2

[8] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
StarGAN v2: diverse image synthesis for multiple domains.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, June 2020. 2

[9] Corinna Cortes and Vladimir Vapnik. Support vector net-
works. Machine learning, 20(3):273–297, 1995. 3

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: a large-scale hierarchical image database.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2009. 4

[11] Guanqi Ding, Xinzhe Han, Shuhui Wang, Shuzhe Wu, Xin
Jin, Dandan Tu, and Qingming Huang. Attribute group edit-
ing for reliable few-shot image generation. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition,
2022. 2, 3

[12] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Proc. Neural
Information Processing Systems, 2014. 2

[13] Erik Harkonen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. GANSpace: discovering interpretable GAN
controls. In Proc. Neural Information Processing Systems,
2020. 3

[14] Zhenliang He, Meina Kan, and Shiguang Shan. EigenGAN:
layer-wise eigen-learning for GANs. In Proc. International
Conference on Computer Vision, 2021. 3

[15] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan,
and Xilin Chen. AttGAN: facial attribute editing by only

changing what you want. IEEE Transactions on Image Pro-
cessing, 28(11):5464–5478, 2019. 2

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, and
Bernhard Nessler. GANs trained by a two time-scale update
rule converge to a local Nash equilibrium. In Proc. Neural
Information Processing Systems, 2017. 5

[17] Philip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. E-
fros. Image-to-image translation with conditional adversari-
al networks. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 2, 7, 8

[18] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
Proc. European Conference on Computer Vision, 2016. 4

[19] Alexia Jolicoeur-Martineau. The relativistic discriminator: a
key element missing from standard GAN. In Proc. Interna-
tional Conference on Learning Representation, 2019. 3

[20] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability,
and variation. In Proc. International Conference on Learning
Representation, 2018. 8

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2019. 5

[22] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2020. 2, 5

[23] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee,
and Jiwon Kim. Learning to discover cross-domain relations
with generative adversarial networks. In Proc. International
Conference on Machine Learning, 2017. 2

[24] Diederik P. Kingma and Jimmy Lei Ba. Adam: a method for
stochastic optimization. In Proc. International Conference
on Learning Representation, 2015. 5

[25] Thomas N. Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. In Proc. Interna-
tional Conference on Learning Representation, 2017. 2

[26] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken, A-
lykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi.
Photo-realistic single image super-resolution using a genera-
tive adversarial network. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017. 2

[27] Tommer Leyvand, Daniel Cohen-Or, Gideon Dror, and Dani
Lischinski. Data-driven enhancement of facial attractiveness.
In Proc. ACM Conference on Special Interest Group on Com-
puter Graphics and Interactive Techniques, 2008. 3

[28] Tianwei Lin, Zhuoqi Ma, Fu Li, Dongliang He, Xin Li, Errui
Ding, Nannan Wang, Jie Li, and Xinbo Gao. Drafting and
revision: Laplacian pyramid network for fast high-quality
artistic style transfer. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021. 2

[29] Tsung-Ying Lin, Yu-Ting Tsai, Tsung-Shian Huang, Wen-
Chieh Lin, and Jung-Hong Chuang. Exemplar-based freckle
retouching and skin tone adjustment. Computers & Graph-
ics, 78:54–63, 2019. 3

5607



[30] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim,
Antonio Torralba, and Sanja Fidler. EditGAN: high-
precision semantic image editing. In Proc. Neural Informa-
tion Processing Systems, 2021. 2

[31] Uri Lipowezky and Sarah Cahen. Automatic freckles detec-
tion and retouching. In Proc. IEEE Convention of Electrical
and Electronics Engineers in Israel, 2008. 3

[32] Ming Liu, Yukang Ding, Min Xia, Xiao Liu, Errui Ding,
Wangmeng Zuo, and Shilei Wen. STGAN: a unified se-
lective transfer network for arbitrary image attribute editing.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2019. 2

[33] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised
image-to-image translation networks. In Proc. Neural Infor-
mation Processing Systems, 2017. 2

[34] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversar-
ial networks. In Proc. Neural Information Processing Sys-
tems, 2016. 2

[35] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2019. 2

[36] Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and
Jose M. Alvarez. Invertible conditional GANs for image
editing. In Proc. NIPS workshop on Adversarial Training,
2016. 2

[37] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a StyleGan encoder for image-to-image translation.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, pages 2287–2296, 2021. 5

[38] Alireza Shafaei, James J. Little, and Mark Schmidt. Au-
toRetouch: automatic professional face retouching. In Proc.
IEEE Winter Conference on Applications of Computer Vi-
sion, 2021. 1, 3, 5, 7, 8

[39] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou.
InterFaceGAN: interpreting the disentangled face represen-
tation learned by GANs. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(4):2004–2018, 2020. 3

[40] Yujun Shen and Bolei Zhou. Closed-form factorization of la-
tent semantics in GANs. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2021. 3

[41] Sudha Velusamy, Rishubh Parihar, Raviprasad Kini, and
Aniket Rege. FabSoften: face beautification via dynamic
skin smoothing, guided feathering and texture restoration.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition Workshop, 2020. 1, 3

[42] Tengfei Wang, Hao Ouyang, and Qifeng Chen. Image in-
painting with external-internal learning and monochromic
bottleneck. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2021. 2

[43] Po-Wei Wu, Yu-Jing Lin, Che-Han Chang, Edward Y.
Chang, and Shih-Wei Liao. RelGAN: multi-domain image-
to-image translation via relative attributes. In Proc. Interna-
tional Conference on Computer Vision, 2019. 2

[44] Yanze Wu, Xintao Wang, Yu Li, Honglun Zhang, Xun Zhao,
and Ying Shan. Towards vivid and diverse image coloriza-

tion with generative color prior. In Proc. IEEE International
Conference on Computer Vision, 2021. 2

[45] Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. GAN
prior embedded network for blind face restoration in the
wild. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 2021. 2, 3, 7, 8

[46] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S. Huang. Generative image inpainting with contex-
tual attention. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2018. 2

[47] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Huang Yang, and Ling
Shao. Multi-stage progressive image restoration. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2021. 1, 2, 7, 8

[48] Cheng Zhang, Shaolin Su, Yu Zhu, Qingsen Yan, Jinqiu Sun,
and Yanning Zhang. Exploring and evaluating image restora-
tion potential in dynamic scenes. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2022. 2

[49] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2018. 5

[50] Jun-Yan Zhu, Taesung Park, Philip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proc. International Con-
ference on Computer Vision, 2017. 2

[51] Peiye Zhuang, Oluwasanmi Koyejo, and Alexander G.
Schwing. Enjoy your editing: controllable GANs for image
editing via latent space navigation. In Proc. International
Conference on Learning Representation, 2021. 3

5608


