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Abstract

Estimating depth from four large field of view (FoV) cam-
eras has been a difficult and understudied problem. In this
paper, we proposed a novel and simple system that can con-
vert this difficult problem into easier binocular depth esti-
mation. We name this system OmniVidar, as its results are
similar to LiDAR, but rely only on vision. OmniVidar con-
tains three components: (1) a new camera model to address
the shortcomings of existing models, (2) a new multi-fisheye
camera based epipolar rectification method for solving the
image distortion and simplifying the depth estimation prob-
lem, (3) an improved binocular depth estimation network,
which achieves a better balance between accuracy and effi-
ciency. Unlike other omnidirectional stereo vision methods,
OmniVidar does not contain any 3D convolution, so it can
achieve higher resolution depth estimation at fast speed.
Results demonstrate that OmniVidar outperforms all other
methods in terms of accuracy and performance.

1. Introduction

Depth estimation from images is an important research
field in computer vision, as it enables the acquisition of
depth information with low-cost cameras for a wide range
of applications. Traditional stereo cameras with pinhole
lenses are limited in their FoV. However, many scenarios
require an omnidirectional depth map, such as autonomous
driving [42] and robot navigation [13,43]. Although there
are active sensors available that can provide omnidirectional
depth information, such as LiDAR [25], their high cost
makes them less accessible than stereo vision. Passive sen-
sors, such as RGB cameras, are a common choice for depth
estimation due to their low cost, lightweight, and low power
consumption. To increase the FoV, fisheye lenses are often
introduced into stereo vision setups.

Over the past few decades, various methods have been
proposed for depth estimation using fisheye cameras. These
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Figure 1. Our prototype that built with four 250° fisheye cameras
and its results of dense inverse distance map and cloud points. It
can get great depth estimation results in real scenes and achieve
real-time performance on modern GPU.

include the binocular fisheye system [3 1], up-down fisheye
system [13], and catadioptric cameras [17,23,32]. How-
ever, all of these approaches have limitations. The binoc-
ular fisheye system cannot provide an omnidirectional per-
ception. The up-down fisheye system and catadioptric cam-
eras can offer horizontal 360° depth perception, but their
vertical FoV is limited. Furthermore, catadioptric cameras
tend to be bulky, challenging to calibrate, and prone to er-
rors. It turns out that the best choice for omnidirectional
depth estimation is a system consisting of four cameras
with extremely wide FoV (> 180°). This system enables
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360° depth estimation both horizontally and vertically, and
is light-weight, convenient to calibrate and maintain. Sev-
eral studies [21,29,39,41] have shown excellent results with
this approach. However, these methods often use many 3D
convolutions, resulting in low efficiency. To adapt to lim-
ited memory, the images must be down-sampled, leading to
a lower resolution of the output depth map. Furthermore,
many of these approaches perform depth estimation using
the original fisheye image without explicitly processing im-
age distortion, which leads to the construction of a tedious
and complicated cost volume and can result in reduced ac-
curacy.

Moreover, due to the complex imaging process of large
FoV fisheye lenses, handling fisheye image distortion using
mathematical formulas can be a challenging task. While
several excellent large FoV fisheye camera models have
been proposed [2, 18, 19,27, 30, 36], our experiments have
shown that none of these models can accurately approxi-
mate the imaging process, and we get less satisfactory depth
estimation results when using them.

Inspired by the above observations, we propose Om-
niVidar, a novel and simple multi-fisheye omnidirectional
depth estimation system, as shown in Figure 2. OmniVi-
dar contains three components. Firstly, we improve the
DSCM [36] and propose a new camera model, named Triple
Sphere Camera Model (TSCM), which can better approx-
imate the imaging process and achieve the best accuracy.
Then we propose an epipolar rectification algorithm de-
signed for multi-fisheye camera system. We leverage a
cubic-like projection approach to transform the four fish-
eye camera systems into four binocular camera systems and
then conduct epipolar rectification on each binocular sys-
tem. This method solves the distortion issue and reduces
the complex multi-fisheye omnidirectional depth estimation
problem to a much simpler binocular depth estimation prob-
lem. Finally, we design a lightweight binocular depth esti-
mation network based on RAFT [35]. We add Transformer
encoder [37] into feature extraction in RAFT to combine
the advantages of Transformer and GRU, and it’s easy to
balance the accuracy and efficiency.

We compare OmniVidar with existing methods on sev-
eral datasets. The results demonstrate that our method out-
performs all the others in terms of speed and accuracy,
achieving State-of-The-Art performance.

2. Related Work
2.1. Multiview Fisheye Stereo

Gao et al. [13] mount two large FoV cameras (245°) ver-
tically and reversely to obtain a 360° horizontal and 65°
vertical FoV overlap and use this system in UAV for depth
perception [43]. Won et al. [40] use four cameras with
220° FoV and propose SweepNet algorithm. They propose

Sphere-Sweep method modified from Plane-Sweep [16] to
construct the cost volume and then use the cost aggregation
algorithm in SGM [15] to obtain depth. After this, Won et
al. propose OmniMVS [39,41], which uses 3D convolution
instead of SGM for depth regression and achieves higher ac-
curacy. Komatsu et al. [21] propose CrownConv360. They
improve OmniMVS by using the icosahedral projection in
the feature extraction and depth regression stage for distor-
tion reduction. Instead of using neural network, Meuleman
et al. [29] choose to investigate cost aggregation and prop-
agation in traditional stereo matching. And they achieve
real-time high-resolution depth estimation at 29 fps on the
embedded device TX2. However, the algorithm is only suit-
able for short camera baseline.

All of the above works have more or fewer deficiencies.
We propose OmniVidar, an omnidirectional depth estima-
tion method with high accuracy, which can run in real-time
and solve the fisheye image distortion problem with good
generalization in various scenes.

2.2. Fisheye Image Distortion

To solve the distortion problem, a camera model suitable
for fisheye is required, and the distortion should be handled
explicitly in depth estimation.

Scaramuzza et al. [30] propose a high-order polynomial-
based camera projection model, which is highly generaliz-
able and can be widely used for various catadioptric and
fisheye cameras. But it has no closed-form solution, so
the inverse projection equation needs to be fitted with a
high-order polynomial, which introduces errors. Mei et
al. [27] propose the MUCM, which is an improvement of
the UCM [2] to achieve higher calibration accuracy and
propose a novel intrinsic parameters initialization method.
Usenko et al. [36] propose the DSCM, which has only one
more intrinsic parameter than the MUCM model, but the
accuracy is substantially improved.

Su et al. [34] propose a mini-network that learns to mod-
ify the shape of filters based on location. Coors et al. [8]
chose to use a camera projection model to shape the con-
volution kernel to directly address distortion. An alter-
native idea was chosen by Cohen et al. [7] who define
a form of convolution on the Lie group SO(3) that con-
volves over the rotation space rather than the translation
space. Eder et al. [9] compared the performance of three ap-
proaches: equirectangular projection, cubic projection, and
7-level subdivided icosahedral projection, on depth estima-
tion and semantic segmentation tasks. The results showed
that icosahedral projection achieved the best results in all
tasks. Komatsu et al. [21] used icosahedral projection in
multi-fisheye omnidirectional stereo vision to improve the
depth estimation results of OmniMVS. Eder et al. [10] pro-
posed a tangent plane projection modified from the icosa-
hedron projection.
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Multi-fisheye calibration

Multi-fisheye epipolar rectification

Binocular depth estimation

Figure 2. System overview. Our system contains three parts: multi-fisheye calibration, multi-fisheye epipolar rectification, and binocular
depth estimation. In epipolar rectification, the images in the left column are original. The images in the middle column are the images after
abstracting each fisheye camera into two pinhole cameras, where the two images connected by a red dotted arrow are a pair of binocular
cameras. The images are rearranged and combined to obtain the right column.

The above algorithms have a common feature that they
are all designed for the monocular image. Thus they per-
form well on tasks that require only one camera, yet not
much good for multi-fisheye tasks. Therefore, to address
this problem, we propose a distortion removal method de-
signed for multi-fisheye systems, which greatly simplifies
the depth estimation problem at the same time.

2.3. RAFT in Stereo Vision

Zachary et al. [35] propose Recurrent All-Pairs Field
Transforms (RAFT), a highly efficient and accurate deep
network architecture for optical flow. RAFT uses modi-
fied GRU blocks to iteratively refine optical flow and shares
weights between refinement units. Lahav er al. [24] apply
the RAFT to binocular rectified stereo vision and introduce
multi-level convolutional GRUs, which can more efficiently
propagate information across the image. Wang et al. [38]
modify RAFT and propose PVStereo which greatly outper-
forms other self-supervised stereo matching approaches. Li
et al. [22] combine RAFT and Transformer and propose
CREStereo. They add Transformer encoder in image fea-
ture extraction and repeat the cross-attention between left
and right images in the iterative update stage. This method
performs well in various binocular datasets with excellent
generalization.

We imitate CREStereo and improve it based on RAFT to
obtain a binocular stereo vision depth estimation network
with a better trade-off between efficiency and accuracy.

3. Methods

The overall flow of our method is shown in Figure 2 and
is divided into three parts: camera calibration, epipolar rec-
tification, and depth estimation.

Optical Axis

\.

s o i

Figure 3. Our Triple Sphere Camera Model. First, point P is
projected onto the first sphere and then onto the second sphere,
then the third. The second sphere is shifted w.r.t. the first sphere
by &, and the third is shifted w.r.t. the second sphere by A. Finally,
the point is projected onto the image plane of a pinhole camera
which is shifted by % from the third sphere.

3.1. Camera Calibration

We propose the Triple Sphere Camera Model, which can
better fit the imaging process of large FoV fisheye cameras
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and has a closed-form unprojection solution.

As shown in Figure 3, our projection model considers
that the incident light is refracted three times, and the dis-
placements of the three unit spherical centers are £ and
A. After three refractions, the incident light is finally pro-
jected to the image plane according to the pinhole camera
model, and the displacement of the pinhole camera model’s
optical center from the third unit sphere is 2. There-
fore, our model has totally 7 camera internal parameters:
fa> fysczr ey, &, A, . The projection equations are defined
as follows.

X
e 0
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where ¢ is the vector of intrinsic parameters, 7 is the projec-
tion function.

A set of 3D points that results in valid projection is ex-
pressed as follows:
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where (x,y) is the normalized coordinate.

We calibrate the intrinsic and extrinsic parameters of
multi-fisheye camera system using a highly accurate pla-
nar checkerboard. The goal of the calibration is to mini-
mize the reprojection error of the corner points in all pic-
tures. For each image n in the calibration sequence, the

Figure 4. The multi-fisheye epipolar rectification schematic. Each
fisheye camera is converted into two pinhole cameras with an an-
gle of 90°. Then the system becomes four binocular systems.

corner detector can obtain the projection point u, of the
kth corner point xy. The coordinate of u,j is related to
the camera intrinsic and extrinsic parameters. Let s =
[iy Teamos Teamy s - Team,, ] be the parameter to optimize.
We can construct the nonlinear optimization problem as fol-
lows:

s = arg min Z Z (7 (Team, Tk, ) — uni)?)  (15)

where Tiom, € SE(3) is th transformation from the coor-
dinate frame of the calibration grid to the camera coordinate
frame for image n. K is a set of detected corner points for
the image n and p is the robust Huber norm.

Due to the highly nonlinear nature of the image,the
above optimization problem requires a good initial value.
We initialize the intrinsic parametes using the previously
proposed method [27] and find initial poses using the UPnP
algorithm [20]. After obtaining the initial values of the pa-
rameters, we completed the optimization operation using
Ceres Solver [1].

3.2. Multi-Fisheye Camera Epipolar Rectify

We propose a simple and effective undistortion method
that cleverly transforms the omnidirectional depth estima-
tion problem into a binocular depth estimation problem.
And the method can be used in the system with any num-
ber of fisheye cameras. As shown in Figure 4, we abstract
each fisheye camera as two pinhole cameras with 90° an-
gle '. Then the four fisheye cameras system becomes four
independent binocular systems. Each binocular systems
can be rectified through epipolar rectification. We modi-
fied the classical epipolar rectification algorithm proposed
by Fusiello [ 1] for our system.

! Although here we only show the horizontal binoculars, it is possible to
construct binoculars facing both above and below to estimate the true om-
nidirectional depth. However, we consider that the above and below depth
values are rarely used in practical applications. So we just use a limited
110° vertical FoV, which satisfies most of the application requirements.
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Figure 5. The structure of our proposed binocular depth estimation network. A pair of stereo images are fed into feature extraction
networks. Then the output features are calculated by self-attention and cross-attention, and after doing self-attention, the features of left
image are used for context information for latter recurrent update stage. Then the left and right features are multipled to construct cost

volume. Finally use the disparity update model same as RAFT [35].

Firstly, the rotation matrix of the cameras in binocu-
lar system is calculated. Let the optical centers of the

left camera and right camera be C; = [1;1 Y1 zl]T,
Cy=[r2 w2 2] T the rotation matrix can be calculated
as follows:
R=[r{ rf rj] (16)
rL = [xQ -1 Y2 — Y1 22— 21] .normalize() (17)
(18)
(19)

r3=[—(22—21) 0 x2— a1 .normalize()

9 =173 X171

Then remap the image for epipolar rectification. Taking
the left camera in one binocular system as an example. Let
the rotation matrix of the corresponding fisheye camera be
R, the optical center be C'. For a centain spatial point P =
(X,Y, Z,1), its projection point on normalized plane is p =
(u,v,1). The projection equation is shown below.

" X
pl v =[R —RC] 52/ (20)
f(U,U) 1

Let the rotation matrix of the rectified pinhole camera be
R’, and the corresponding normalized plane coordinate be
(u’,v’,1). Then the projection equation is shown below.

W | = R —RO)

X
Y
Z 1)
1

The relationship between fisheye image and virtual
binocular image can be obtained, see equation (22).

!

u U
Ao | =[R -RC|[R -RC]™'| o | @
1 fu,v)

That is, for each pixel in the original fisheye image, the
pixel coordinate in the pinhole image can be calculated. We
can use pixel interpolation to obtain the rectified image.

As shown in Figure 2, it can be seen that after epipo-
lar rectification, the four fisheye images are converted into
a pair of binocular images, where each image is stitched
together from the four virtual pinhole camera images. A
simple binocular depth estimation algorithm is then used.

3.3. Stereo Depth Estimation

Since our system needs to estimate the depth values of
four binocular systems simultaneously, which is very com-
putationally intensive, our primary goal is not to design a
binocular algorithm with the highest accuracy, but to min-
imize the accuracy loss while ensuring real-time perfor-
mance.

The structure of our binocular depth estimation network
is shown in Figure 5. We added Transformer [37] with self-
attention and cross-attention in the image feature extraction
stage. In binocular depth estimation, limited by computa-
tional performance and graphics card memory, many algo-
rithms have to limit the matching search range of pixels. In
this paper, we design an ingenious cost-volume calculation
that can extend the estimable disparity range to the image
width, while also reducing the computational complexity.
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Meuleman et al. [29]
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Figure 6. The depth estimation comparison between ours and other methods. The final row is the results from our method, and the column

annotations indicate the dataset source.

Given two images I; € RIT*XWxC [, ¢ REXWxC

need to compute the cost volume C(11, I5)
We found that the cost volume can be obtained by single
matrix operation as follows.

C(Iy, ) = Iy € RT*WXC [T e RFXOW - (23)

, We
ERHXWXW

To enable the network to learn information at multiple
scales, we used the cost volume pooling opertaion in RAFT-
Stereo [24].

4. Experiments
4.1. Implementation

Our depth estimation network structure is shown in Fig-
ure 5. The number of channels in our network is identical
to RAFT [35]. The feature encoder consists of 6 residual
blocks, 2 at 1/2 resolution, 2 at 1/4 resolution, and 2 at 1/8
resolution. The number of channels is 64, 128, and 256, re-
spectively. The 1/8 resolution feature map is then fed into
the Transformer encoder [37]. We set the number of heads
in attention to 8. The GRU iterative update part is identical
to RAFT, and more details can be found in [35]. In addi-
tion, we replace all the normalization operators in RAFT
with domain normalize [44].

Since we convert the multi-fisheye cameras to four
binocular cameras, we can use a large number of pub-
lic binocular datasets for training, instead of multi-fisheye

datasets, which are very limited. Similar to the training
strategy in CREStereo [22], we collected most of public
binocular datasets, including SceneFlow [26], Sintel [4],
CREStereo [22], KITTI [14, 28], InStereo2K [3], and Vir-
tual KITTI [12]. The images are uniformly randomly
cropped with a fixed resolution during the training process
to solve the problem of different image resolutions in dif-
ferent datasets.

We use a single NVIDIA RTX2080Ti for training, the
batch size is set to 4, the learning rate is 0.0004, and we use
Adam to train 200 epochs to get the final network weights.

To test the performance of OmniVidar in real scenarios,
we built a test setup. We used four leopard LI-USB30-
OV10640-490-GMSL cameras with an image resolution of
1280x 1024, paired with a fisheye lens with 250° FoV. The
four cameras look in four directions, front and back, left and
right, as shown in Figure 1. We use the device to capture in-
door, corridor, and outdoor images, which can fully test the
performance of OmniVidar in real scenes.

4.2. Evaluation

We perform the comparison on the Omnihouse, Om-
niThings provided by Won et al. [40,41], and the datasets
provided by Meuleman et al. [29]. Our OmniVidar has only
been trained on the binocular dataset mentioned in Section
4.1, not on the test dataset, and the methods involved in the
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Meuleman et al. [29]

Omnihouse [40] Omnithings [39]

Method bad 1.0 RMSE MAE bad1l.0 RMSE MAE badl.0 RMSE MAE
OmniVidar(Ours) 18.499 0.921 0.803 4.886 1.002 1.042 11.199 0.958 0.461
OmniMVS-ft [41] 60.372 2306 1.732 26.357 0929 0.705 59.753 2270 1.723

CrownConv360 [21]  69.119 4.020 3.005 85559 11.077 6.729 93946 9545 6.518
Meuleman et al. [29] 44.111 1.664 1273 11304 0.671 0.410 65.348 2.550 1.941

Table 1. Quantitative comparison of algorithm accuracy on several datasets. The less the number is, the more accurate the method is.

comparison all use the training method corresponding to the
original paper.

As can be seen in the Figure 6, although OmniVidar is
not trained and fine-tuned on the above datasets, its depth
estimation accuracy on these datasets far exceeds that of
other methods, with accurate depth estimation in weakly
textured regions.

Method Runtime Memory Parameters
OmniVidar (Ours) 66 ms 3.7GB 4.8 MB
OmniMVS-ft [41] 110ms 6.8 GB 43.7 MB

CrownConv360 [21] 623 ms 6.3 GB 16.7 MB

Table 2. Efficiency comparison with other deep learning methods.

The analysis of the quantitative results are shown in the
Table 1 and Table 2. It can be seen that OmniVidar has the
least memory consumption, the shortest time consumption
and the highest accuracy compared to other deep learning
based solutions. Compared with non-deep learning meth-
ods, the accuracy is much higher than it, despite the rela-
tively low efficiency.

KITTI-2015
g 2.50 4 .Edgesteren
m PSMNet
u"J .95 1 L] omnividar
a .
w RAFT-Stereo
® 2.00 °
™ CREStereo
= L75 LEAStereo
a [ ]

T T T v T T
5 10 15 20 25 30
Frames-Per-Second (FPS)

Figure 7. Plot comparing the accuracy and efficiency evaluated in
KITTI-2015 [28]. It can be seen that OmniVidar achieves real-
time performance while maintain the accuracy.

We also compared the binocular depth estimation net-
work in OmniVidar with other binocular depth estimation
networks. We chose the KITTI-2015 dataset [28] for the
evaluation and the results are shown in Figure 7. We
compare our method with CREStereo [22], LEAStereo [6],
PSMNet [5], EdgeStereo [33], RAFT-Stereo [24]. It can see
that our scheme achieves a better balance between accuracy
and efficiency.

4.3. Ablation

Camera Model: We compare the effect of omnidirec-
tional depth estimation under several camera models.

DSCM [30] TSCM(Ours)
Figure 8. Depth estimation results using different camera projec-
tion models. Our TSCM can best remove the fisheye distortion
and obtain the most accurate result.

As shown in Figure 8, the distortion of the fisheye lens
is not sufficiently handled in the DSCM [36] and the model
proposed by Scaramuzza et al. [30], which affects the ac-
curacy of depth estimation and leads to serious distortion
of objects in the point cloud. In contrast, the quality of the
point cloud obtained by the TSCM is much better, with flat
wall surfaces and more accurate distance measurements.

FoV ~ 2sphere 3 sphere (Ours) 4 sphere
195°  0.1530 px 0.1528 px 0.1528 px
220°  0.2031 px 0.1970 px 0.1952 px
250°  0.1365 px 0.1255 px 0.1222 px

Table 3. Mean reprojection error for camera models with different
number sphere.

We also compared the accuray with different number of
the refract sphere. Table 3 shows the results. It can be seen
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Figure 9. The images captured with our prototype and the inverse depth map and cloud points obtained by OmniVidar. It can be seen that
OmniVidar has great generalization in various scenes, and performs well in low-textured areas.

that the camera model with 3 sphere can significantly im-
prove the accuracy in large FoV scenes, while the improve-
ment brought by more sphere is very limited.

Distortion Handle: To verify whether the improvement
of depth estimation accuracy is helped by removing the fish-
eye image distortion using epipolar rectification, we esti-
mate the depth directly using the original fisheye image
and compare it with the undistorted method. Unlike the
undistorted binocular stereo, we use the Sphere-Sweep al-
gorithm [40] to construct the cost volume. This step does
not contain trainable parameters, so it does not affect the
network itself and ensures the fairness of the comparison.

The point cloud visualization of the results of the depth
estimation of both is shown in Figure 8. It can be seen that
when using original image, the depth information obtained
from different cameras is not consistent. In contrast, the
point cloud obtained by depth estimation after epipolar rec-
tification shows the structural framework of the scene real-

istically and accurately.

4.4. Test in Real

We test the performance of the OmniVidar algorithm on
a real dataset. Figure 9 shows the inverse depth maps and
point clouds obtained by OmniVidar on the real dataset. It
can be seen that our network has a strong generalization to
obtain high-quality point clouds on real datasets.

5. Conclusion

In this paper, we propose a novel, simple and effective
system OmniVidar, to address the inefficiency of current
omnidirectional depth estimation methods due to the exten-
sive use of 3D convolution and the poor accuracy due to
the lack of explicit handling of distortion in fisheye images.
Our method outperforms all other methods in terms of time
consumption and accuracy.
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