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Figure 1. Our method (A) outperforms existing SOTA methods (e.g., PF-AFN [12], FS-VTON [19]) on the challenging try-on scenario,
and (B) can be easily extended to multi-category scenario to generate high-resolution photo-realistic try-on results.

Abstract

Image-based Virtual Try-ON aims to transfer an in-shop
garment onto a specific person. Existing methods employ
a global warping module to model the anisotropic defor-
mation for different garment parts, which fails to preserve
the semantic information of different parts when receiving
challenging inputs (e.g, intricate human poses, difficult gar-
ments). Moreover, most of them directly warp the input
garment to align with the boundary of the preserved re-
gion, which usually requires texture squeezing to meet the
boundary shape constraint and thus leads to texture dis-
tortion. The above inferior performance hinders existing
methods from real-world applications. To address these
problems and take a step towards real-world virtual try-on,
we propose a General-Purpose Virtual Try-ON framework,
named GP-VTON, by developing an innovative Local-Flow
Global-Parsing (LFGP) warping module and a Dynamic

Gradient Truncation (DGT) training strategy. Specifically,
compared with the previous global warping mechanism,
LFGP employs local flows to warp garments parts individ-
ually, and assembles the local warped results via the global
garment parsing, resulting in reasonable warped parts and
a semantic-correct intact garment even with challenging in-
puts.On the other hand, our DGT training strategy dynam-
ically truncates the gradient in the overlap area and the
warped garment is no more required to meet the bound-
ary constraint, which effectively avoids the texture squeez-
ing problem. Furthermore, our GP-VTON can be easily
extended to multi-category scenario and jointly trained by
using data from different garment categories. Extensive ex-
periments on two high-resolution benchmarks demonstrate
our superiority over the existing state-of-the-art methods. 1
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1. Introduction
The problem of Virtual Try-ON (VTON), aiming to

transfer a garment onto a specific person, is of particu-
lar importance for the nowadays e-commerce and the fu-
ture metaverse. Compared with the 3D-based solutions [2,
14, 16, 28, 34] which rely upon 3D scanning equipment or
labor-intensive 3D annotations, the 2D image-based meth-
ods [1, 9, 12, 17, 19, 20, 29, 30, 32, 36, 38–40, 43], which
directly manipulate on the images, are more practical for
the real world scenarios and thus have been intensively ex-
plored in the past few years.

Although the pioneering 2D image-based VTON meth-
ods [12, 19, 29] can synthesize compelling results on the
widely used benchmarks [6, 8, 18], there still exist some
deficiencies preventing them from the real-world scenarios,
which we argue mainly contain three-folds. First, existing
methods have strict constraints on the input images, and are
prone to generate artifacts when receiving challenging in-
puts. To be specific, as shown in the 1st row of Fig. 1(A),
when the pose of the input person is intricate, existing
methods [12, 19] fail to preserve the semantic information
of different garment parts, resulting in the indistinguish-
able warped sleeves. Besides, as shown in the 2nd row of
Fig. 1(A), if the input garment is a long sleeve without ob-
vious seam between the sleeve and torso, existing methods
will generate adhesive artifact between the sleeve and torso.
Second, most of the existing methods directly squeeze the
input garment to make it align with the preserved region,
leading to the distorted texture around the preserved region
(e.g., the 3rd row of Fig. 1(A)). Third, most of the exist-
ing works only focus on the upper-body try-on and neglect
other garment categories (i.e, lower-body, dresses), which
further limits their scalability for real-world scenarios.

To relieve the input constraint for VTON systems and
fully exploit their application potential, in this paper, we
take a step forwards and propose a unified framework,
named GP-VTON, for the General-Purposed Virtual Try-
ON, which can generate realistic try-on results even for
the challenging scenario (Fig. 1(A)) (e.g., intricate human
poses, difficult garment inputs, etc.), and can be easily ex-
tended to the multi-category scenario (Fig. 1(B)).

The innovations of our GP-VTON lie in a novel Local-
Flow Global-Parsing (LFGP) warping module and a Dy-
namic Gradient Truncation (DGT) training strategy for the
warping network, which enable the network to generate
high fidelity deformed garments, and further facilitate our
GP-VTON to generate photo-realistic try-on results.

Specifically, most of the existing methods employ neural
network to model garment deformation by introducing the
Thin Plate Splines (TPS) transformation [3] or the appear-
ance flow [44] into the network, and training the network
in a weakly supervised manner (i.e., without ground truth
for the deformation function). However, both of the TPS-

based methods [6, 18, 30, 36, 40] and the flow-based meth-
ods [1, 12, 17, 19, 29] directly learn a global deformation
field, therefore fail to represent complicated non-rigid gar-
ment deformation that requires diverse transformation for
different garment parts. Taking the intricate pose case in
Fig. 1(A) as an example, existing methods [12, 19] can not
simultaneously guarantee accurate deformation for the torso
region and sleeve region, and lead to exceeding distorted
sleeves. In contrast, our LFGP warping module chooses to
learn diverse local deformation fields for different garment
parts, which is capable of individually warping each gar-
ment part, and generating semantic-correct warped garment
even for intricate pose case. Besides, since each local defor-
mation field merely affects one corresponding garment part,
garment texture from other parts is agnostic to the current
deformation field and will not appear in the current local
warped result. Therefore, the garment adhesion problem in
the complex garment scenario can be completely addressed
(as demonstrated in the 2nd row of Fig. 1(A)). However,
directly assembling the local warped parts together can not
obtain realistic warped garments, because there would be
overlap among different warped parts. To deal with this, our
LFGP warping module collaboratively estimates a global
garment parsing to fuse different local warped parts, result-
ing in a complete and unambiguous warped garment.

On the other hand, the warping network in existing meth-
ods [12,19,29] takes as inputs the flat garment and the mask
of the preserved region (i.e., region to be preserved during
the try-on procedure, such as the lower garment for upper-
body VTON), and force the input garment to align with the
boundary of the preserved region (e.g., the junction of the
upper and lower garment), which usually require garment
squeezing to meet the shape constraint and lead to texture
distortion around the garment junction (please refer to the
3rd row of Fig. 1(A)). An effective solution to this problem
is exploiting the gradient truncation strategy for the network
training, in which the warped garment will be processed
by the preserved mask before calculating the warping loss
and the gradient in the preserved region will not be back-
propagated. By using such a strategy, the warped garment
is no longer required to strictly align with the preserved
boundary, which largely avoids the garment squeezing and
texture distortion. However, due to the poor supervision
of warped garments in the preserved region, directly em-
ploying the gradient truncation for all training data will lead
to excessive freedom for the deformation field, which usu-
ally results in texture stretching in the warped results. To
tackle this problem, we proposed a Dynamic Gradient Trun-
cation (DGT) training strategy which dynamically conducts
gradient truncation for different training samples accord-
ing to the disparity of height-width ratio between the flat
garment and the warped garment. By introducing the dy-
namic mechanism, our LFGP warping module can alleviate

23551



LFGP Warping 
Module

Warp

� � ��

�’

��
�’

���’

��’{��}�=13
{��}�=13 {�’�}�=13

Skin 
Color 
Map

�� ��� ��

�

Figure 2. Overview of GP-VTON. The LFGP warping module aims to estimate the local flows {fk}3k=1 and global garment parsing S′,
which is used to warp different garment parts {Gk}3k=1 and assembles warped parts {G′k}3k=1 into the intact garment G′, respectively.
The generator G takes as inputs G′ and the other person-related conditions to generate the final try-on result I ′.

the texture stretching problem and obtain realistic warped
garments with better texture preservation.

Overall, our contributions can be summarized as fol-
lows: (1) We propose a unified try-on framework, named
GP-VTON, to generate photo-realistic results for diverse
scenarios. (2) We propose a novel LFGP warping mod-
ule to generate semantic-correct deformed garments even
with challenging inputs. (3) We introduce a simple, yet ef-
fective DGT training strategy for the warping network to
obtain distortion-free deformed garments. (4) Extensive ex-
periments on two challenging high-resolution benchmarks
show the superiority of GP-VTON over existing SOTAs.

2. Related Work
Human-centric Image Synthesis. Generative Adver-

sarial Networks (GANs) [13], especially the StyleGAN-
based models [24–27], have recently achieved significant
success for photo-realistic image synthesis. Therefore, in
the field of human synthesis , most of the existing meth-
ods [10, 11] inhrit the StyleGAN-based architecture to ob-
tain high-fidelity synthesized results. InsetGAN [10] com-
bines the results from several pretrained GANs to a full-
body human image, in which different pretrained GANs are
in charge of the generation of different body parts (e.g., hu-
man body, face, hands, etc). StyleGAN-Human [11] ex-
plores three crucial factors for high-quality human synthe-
sis, namely, dataset size, data distribution, and data align-
ment. In this paper, we focus on the image-based VTON,
which aims to generate realistic human image via fitting an
in-shop garment image onto a reference person.

Image-based Virtual Try-on. Most of the existing
image-based VTON methods [1, 6–8, 12, 17, 19, 22, 29, 30,
32,36,40,41] follow a two-stage generation framework that
separately deforms the in-shop garment to target shape and
synthesizes the try-on result via combining the deformed
garment and the reference person. Since the quality of the
garment deformation directly determines the realism of the
generated results, it is crucial to design a powerful defor-
mation module in this generation framework. Some previ-

ous methods [6, 8, 22, 36, 40, 41] leverage neural network to
regress sparse garment control points in target image, which
are then used to fit a TPS transformation [3] for garment
deformation. Other methods [1, 7, 12, 17, 19] instead esti-
mate an appearance flow map [44] to model non-rigid de-
formation, where the flow map depicts the corresponding
location in the source image for each pixel in the target im-
age. Compared with TPS-based methods which fit a trans-
formation function via the sparse correspondence between
control points, the flow-based methods directly predict the
dense correspondence for each pixel, thus is more expres-
sive for complex deformation. However, both of the ex-
isting TPS- and flow-based methods directly learn a global
deformation field for various garment parts, which is unable
to model diverse local transformation for different garment
parts. Therefore, they fail to obtain realistic deformed re-
sults when receiving the intricate human pose. In this pa-
per, we innovatively learn diverse local deformation fields
for different garment parts, thus is capable of handling chal-
lenging inputs. Furthermore, exiting methods usually ne-
glect the texture distortion around the protected region. To
address this problem, we propose a dynamic gradient trun-
cation strategy for network training.

3. Methodology

Image-based virtual try-on algorithm aims to seamlessly
transfer an in-shop garment G onto a specific person I .
To achieve this, our GP-VTON proposes a Local-Flow
Global-Parsing (LFGP) warping module (Sec. 3.1) to warp
the garment to target shape, which first deforms local gar-
ment parts {Gk}3k=1 individually and then assembles dif-

ferent warped parts {G′k}
3

k=1 together to obtain an intact
warped garment G′. Besides, to address the texture distor-
tion problem, GP-VTON introduces a Dynamic Gradient
Truncation (DGT) training strategy (Sec. 3.2) for the warp-
ing network. Finally, GP-VTON employs a try-on gener-
ator (Sec. 3.3) to synthesize the try-on result I ′ according
to G′ and other person-related inputs. Furthermore, GP-
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Figure 3. Overview of the LFGP warping module.

VTON can be easily extended for multi-category scenario
and jointly trained by using data from various categories
(Sec. 3.4). An overview of GP-VTON is displayed in Fig. 2.

3.1. Local-Flow Global-Parsing Warping Module

As shown in Fig. 3, our LFGP warping module follows
the flow estimation pipeline in [12, 17, 19, 29] and is com-
posed of pyramid feature extraction and cascade flow esti-
mation. We will explain our dedicated improvement bellow.

Pyramid Feature Extraction. Our LFGP warping mod-
ule employs two Feature Pyramid Network (FPN) [31] (i.e.,
Ep and Eg in Fig. 3) to separately extract the multi-scale per-
son feature {pi}Ni=1 and garment feature {gi}Ni=1. Specifi-
cally, Ep takes as inputs the human pose Ip, densepose pose
Idp, and the preserve region mask Mp, in which Ip and Idp
jointly provide the human pose information for flow estima-
tion, and Mp is essential for the generation of the preserved-
region-aware parsing. Eg takes as inputs the intact in-shop
garment G and its corresponding parsing map Gs, in which
Gs can explicitly provide the semantic information of dif-
ferent garment parts for parsing generation. It is worth not-
ing that, we extract five multi-scale features in our model
(i.e., N = 5) but set N = 3 in Fig. 3 for brevity.

Cascade Local-Flow Global-Parsing Estimation.
Most of the existing methods [12, 17, 19, 29] directly
leverage a global flow to warp the intact garment, which
tends to generate unrealistic warped result when different

garment parts require diverse deformation. To solve this
problem, our LFGP module explicitly divides the intact
garment into three local parts, (i.e., left/right sleeve, and
torso region), and estimates three local flows to warp
different parts individually. Since the deformation diversity
within the same part is slight, the local flow can handle
warping precisely and produce semantic-correct warped
result. Furthermore, our LFGP estimates a global garment
parsing to assemble local parts into an intact garment.

To be specific, as show in Fig. 3 (A), LFGP warping
module exploits N LFGP blocks to cascadingly estimate

N multi-scale local flows {{fk
i }

3

k=1}
N

i=1
and global gar-

ment parsing {S′
i}

N
i=1. Each LFGP block is composed of

Coarse/Fine Flow Block (C/FF-B) and a Garment Parsing
Block (GP-B), which estimate coarse/fine local flows and
global garment parsing, respectively. As depicted in Fig. 3
(B), CF-B first duplicates the garment feature gi and em-
ploys the incoming local flows {fin}, which comes from
previous LFGP block, to warp the duplicated garment fea-
ture {gdi } to three part-aware local warped features {gwi }.
Then, the correlation operator from flownet2 [21] is em-
ployed to integrate the {gwi } and duplicated person feature
{pdi } into three local fused features {gpi}, which are sepa-
rately sent into three convolution layers to estimate the cor-
responding local flows {f ′}. At last, {f ′} is added to {fin}
and produce the refined local flows {fout}, which are the
outputs of CF-B. FF-B has the same architecture as CF-F
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Figure 4. Comparison of different training strategies (i.e., gradi-
ent truncation (GT) and dynamic gradient truncation (DGT)) for
LFGP. In the red region, the warped result will be penalized and
the gradient will be backprograted. In the green region, the warped
result will be neglected and the gradient will be truncated.

except it regards the output of CF-B as {fin} and directly
concatenate {gwi } and {pdi } to obtain {gpi}. For GP-B, as
shown in Fig. 3 (C), it employs the refined local flows {fin}
from FF-B to warp the duplicated feature {gdi } to the part-
aware local features {gwi }, which are then fused by convo-
lution layers and becomes a global warped feature ggi . Fi-
nally, the concatenation of ggi and the incoming pi is passed
to convolution layers to estimate the global garment parsing
S′
i, whose labels consist of background, left/right sleeve,

torso, left/right arms, and neck. With the strong guidance of
the warped feature ggi , GP-B is prone to generate garment
parsing that the garment shape in different local region is
consistent with its corresponding local warped part.

After finishing the last estimation in LFGP module, as
displayed in Fig. 2 , GP-VTON deforms the local parts
{Gk}3k=1 individually via their corresponding local flows
{fk}3k=1, and assembles local warped parts to an intact
warped garment G′ by using the global garment parsing S′.

It is worth noting that, the global garment parsing is cru-
cial for our local warping mechanism. Since there will be
overlap among different warped parts, directly assembling
the warped parts together will leads to distinct artifact in
the overlap region. Instead, with the guidance of the global
garment parsing, each pixel in the intact warped garment
should be derived from a particular warped part, therefore
the overlap artifact can be completely eliminated.

3.2. Dynamic Gradient Truncation

Existing methods [12,19,29,36,40] warp the in-shop gar-
ment according to the preserved region mask and force the
warped garment to align with the boundary of the preserved
region. However, directly warping the garment to meet the
boundary constraint will lead to texture squeezing around
the preserved region when the input person is in tucking-in
style (as shown in the 1st case of Fig. 4.)

An intuitive solution for this issue is using the preserved
mask to process the warped garment before calculating the
training loss. In this way, the gradient in the preserve re-

Upper   
& 

Dresses 
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Garment  Garment 
Partition

Garment 
Parsing

Person  Garment  Garment 
Partition

Garment 
Parsing

Person  

Figure 5. Illustration of the garment partition and the ground truth
of garment parsing for different categories.

gion will be truncated and the warped garment is no longer
required to align with the boundary. However, when the
training data is in tucking-out style (as shown in the 2nd
case of Fig. 4.), gradient truncation is not appropriate since
the inaccurate warped result in preserved region will not be
penalized, leading to a stretched warped result.

To address above problems, our DGT training strat-
egy dynamically conducts gradient truncation for differ-
ent training samples according to their wearing style (i.e.,
tucking-in or tucking-out), in which the wearing style is de-
termined by the disparity of the height-width ratio between
the flat garment and the real warped garment (extracted
from the person image). Fig. 4 provides an intuitive com-
parison among different training strategies. Specifically, we
first extract the bounding boxes for the torso region of the
flat garment and the warped garment by using their corre-
sponding garment parsing. Then, we separately calculate
the height-width ratio for each bounding box and use the
ratio Rstyle between the warped garment item Rwarped and
flat garment item Rflat to reflect the wearing style of cur-
rent training sample, which can be formulated as:

Rstyle = Rwarped/Rflat, (1)

where R∗ = H∗/W ∗, and H∗ and W ∗ represent the height
and width of the bounding box, respectively. We empir-
ically find that if the person image is in tucking-in style,
Rstyle is usually less than 0.9, and if it is in tucking-out
style, Rstyle is usually more than 0.95. Therefore, we adopt
gradient truncation when Rstyle less than 0.9 and abolish
it when Rstyle more than 0.95. For training sample with
Rstyle between 0.9 and 0.95, we randomly adopt gradient
truncation with a probability of 0.5.

3.3. Try-on Generator

After the flow-parsing estimation stage, GP-VTON em-
ploys a Res-UNet-based [35] generator G to synthesize the
try-on result I ′. As shown in Fig. 2, G takes as inputs a skin
color map Is, a skin parsing map S′

s, a warped garment G′,
and an image of preserved region Ip, in which Is is a three-
channel RGB image with the median value of the skin re-
gion (i.e., face, neck, arms.) while S′

s is a one-channel label
map that contains the skin region (i.e., neck, arms) in S′.
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3.4. Multi-category Virtual Try-on

Our GP-VTON can be easily extended to multi-category
scenario through slight modifications. The core idea is us-
ing a unified partition mechanism for various garment cate-
gories. As mentioned in Dresscode [32], common garments
can be classified into three macro-categories (i.e., upper,
lower, and dresses). Since upper garment and dresses have
the similar topology, we can apply the same partition mech-
anism for upper garment and dresses, namely, dividing the
garment into the left/right part (i.e., left/right sleeve) and
the middle part (i.e., torso region). To make lower garment
consistent with the other categories, we regard the pants and
skirt as a single type and divide it into three parts, which
is also composed of left/right-part (i.e., left/right pant leg),
and middle-part (i.e., skirt). By using this partition mecha-
nism, garment from arbitrary categories can be divided into
three local parts, which will be deformed individually and
assembled to intact warped garment by our LFGP warping
module. Besides, in the multi-category scenario, the esti-
mated garment parsing is extended to include the labels of
lower garment, which contain left/right pants, and the skirt.
Fig. 5 displays the garment partition and the ground truth
garment parsing for different garment categories.

3.5. Object Functions

During training, we train LFGP warping module and the
generator separately. For LFGP, we utilize l1 loss L1 and
perceptual loss [23] Lper for the warped results, and use l1
loss Lm for the warped masks. We also use the pixel-wise
cross-entropy loss Lce and the adversarial loss Ladv for the
estimated parsing. Besides, we follow PFAFN [12] and em-
ploy the second-order smooth loss Lsec for the estimated
flow. The total loss for LFGP module can be formulated as:

Lw =Lw
1 + λw

perLw
per + λw

mLw
m

+ λceLce + λw
advLw

adv + λsecLsec.
(2)

For the generator, we utilize l1 loss L1, the perceptual
loss [23] Lper, and the adversarial loss for the try-on re-
sult I ′, and also utilize the l1 loss Lm for the alpha mask
Mc. The total loss is defined as follows:

Lg = Lg
1 + λg

perLg
per + λadvLadv + λg

mLg
m. (3)

More details are provided in the supplementary materials.

4. Experiments
Datasets. Our experiments are conducted under the reso-
lution of 512 × 384 by using two existing high-resolution
virtual try-on benchmarks VITON-HD [6] and Dress-
Code [32]. VITON-HD contains 13,679 image pairs of
front-view upper-body woman and upper garment, which

Method SSIM ↑ FID ↓ LPIPS ↓ mIoU ↑ HE ↑

PF-AFN [12] 0.8858 9.475 0.0871 0.8412 14.9%
FS-VTON [19] 0.8829 9.552 0.0906 0.8357 8.80%

HR-VITON [29] 0.8623 16.21 0.1094 0.6949 9.10%
SDAFN [1] 0.8821 9.400 0.0922 0.5927 16.3%

GP-VTON (Ours) 0.8939 9.197 0.0799 0.8764 50.9%

Table 1. Quantitative comparisons on VITON-HD dataset [6]

are further split into 11,647/2,032 training/testing pairs.
DressCode is composed of 48,392/5,400 training/testing
pairs of front-view full-body person and garment from dif-
ferent categories (i.e., upper, lower, dresses). For each
dataset, we employ [4] and [15] to extract the 2D pose and
densepose, respectively. Besides, we apply a unified pars-
ing estimator to predict the human/garment parsing for per-
son/garment image, in which the estimator is based on [5]
and trained by using 80k manual annotated fashion images.
Baselines and Evaluation Metrics. We compare GP-
VTON with several stage-of-the-art methods, including
PF-AFN [12], FS-VTON [19], HR-VITON [29], and
SDAFN [1], which are trained from scratch on VITON-
HD [6] and DressCode [32] through using the official codes
provided by the authors.

We employ three widely used metrics (i.e., Struc-
tural SIMilarity index (SSIM) [37], Perceptual distance
(LPIPS) [42], and Fréchet Inception Distance (FID) [33])
to evaluate the similarity between synthesized and real im-
ages, in which SSIM and LPIPS are used for paired setting
and FID are used for unpaired setting. We also utilize the
mean Intersection over Union (mIoU) between the warped
garment parsing and its corresponding ground truth (ex-
tracted from the human parsing) to evaluate the semantic-
correctness of the warping module in different methods.
Furthermore, we conduct Human Evaluation (HE) to evalu-
ate different methods according to their synthesis quality.2

4.1. Qualitative Results

Fig. 6 and Fig. 7 display the qualitative comparison of
GP-VTON with the state-of-the-art baselines on VITON-
HD dataset [6] and DressCode dataset [32], respectively.
Both figures demonstrate the superiority of GP-VTON over
the baselines. First of all, the baselines fail to generate
semantic-correct try-on results when encountering intricate
poses, resulting in the damaged sleeves and arms (e.g., 1st
row in Fig. 6), the blended pant legs and the indistinguish-
able sleeve (e.g., 1st case of 2nd row and 1st case of 3rd
row in Fig. 7). Second, when receiving a complex garment
(i.e., without obevious interval between adjacent parts), the
baselines are prone to generate adhesive artifact (e.g., 2nd

2More details about architecture details, implementation details, and
user study setting are provided in the supplementary materials.
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Dataset DressCode-Upper DressCode-Lower DressCode-Dresses

Method SSIM ↑ FID ↓ LPIPS ↓ mIoU ↑ HE ↑ SSIM ↑ FID ↓ LPIPS ↓ mIoU ↑ HE ↑ SSIM ↑ FID ↓ LPIPS ↓ mIoU ↑ HE ↑

PF-AFN [12] 0.9454 14.32 0.0380 0.8392 14.0% 0.9378 18.32 0.0445 0.9463 12.3% 0.8869 13.59 0.0758 0.8743 15.0%
FS-VTON [19] 0.9457 13.16 0.0376 0.8381 5.33% 0.9381 17.99 0.0438 0.9478 14.7% 0.8876 13.87 0.0745 0.8760 8.33%

HR-VITON [29] 0.9252 16.86 0.0635 0.6660 3.00% 0.9119 22.81 0.0811 0.8670 2.67% 0.8642 16.12 0.1132 0.7209 2.33%
SDAFN [1] 0.9379 12.61 0.0484 0.5046 11.3% 0.9317 16.05 0.0549 0.4543 13.3% 0.8776 11.80 0.0852 0.5945 19.3%

GP-VTON (Ours) 0.9479 11.98 0.0359 0.8766 66.3% 0.9405 16.07 0.0420 0.9601 57.0% 0.8866 12.26 0.0729 0.8951 55.0%

Table 2. Quantitative comparisons on DressCode dataset [32]

Garment PF-AFN FS-VTON HR-VITON SDAFN OursPerson Garment PF-AFN FS-VTON HR-VITON SDAFN OursPerson

Figure 6. Qualitative comparison on VITON-HD dataset [6].Please zoom in for more details.

Method LF GT DGT SSIM ↑ LPIPS ↓ mIoU ↑ Rdiff ↓

LFGP † ✗ ✗ ✗ 0.9016 0.0950 0.8412 0.3058
LFGP ⋆ ✓ ✗ ✗ 0.9039 0.0911 0.8784 0.3003
LFGP ∗ ✓ ✓ ✗ 0.9053 0.0900 0.8774 0.2409

LFGP ✓ ✗ ✓ 0.9050 0.0884 0.8764 0.1655

Table 3. Ablation study of the Local FLow (LF), Gradient Trun-
cation (GT), and Dynamic Gradient Truncation (DGT) on the
VITON-HD dataset [6].

row in Fig. 6 and 2nd case of 2nd row in Fig. 7). Third, ex-
isting methods [12,19,29] tend to generate distorted texture
around the preserved region (e.g., the third row in Fig. 6).
In comparison, GP-VTON first employs local flows to warp
different garment parts individually, leading to the precise
local warped parts, and then uses the global garment pars-
ing to assemble local parts into an semantic-correct warped
garment. Therefore, GP-VTON is more robust to intricate
pose or complex input garment. Besides, by using the dy-
namic gradient truncation training strategy, GP-VTON can
avoid generating distorted texture around preserved region.

4.2. Quantitative Results

As reported in Tab. 1, our GP-VTON consistently sur-
passes the baselines on all metrics for the VITON-HD
dataset [6], demonstrating that GP-VTON can obtain more
precise warped garments and generate try-on results with
better visual quality. Particularly, on the mIoU metric, GP-
VTON outperforms other methods by a large margin, which

further illustrates that our LFGP warping module is capa-
ble of obtaining the semantic-correct warped results. Tab. 2
shows the quantitative comparisons of GP-VTON with
other methods on the DressCode dataset [32]. As shown
in the table, for DressCode-Upper, GP-VTON achieves
the finest score on all metrics. For DressCode-Lower and
DressCode-Dresses, GP-VTON outperforms other methods
on most of the metrics and obtains comparable low FID
score with SDAFN [1]. This is mainly because the human
pose in the DressCode-Lower and DressCode-Dresses are
generally simple, which do not require complex warping
during try-on process, thus the advanced SDAFN [1] can
also obtain compelling FID score. However, the superiority
of GP-VTON on the mIoU and HE metrics can still indi-
cate its warped results are more semantically correct and its
synthesized results are more photo-realistic.

4.3. Ablation Study

To validate the effectiveness of LFGP warping module
and DGT training strategy, we design three variants of our
proposed method and evaluate the performance of different
variants according to their metric scores for the warped re-
sults. Besides, we define another metric Rdiff to measure
the difference of the height-width ratio between the warped
garment and the in-shop garment, where the lower value in-
dicates the better preservation of the original height-width
ratio, thus implying the better warping.

We regard PF-AFN [12] as our first variant (denoted as
LFGP†), since it utilizes a global flow for warping and is
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Garment PF-AFN FS-VTON HR-VITON SDAFN OursPerson Garment PF-AFN FS-VTON HR-VITON SDAFN OursPerson

Figure 7. Qualitative comparison on Dresscode dataset [32].Please zoom in for more details.

Inputs LFGP’

(A)

Person Garment LFGP LFGP

(B)

LFGP

LFGP Inputs LFGP’ LFGP

Figure 8. Ablation studies on the effectiveness of (A) the global
parsing during the parts assembling process and (B) the dynamic
gradient truncation training strategy.

trained without Gradient Truncation. We further implement
the other two variants (i.e., LFGP⋆ and LFGP∗) by train-
ing LFGP module without Gradient Truncation and without
Dynamic Gradient Truncation, respectively.
LFGP Module. As reported in Tab. 3, compared with
LFGP†, other methods with local flows gain increase on
SSIM and LPIPS, and achieve obvious improvement on the
mIoU metric, demonstrating that our local flows warping
mechanism can obtain more realistic and semantic-correct
warped results. Besides, we further conduct another ex-
periment on the full LFGP model (denoted as LFGP’) to
demonstrate the effectiveness of the global parsing. As
shown in Fig. 8 (A), by using the global parsing to assemble
different warped parts, the overlap artifact between different
parts can be completely eliminated.
DGT Training Strategy. As reported in Tab. 3, compared
with LFGP⋆, LFGP∗ with the normal GT strategy obtains
lower Rdiff score while the full LFGP model with DGT

strategy achieves the lowest Rdiff score. Fig. 8 (B) fur-
ther provide the visual comparisons among different meth-
ods, in which LFGP⋆ tends to squeeze the texture while
LFGP∗ tends to stretch the texture. In contrast, the full
LFGP module can preserve the texture details well. Both
of the quantitative and qualitative comparisons validate that
training with DGT facilitates the warping model to preserve
the original height-width ratio of the garment, thus avoid
texture squeezing or stretching.

5. Conclusion
In this work, we propose GP-VTON towards the general-

purpose virtual try-on, which is capable of generating
semantic-correct and photo-realistic try-on results even in
the challenging self-occlusion scenarios and can be easily
extended to multi-category scenarios. Specifically, to make
garment warping robust to intricate inputs, GP-VTON in-
troduces the Local-Flow Global-Parsing (LFGP) warping
module to warp local parts individually and assembles local
warped parts via the estimated global garment parsing. Be-
sides, to alleviate the texture distortion problem in existing
methods, GP-VTON employs a Dynamic Gradient Trun-
cation (DGT) training strategy for the warping network.
Experiments on two high resolution virtual try-on bench-
mark illustrate GP-VTON’s superiority over existing meth-
ods. The limitation and social impact of our GP-VTON will
be discussed in the supplementary materials.
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