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Abstract

Masked image modeling (MIM) as pre-training is shown
to be effective for numerous vision downstream tasks, but
how and where MIM works remain unclear. In this paper,
we compare MIM with the long-dominant supervised pre-
trained models from two perspectives, the visualizations and
the experiments, to uncover their key representational dif-
ferences. From the visualizations, we find that MIM brings
locality inductive bias to all layers of the trained models,
but supervised models tend to focus locally at lower layers
but more globally at higher layers. That may be the rea-
son why MIM helps Vision Transformers that have a very
large receptive field to optimize. Using MIM, the model
can maintain a large diversity on attention heads in all lay-
ers. But for supervised models, the diversity on attention
heads almost disappears from the last three layers and less
diversity harms the fine-tuning performance. From the exper-
iments, we find that MIM models can perform significantly
better on geometric and motion tasks with weak semantics
or fine-grained classification tasks, than their supervised
counterparts. Without bells and whistles, a standard MIM
pre-trained SwinV2-L could achieve state-of-the-art perfor-
mance on pose estimation (78.9 AP on COCO test-dev and
78.0 AP on CrowdPose), depth estimation (0.287 RMSE on
NYUv2 and 1.966 RMSE on KITTI), and video object track-
ing (70.7 SUC on LaSOT). For the semantic understanding
datasets where the categories are sufficiently covered by the
supervised pre-training, MIM models can still achieve highly
competitive transfer performance. With a deeper understand-
ing of MIM, we hope that our work can inspire new and solid
research in this direction. Code will be available at https:
//github.com/zdaxie/MIM-DarkSecrets.

1. Introduction
Pre-training of effective and general representations ap-

plicable to a wide range of tasks in a domain is the key to
the success of deep learning. In computer vision, supervised
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classification on ImageNet [14] has long been the dominant
pre-training task which is manifested to be effective on a
wide range of vision tasks, especially on the semantic un-
derstanding tasks, such as image classification [17, 18, 36,
38, 51], object detection [23, 29, 61, 63], semantic segmenta-
tion [53, 69], video action recognition [7, 52, 65, 67] and so
on. Over the past several years, “masked signal modeling”,
which masks a portion of input signals and tries to predict
these masked signals, serves as a universal and effective self-
supervised pre-training task for various domains, including
language, vision, and speech. After (masked) language mod-
eling repainted the NLP field [15, 49], recently, such task
has also been shown to be a competitive challenger to the su-
pervised pre-training in computer vision [3, 8, 18, 27, 74, 80].
That is, masked image modeling (MIM) pre-trained models
achieve very high fine-tuning accuracy on a wide range of
vision tasks of different nature and complexity.

However, there still remain several questions:

1. What are the key mechanisms that contribute to the
excellent performance of MIM?

2. How transferable are MIM and supervised models
across different types of tasks, such as semantic un-
derstanding, geometric and motion tasks?

To investigate these questions, we compare MIM with su-
pervised models from two perspectives, the visualization
perspective and the experimental perspective, trying to un-
cover key representational differences between these two
pre-training tasks and deeper understand the behaviors of
MIM pre-training.

We start with studying the attention maps of the pre-
trained models. Firstly, we visualize the averaged attention
distance in MIM models, and we find that masked image
modeling brings locality inductive bias to the trained
model, that the models tend to aggregate near pixels in
part of the attention heads, and the locality strength is
highly correlated with the masking ratio and masked patch
size in the pre-training stage. But the supervised models tend
to focus locally at lower layers but more globally at higher
layers.
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We next probe how differently the attention heads in MIM
trained Transformer behave. We find that different atten-
tion heads tend to aggregate different tokens on all layers
in MIM models, according to the large KL-divergence on
attention maps of different heads. But for supervised models,
the diversity on attention heads diminishes as the layer goes
deeper and almost disappears in the last three layers. We
drop the last several layers for supervised pre-trained models
during fine-tuning and find that it benefits the fine-tuning per-
formance on downstream tasks, however this phenomenon
is not observed for MIM models. That is, less diversity on
attention heads would somewhat harm the performance
on downstream tasks.

Then we examine the representation structures in the
deep networks of MIM and supervised models via the simi-
larity metric of Centered Kernel Alignment (CKA) [37]. We
surprisingly find that in MIM models, the feature represen-
tations of different layers are of high similarity, that their
CKA values are all very large (e.g., [0.9, 1.0]). But for
supervised models, as in [59], different layers learn different
representation structures, that their CKA similarities vary
greatly (e.g., [0.5,1.0]). To further verify this, we load the
pre-trained weights of randomly shuffled layers during fine-
tuning and find that supervised pre-trained models suffer
more than the MIM models.

From the experimental perspective, a fundamental pre-
training task should be able to benefit a wide range of tasks,
or at least it is important to know for which types of tasks
MIM models work better than the supervised counterparts.
To this end, we conduct a large-scale study by comparing the
fine-tuning performance of MIM and supervised pre-trained
models, on three types of tasks, semantic understanding
tasks, geometric and motion tasks, and the combined tasks
which simultaneously perform both.

For semantic understanding tasks, we select several rep-
resentative and diverse image classification benchmarks, in-
cluding Concept Generalization (CoG) benchmark [62], the
widely-used 12-dataset benchmark [38], as well as a fine-
grained classification dataset iNaturalist-18 [68]. For the
classification datasets whose categories are sufficiently cov-
ered by ImageNet categories (e.g. CIFAR-10/100), super-
vised models can achieve better performance than MIM
models. However, for other datasets, such as fine-grained
classification datasets (e.g., Food, Birdsnap, iNaturalist), or
datasets with different output categories (e.g., CoG), most
of the representation power in supervised models is diffi-
cult to transfer, thus MIM models remarkably outperform
supervised counterparts.

For geometric and motion tasks that require weaker se-
mantics and high-resolution object localization capabilities,
such as pose estimation on COCO [48] and CrowdPose [44],
depth estimation on NYUv2 [64] and KITTI [22], and video
object tracking on GOT10k [32], TrackingNet [55], and La-

SOT [20], MIM models outperform supervised counterparts
by large margins. Note that, without bells and whistles,
Swin-L with MIM pre-training could achieve state-of-the-art
performance on these benchmarks, e.g., 80.5 AP on COCO
val, 78.9 AP on COCO test-dev, and 78.0 AP on Crowd-
Pose of pose estimation, 0.287 RMSE on NYUv2 and 1.966
RMSE on KITTI of depth estimation, and 70.7 SUC on
LaSOT of video object tracking.

We select object detection on COCO as the combined task
which simultaneously performs both semantic understanding
and geometric learning. For object detection on COCO,
MIM models would outperform supervised counterparts. Via
investigating the training losses of object classification and
localization, we find that MIM models help localization
task converge faster, and supervised models benefit more
for object classification, that categories of COCO are fully
covered by ImageNet.

In general, MIM models tend to exhibit improved perfor-
mance on geometric/motion tasks with weak semantics or
fine-grained classification tasks compared to their supervised
counterparts. For tasks/datasets where supervised models
excel in transfer, MIM models can still achieve competitive
transfer performance. Masked image modeling appears to
be a promising candidate for a general-purpose pre-trained
model. We hope our paper contributes to this understanding
within the community and stimulates further research in this
direction.

2. Background
Masked Image Modeling. Masked image modeling (MIM)
is a sub-task of masked signal prediction, that masks a por-
tion of input images, and lets the deep networks predict
the masked signals conditioned on the visible ones. We
use SimMIM [74], a simple framework for masked image
modeling, as the exampled framework of pre-trained image
models in our visualizations and experiments, because it is
simple, effective, and generally applicable. Note that, the
SimMIM framework could be directly applied to different
types of backbone architectures, such as Vision Transformer
(ViT) [18], Swin Transformer [51], and ConvNets [16, 30].
This property enables us to study the characteristics of MIM
under different types of backbone architectures, as well as
in multiple types of downstream tasks.
Other Pre-training Methods. Supervised pre-training [16,
30, 51, 66] is the primary method we employ for compari-
son with MIM. Contrastive learning approaches [6, 9, 10],
as the most successful self-supervised learning methods
prior to MIM, have demonstrated exceptional transfer per-
formance and generalization capabilities. Pixel-level pretext
tasks [70, 72, 73], on the other hand, exhibit outstanding per-
formance in dense prediction downstream tasks. Since the
advent of MIM, several works have attempted to use mask-
ing as a data augmentation strategy [1] or to combine MIM

14476



with contrastive learning [80], resulting in additional gains.
We provide a more comprehensive analysis of various meth-
ods through visualizations and experimental evaluations in
Appendix.
Backbone Architectures. Masked image modeling is
mostly studied in the Transformer architectures, thus the
major understandings and experiments in this paper are per-
formed on Vision Transformers (ViT) [18] and Swin Trans-
formers [50, 51]. Due to the simple and clear architecture
designs of ViT, most of the visualizations in the main pa-
per are performed on ViT, shown in Section 3. Due to the
general-purpose property of Swin Transformer, most of the
experiments on different downstream tasks in the main paper
are conducted on Swin Transformer, shown in Section 4.
We provide more visualizations and experimental results in
Appendix.

3. Visualizations

3.1. Revealing the Properties of Attention Maps

Attention mechanism [2] has been an exceptional com-
ponent in deep networks. It is naturally interpretable since
attention weights have a clear meaning: how much each to-
ken is weighted when determining the output representation
of the current token. Fortunately, most MIM pre-trained
models [3, 18, 27, 74, 80] are established upon the Vision
Transformers, where self-attention block is its major com-
ponent. Here we start with studying the attention maps of
the pre-trained models from three angles: (a) averaged at-
tention distance to measure whether it is local attention or
global attention; (b) entropy of attention distribution to mea-
sure whether it is focused attention or broad attention; (c)
KL divergence of different attention heads to investigate that
attention heads are attending different tokens or similar ones.

3.1.1 Local Attention or Global Attention?

Images are observed to exhibit strong locality: pixels near
each other tend to be highly correlated [33], motivating the
use of local priors in a wide range of visual perception archi-
tectures [21,30,40,42,51]. In the era of Vision Transformers,
the usefulness of local priors has still undergone rich discus-
sions and trials [18, 45, 51]. Thus it is valuable to investigate
whether MIM models bring the locality inductive bias to
the models. We do this by computing averaged attention
distance in each attention head of each layer.

Results of the averaged attention distance in different at-
tention heads (dots) w.r.t the layer number, on supervised
model (DeiT), contrastive learning model (MoCo v3) and
SimMIM model with ViT-B as backbone are shown in Fig-
ure 1. We find that the supervised model tends to focus
locally at lower layers but more globally at higher layers,
which well matches the observations in ViT [18]. Surpris-

ingly, the contrastive learning model acts very similarly to
the supervised counterpart. And this similarity may lead to
high linear evaluation accuracy on ImageNet-1K of MoCo
v3 (76.7% of top-1 accuracy). But for the model trained by
SimMIM, its behavior is significantly different to supervised
and contrastive learning models. Each layer has diverse at-
tention heads that tend to aggregate both local and global
pixels, and the average attention distance is similar to the
lower layers of the supervised model. As the number of
layers gets deeper, the averaged attention distance becomes
even slightly smaller. That is, MIM brings locality inductive
bias to the trained model, that the models tend to aggregate
near pixels in part of the attention heads. Also, a similar
observation could be observed with Swin-B as the backbone,
as shown in Figure 2(b).

SimMIM [74] designed a new metric, AvgDist, which
measures the averaged Euclidean distance of masked pixels
to the nearest visible ones and indicates the task difficulty
and effectiveness of MIM depending on the masking ratio
and masked patch size. As shown in Figure 2(a), AvgDist is
a good indicator that the entries of high fine-tuning accuracy
roughly distribute in a range of [10, 20] of AvgDist, while
entries with smaller or higher AvgDist perform worse. In-
terestingly, in the range of [10, 20] of AvgDist, we can also
observe a small averaged attention distance. That is, a mod-
erate prediction distance in MIM will bring a greater strength
of locality and incur a better fine-tuning performance.

3.1.2 Focused Attention or Broad Attention?

We then measure the attention maps on whether attention
heads focus on a few tokens or attend broadly over many
tokens, via averaging the entropy of each head’s attention
distribution. Results of entropy values w.r.t different lay-
ers of three pre-trained models, supervised model (DeiT),
contrastive learning model (MoCo v3), and MIM model
(SimMIM) with ViT-B as the backbone, are shown in Fig-
ure 3. For supervised models, we find that some attention
heads in lower layers have very focused attention, but in
higher layers, most attention heads focus very broadly. The
contrastive model still behaves very similarly to the super-
vised model. But for the MIM model, the entropy values in
different attention heads are diverse in all layers, that some
attention heads are more focused and some heads have very
broad attention.

3.1.3 Diversity on Attention Heads

From the previous two sub-sections, we observe a similar
phenomenon, that is, for the supervised model, the attention
distance or entropy of attention heads in the last few layers
seem to be similar, while for the MIM model, different heads
in all layers behave more diversely. Therefore, we want to
further explore whether the different heads pay attention to
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Figure 1. The averaged attention distance in different attention heads (dots) w.r.t the layer number on supervised model (a), contrastive
learning model (b), and SimMIM model (c) with ViT-B as the backbone architecture.

Figure 2. (a) The error rate of fine-tuning on ImageNet-1K (blue circle ◦) and averaged attention distance (red diamond ⋄) w.r.t AvgDist
(averaged distance of masked pixels to the nearest visible pixels) with Swin-B as the backbone. Points (⋄ or ◦) denote the SimMIM models
with different masking ratios and masked patch sizes. (b) The averaged attention distance in different attention heads (dots) w.r.t the layer
number on supervised model (b1) and SimMIM model (b2) with Swin-B as the backbone.

different/similar tokens, via computing the Kullback–Leibler
(KL) divergence [41] between the attention maps of different
heads in each layer.

Results of KL divergence between attention distributions
of different heads w.r.t different layers of three pre-trained
models, supervised model (DeiT), contrastive learning model
(MoCo v3), and MIM model (SimMIM) with ViT-B as the
backbone, are shown in Figure 4. As we expect, different
attention heads tend to aggregate different tokens on all
layers in MIM models, according to the large KL-divergence
on attention maps of different heads. But for supervised
models and contrastive learning models, the diversity on
attention heads becomes smaller as the layer goes deeper
and almost disappears from the last three layers.

Intuitively, losing diversity across different attention
heads may limit the capacity of the model. To investigate
whether the loss of diversity on attention heads has any ad-
verse effect, we gradually drop layers from the end, and
only load previous layers when fine-tuning the model for the
downstream tasks of COCO val2017 pose estimation and
NYUv2 depth estimation. From Figure 5, we can observe
that when we drop two to eight layers, although the model
becomes smaller, the performance of the supervised pre-
trained model on COCO val2017 pose estimation is better

than the baseline, and the performance on NYUv2 depth es-
timation is comparable with the baseline. This shows that in
the supervised pre-trained model, the last layers with small
diversity on attention heads indeed affect the performance
of downstream tasks. The detailed setup of this experiment
is in the Appendix.

3.2. Investigating the Representation Structures via
CKA similarity

Studying the behaviors of attention mechanisms is an-
alyzing inside the block, from a micro perspective. Next,
we hope to study from a macro perspective of deep net-
works, such as studying the similarity between feature maps
across different layers via the CKA similarity [37]. Results
of CKA similarity between feature representations of dif-
ferent layers of three pre-trained models, supervised model
(DeiT), contrastive learning model (MoCo v3), and MIM
model (SimMIM) with ViT-B as the backbone, are shown
in Figure 6. We surprisingly find that in MIM models, the
representation structures of different layers are almost the
same, that their CKA similarities are all very large (e.g., [0.9,
1.0]). But for supervised models, as in [59], different layers
learn different representation structures, that their CKA simi-
larities vary greatly (e.g., [0.5,1.0]). Different from previous
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Figure 3. The entropy of each head’s attention distribution w.r.t the layer number on (a) supervised model, (b) contrastive learning model,
and (c) SimMIM model with ViT-B as the backbone.

Figure 4. The KL divergence between attention distributions of different heads (small dots) and the averaged KL divergence (large dots)
in each layer w.r.t the layer number on (a) supervised model, (b) contrastive learning model, and (c) SimMIM model with ViT-B as the
backbone architecture.

visualizations, MoCo v3 behaves similarly to SimMIM in
this case.

To further verify this observation, we load the pre-trained
weights of randomly shuffled layers and fine-tune the model
for the downstream tasks of COCO pose estimation and
NYUv2 depth estimation. We observe that by loading the
models with the randomly sampled layers, the performance
on 1K-MIM drops from 75.5 to 75.2 (-0.3) on pose estima-
tion and 0.382 to 0.434 (-0.052) on depth estimation. But
supervised pre-trained models suffer more than the MIM
models, which drops from 75.8 to 74.9 (-0.9) on pose estima-
tion, and 0.376 to 0.443 (-0.067) on depth estimation. The
detailed setup of this experiment is in the Appendix.

4. Experimental Analysis on Three Types of
Downstream Tasks

In this section, we conduct a large-scale study by compar-
ing the fine-tuning performance of MIM and supervised pre-
trained models, on three types of tasks, semantic understand-
ing tasks (e.g., image classification in different domains),
geometric and motion tasks (e.g., pose/depth estimation, and
video object tracking), and the combined tasks which simul-
taneously perform both types of tasks (e.g., object detection).
We use 8 NVIDIA V100 GPUs for our experiments.

4.1. Semantic Understanding Tasks

For semantic understanding tasks, we select several rep-
resentative and diverse image classification benchmarks, in-
cluding Concept Generalization (CoG) benchmark [62], the
widely-used 12-dataset benchmark [38], as well as a fine-
grained classification dataset iNaturalist-18 [68].

Setup. The CoG benchmark consists of five 1k-category
datasets split from ImageNet-21K, which has an increasing
semantic gap with ImageNet-1K, from L1 to L5. On the CoG
dataset, we search for the best hyper-parameters based on
the top-1 accuracy of the L1 validation set and then apply the
best setting to CoG L2 to L5 to report the top-1 accuracy. On
the K12 dataset, we adopt standard splits of train/val/test sets
as in [38]. We use the training set to fine-tune the models, use
the validation set to search for the best hyper-parameters, and
then train the models on the merged training and validation
sets using the best setting. Following [38], we report mean-
per-class accuracy for Aircraft, Pets, Caltech-101, Oxford
102 Flowers and top-1 accuracy for other datasets. The
iNat18 dataset includes 437,513 training images and 24,426
validation images, with more than 8,000 categories. We fine-
tune the pre-trained models using the training set and report
the top-1 accuracy on the validation set. For all datasets,
we choose learning rate, weight decay, layer decay, and
DropPath [31] on the valid set respectively for the MIM
pre-trained model and the supervised pre-trained model. We
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Figure 5. The performance of the COCO val2017 pose estimation (left) and NYUv2 depth estimation (right) when we drop several last
layers of the SwinV2-B backbone. When the model becomes smaller, the performance of the supervised pre-trained model increases on
the pose estimation and keeps the same on the depth estimation. The last layers in the supervised pre-trained model lose diversity across
different attention heads and are harmful to the downstream tasks.

Figure 6. The CKA heatmap between the feature maps of different layers of (a) supervised model, (b) contrastive learning model, and (c)
SimMIM model with ViT-B as the backbone architecture.

use the AdamW optimizer [54] and cosine learning rate
schedule. We train the model for 100 epochs with 20 warm-
up epochs. We adopt the AutoAug [12] and Mixup [78] data
augmentation and the input image size is 224× 224. Other
detailed setups of these datasets are in the Appendix.
Results. Results of different semantic understanding tasks
are shown in Table 1. For the classification datasets whose
categories are sufficiently covered by ImageNet categories
(e.g. CIFAR-10/100), supervised models can achieve better
performance than MIM models as pre-training. However,
for other datasets, such as fine-grained classification datasets
(e.g., Food, Birdsnap, iNaturalist), or datasets with different
output categories (e.g., CoG), most of the representation
power in supervised models is difficult to transfer; thus MIM
models remarkably outperform supervised counterparts.

4.2. Geometric and Motion Tasks

We study how MIM models perform on the geometric and
motion tasks that require the ability to localize the objects
and are less dependent on semantic information. We select
several benchmarks, such as pose estimation on COCO [48]
and CrowdPose [44], depth estimation on NYUv2 [64] and
KITTI [22], and video object tracking on GOT10k [32],

TrackingNet [55], and LaSOT [20].
Setup. For pose estimation on COCO and Crowdpose, we
use the standard splits for training and evaluation and report
the AP based on OKS as the evaluation metric. We use
the standard person detection results from [71]. We follow
Simple Baseline [71], which upsamples the last feature of the
backbone by deconvolutions and predicts the heatmaps at 4×
resolution. The data augmentations include random flipping,
half body transformation, random scale, random rotation,
grid dropout, and color jittering. The input image size is
256 × 256 by default. We use the AdamW [54] optimizer
with the base learning rate 5e-4 and the weight decay 5e-2.
The learning rate is dropped to 5e-5 at the 120th epoch. We
train the models for 150 epochs. We use a layer decay of
0.9/0.85 for Swin-B/L and the DropPath [31] of 0.3/0.5 for
Swin-B/L.

For depth estimation on NYUv2 and KITTI, we use the
standard splits and report the RMSE (Root Mean Square
Error) as the evaluation metric. To compare with the previ-
ous works [34, 60], we set the maximum range as 10m/80m
for NYUv2/KITTI. The head of the depth estimation is the
same as that of the pose estimation and is comprised of de-
convolutions. Similar to the GLPDepth [34], we use the fol-
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pre-train
Concept Generalization (CoG) Kornlith et al’s 12 datasets (K12)

iNat18
L1 L2 L3 L4 L5 Food Birdsnap Cars Aircraft Average (7)

1K-SUP 79.4 76.2 72.7 72.5 68.4 93.2 81.8 88.6 83.0 89.7 77.7

1K-MIM 79.6 77.1 73.6 73.0 69.1 94.2 83.7 89.2 83.5 86.1 79.6

Table 1. Comparisons of MIM and supervised (SUP) pre-trained models on semantic understanding tasks with SwinV2-B as the backbone.
We follow [38] to report top-1 accuracy (↑) and mean per-class accuracy (↑) for specific datasets. Results on the multi-label dataset Pascal
Voc 2007 are not included, whose evaluation metric is not compatible with others.

lowing data augmentations: random horizontal flip, random
brightness/gamma/hue/saturation/value and random vertical
CutDepth. We randomly crop the images to 480 × 480 /
352 × 352 size for NYUv2/KITTI dataset. The optimizer,
layer decay, and DropPath is the same as the pose estimation.
The learning rate is scheduled via polynomial strategy with
a factor of 0.9 with a minimal value of 3e-5 and a maximum
value of 5e-4. The total number of epochs is 25. We use the
flip testing and sliding window test.

Following the previous methods [13, 47], we train the
models on the train splits of four datasets GOT10k [32],
TrackingNet [55], LaSOT [20], and COCO [48] and report
the success score (SUC) for the TrackingNet dataset and
LaSOT dataset, and the average overlap (AO) for GOT10k.
We use the SwinTrack [47] to train and evaluate our pre-
trained models with the same data augmentations, training,
and inference settings. We sample 131072 pairs per epoch
and train the models for 300 epochs. We use the AdamW
optimizer with a learning rate of 5e-4 for the head, a learning
rate of 5e-5 for the backbone, and a weight decay of 1e-4.
We decrease the learning rate by a ratio of 0.1 at the 210th
epoch. We set the sizes of search images and templates as
224× 224 and 112× 112.
Results. From Table 2, for the pose estimation, MIM models
pre-trained with ImageNet-1K surpass supervised counter-
parts by large margins, 2.4 AP on COCO val, 2.2 AP on
COCO test-dev, and 4.2 AP on CrowdPose dataset which
contains more crowded scenes. Even if the supervised mod-
els are pre-trained with ImageNet-22K, the performances
are still worse than MIM models pre-trained with ImageNet-
1K. The observation of the SwinV2-L is similar to that of
the SwinV2-B. With a larger image size 384 × 384, MIM
pre-trained SwinV2-L reaches 78.4 on COCO test-dev, and
77.1 on the challenging CrowdPose dataset. Using a stronger
detection result from BigDetection [4], we obtain 80.5 AP
on COCO val, 78.9 AP on COCO test-dev, and 78.0 AP
on CrowdPose.

For the depth estimation, using a simple deconvolution
head, SwinV2-B with MIM pre-training with ImageNet-
1K achieves 0.304 RMSE on NYUv2 and 2.050 RMSE
on KITTI, outperforming the previous SOTA method
BinsFormer-L [46]. The MIM pre-training does improve
the performance of SwinV2-B by 0.03 RMSE compared

with the supervised pre-training with ImageNet-22K. Note
that with supervised pre-training, a larger model SwinV2-
L shows no gain for the NYUv2 dataset, while with MIM
pre-training, SwinV2-L leads to about 0.02 RMSE gain over
SwinV2-B.

For the video object tracking, MIM models also show a
stronger transfer ability over supervised pre-trained models.
On the long-term dataset LaSOT, SwinTrack [47] with MIM
pre-trained SwinV2-B backbone achieves comparable result
with the SOTA MixFormer-L [13] with a larger image size
320× 320. We obtain the best SUC of 70.7 on the LaSOT
with SwinV2-L backbone with the input image size 224×
224 and template size 112× 112.

4.3. Combined Task of Object Detection

We select object detection on COCO as the combined task
which simultaneously performs both semantic understanding
and geometric learning. For object detection on COCO, a
Mask-RCNN [29] framework is adopted and trained with
a 3× schedule (36 epochs). We utilize an AdamW [35]
optimizer with a learning rate of 6e-5, a weight decay of
0.05, and a batch size of 32. We employ a large jittering
augmentation (1024 × 1024 resolution, scale range [0.1,
2.0]).

On COCO, we could clearly observe that MIM model out-
performs its supervised counterpart (52.9/46.7 v.s. 51.9/45.7
of box/mask AP) with SwinV2-B as the backbone. We also
plot the loss curves of object classification Lcls and localiza-
tion Lbbox, as shown in Figure 7. We find that MIM model
helps localization task converge faster and better, and the su-
pervised model benefits more for object classification. This
also matches our previous observations, that MIM model can
perform better on geometric and motion tasks, and on par or
slightly worse on the tasks that its categories are sufficiently
covered by ImageNet like COCO.

5. Related Work

Visual Pre-training. Throughout the deep learning era,
supervised classification on ImageNet [14] has been the
dominant pretraining task. It is found to deliver strong fine-
tuning performance on numerous semantic understanding
tasks [7, 17, 18, 23, 36, 38, 51, 53, 63, 65]. Over the past sev-
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backbone pre-train
Pose Estimation Depth Estimation Video Object Tracking

COCO
val

COCO
test

Crowd-
Pose NYUv2 KITTI GOT10k

test
Track-

Net LaSOT

SwinV2-B
1K-SUP 75.2 74.5 70.7 0.352 2.313 70.1 81.5 69.4

22K-SUP 75.9 75.1 72.2 0.335 2.240 69.9 81.0 67.8

1K-MIM 77.6 76.7 74.9 0.304 2.050 70.8 82.0 70.0

SwinV2-L
22K-SUP 76.5 75.7 72.7 0.334 2.150 71.1 81.5 69.2

1K-MIM 78.1 77.2 75.5 0.287 1.966 72.9 82.5 70.7

Representative methods
HRFormer [76] BinsFormer [46] MixFormer [13]

77.2 76.2 72.5 0.330 2.098 75.6 83.9 70.1

Table 2. Comparisons of MIM and supervised (SUP) pre-trained models on the geometric and motion tasks. We report the AP (↑) for the
pose estimation tasks, RMSE (↓) for the monocular depth estimation tasks, AO (↑) for the GOT10K dataset, and SUC (↑) for the TrackingNet
dataset and LaSOT tracking dataset. The best results among the different pre-trained models are shown in the bold text. We provide the best
results of the representative methods for reference.

Figure 7. Loss curves of Lcls and Lbbox w.r.t the epoch number using supervised and MIM models with SwinV2-B as the backbone
architecture.

eral years, self-supervised pretraining has attracted more and
more attention, and achieved finetuning performance on par
with the supervised counterparts on several representative
downstream tasks [9, 28], including two representative ones,
contrastive learning [5, 9, 19, 24, 28] and masked image mod-
eling [3, 8, 27, 74]. In our work, we focus on understanding
the different behaviors of supervised and emergent MIM
pre-training.

Understanding Pre-training. There are some outstanding
works [38,56–59,75,77] trying to understand the pre-training
procedure and inspire a lot of following works in a wide
range. [75] reveals how features of different layers are trans-
ferable in deep neural networks. [38] performs a sufficient
experimental study on different backbones and tries to an-
swer whether better ImageNet models transfer better. Some
works [59,59,79] try to understand the behaviors of ViT, with
CKA [37], loss landscape [43] and Fourier analysis. In NLP,
after BERT [15] pre-training came out, there is also a lot of
works [11, 25, 26, 39] trying to understand it. Most of them
focus on the only interpretable component of Transformer,
self-attention block, to give some detailed understanding.

6. Conclusion

In this work, we present a comprehensive analysis on
masked image modeling, to reveal how and where MIM
models work well. From visualizations, our most interesting
finding is that the MIM pre-training brings locality to the
trained model with sufficient diversity on the attention heads.
This reveals why MIM is very helpful to the Vision Trans-
formers (ViT, Swin, etc), because the Vision Transformer has
a much larger receptive field, and to optimize it to a solution
with strong generalization ability is difficult. In experiments,
our most interesting finding is that MIM pre-training can
perform very well on the geometric and motion tasks with
weak semantics. This finding helps the model to achieve
state-of-the-art performance on those benchmarks without
bells and whistles.

Masked image modeling shows promise as a general-
purpose pre-trained model. We hope that our paper encour-
ages further exploration in the community and fosters new
research in this direction. Ultimately, we aspire for this work
to contribute to the understanding and motivation behind
future technologies.
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