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Figure 1. Our method generates high-quality object inpainting results. Different mask precision levels allowing users to either provide
exact masks (top row) or to use a rough mask outline (bottom row). Compared to existing methods, our method generates more realistic
images, follows accurate masks more closely (top row) and shows better background preservation for coarse masks (bottom row).

Abstract

Generic image inpainting aims to complete a corrupted
image by borrowing surrounding information, which barely
generates novel content. By contrast, multi-modal inpaint-
ing provides more flexible and useful controls on the in-
painted content, e.g., a text prompt can be used to describe
an object with richer attributes, and a mask can be used to
constrain the shape of the inpainted object rather than be-
ing only considered as a missing area. We propose a new
diffusion-based model named SmartBrush for completing a
missing region with an object using both text and shape-
guidance. While previous work such as DALLE-2 and Sta-
ble Diffusion can do text-guided inapinting they do not sup-
port shape guidance and tend to modify background tex-
ture surrounding the generated object. Our model incor-
porates both text and shape guidance with precision con-
trol. To preserve the background better, we propose a novel
training and sampling strategy by augmenting the diffusion
U-net with object-mask prediction. Lastly, we introduce
a multi-task training strategy by jointly training inpaint-

* Work done during internship at Adobe.

ing with text-to-image generation to leverage more training
data. We conduct extensive experiments showing that our
model outperforms all baselines in terms of visual quality,
mask controllability, and background preservation.

1. Introduction

Traditional image inpainting aims to fill the missing area
in images conditioned on surrounding pixels, lacking con-
trol over the inpainted content. To alleviate this, multi-
modal image inpainting offers more control through addi-
tional information, e.g. class labels, text descriptions, seg-
mentation maps, etc. In this paper, we consider the task
of multi-modal object inpainting conditioned on both a text
description and the shape of the object to be inpainted (see
Fig. 1). In particular, we explore diffusion models for this
task inspired by their superior performance in modeling
complex image distributions and generating high-quality
images.

Diffusion models (DMs) [7, 24], e.g., Stable Diffu-
sion [20], DALL-E [18, 19], and Imagen [21] have shown
promising results in text-to-image generation. They can
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also be adapted to the inpainting task by replacing the ran-
dom noise in the background region with a noisy version of
the original image during the diffusion reverse process [14].
However, this leads to undesirable samples since the model
cannot see the global context during sampling [16]. To ad-
dress this, GLIDE [16] and Stable Inpainting (inpainting
specialist v1.5 from Stable Diffusion) [20] randomly erase
part of the image and fine-tune the model to recover the
missing area conditioned on the corresponding image cap-
tion. However, semantic misalignment between the missing
area (local content) and global text description may cause
the model to fill in the masked region with background in-
stead of precisely following the text prompt as shown in
Fig. 1 (“Glide” and “Stable Inpainting”). We refer to this
phenomenon as text misalignment.

An alternative way to perform multi-modal image in-
painting is to utilize powerful language-vision models, e.g.,
CLIP [17]. Blended diffusion [2] uses CLIP to compute
the difference between the image embedding and the input
text embedding and then injects the difference into the sam-
pling process of a pretrained unconditional diffusion model.
However, CLIP models tend to capture the global and high-
level image features, thus there is no incentive to generate
objects aligning with the given mask (see “Blended Diffu-
sion” in Fig. 1). We denote this phenomenon as mask mis-
alignment. A recent GAN-based work CogNet [28] pro-
poses to use shape information from instance segmentation
dataset and predict the class of missing objects to address
this problem. But it doesn’t support text input. Another is-
sue for existing inpainting methods is background preser-
vation in which case they often produce distorted back-
ground surrounding the inpainted object as shown in Fig. 1
(bottom row).

To address above challenges, we introduce a precision
factor into the input masks, i.e., our model not only takes
a mask as input but also information about how closely the
inpainted object should follow the mask’s shape. To achieve
this we generate different types of masks from fine to coarse
by applying Gaussian blur to accurate instance masks and
use the masks and their precision type to train the guided
diffusion model. With this setup, we allow users to ei-
ther use coarse masks which will contain the desired object
somewhere within the mask or to provide detailed masks
that outline the shape of the object exactly. Thus, we can
supply very accurate masks and the model will fill the en-
tire mask with the object described by the text prompt (see
the first row in Fig. 1), while, on the other hand, we can
also provide very coarse masks (e.g., a bounding box) and
the model is free to insert the desired object within the mask
area such that the object is roughly bounded by the mask.

One important characteristic, especially for coarse masks
such as bounding boxes, is that we want to keep the back-
ground within the inpainted area consistent with the original

image. To achieve this, we not only encourage the model to
inpaint the masked region but also use a regularization loss
to encourage the model to predict an instance mask of the
object it is generating. At test time we replace the coarse
mask with the predicted mask during sampling to preserve
background as much as possible which leads to more con-
sistent results (second row in Fig. 1).

We evaluate our model on several challenging object in-
painting tasks and show that it achieves state-of-the-art re-
sults on object inpainting across several datasets and exam-
ples. Our user study shows that users prefer the outputs of
our model as compared to DALLE-2 and Stable Inpainting
across several axes of evaluation such as shape, text align-
ment, and realism. To summarize our contributions:

• We introduce a text and shape guided object inpainting
diffusion model, which is conditioned on object masks
of different precision, achieving a new level of control
for object inpainting.

• To preserve the image background with coarse input
masks, the model is trained to predict a foreground
object mask during inpainting for preserving original
background surrounding the synthesized object.

• We propose a multi-task training strategy by jointly
training object inpainting with text-to-image genera-
tion to leverage more training data.

2. Related Work
Diffusion Models Diffusion models (DMs) [7, 24] learn

the data distribution by inverting a Markov noising pro-
cess, and they have gained wide attention recently due to
their stability and superior performance in image synthesis
as compared to GANs. Given a clean image x0, the diffu-
sion process adds noise to the image at each step t, obtain-
ing a set of noisy latent xt. Then, the model is trained to
recover the clean image x0 from xt in the backward pro-
cess. DMs have shown appealing results in different tasks,
e.g., unconditional image generation [7, 8, 25, 26], text-to-
image generation [18–21], video generation [6], image in-
painting [1,2,14,16], image translation [15,27,30], and im-
age editing [4, 5, 10].

Text-Guided Image Inpainting Taking advantage of the
recent success of diffusion-based text-to-image generation
models, an intuitive adaptation from a text-to-image gener-
ation to text-guided inpainting is to replace the pure random
noise with the noisy background outside the mask region.
However, this leads to strong artifacts, e.g., generating par-
tial objects or inconsistent content in the background. To
address this problem, GLIDE [16] generates a random mask
and then provides the masked image and mask as additions
to the diffusion model, which learns to utilize the informa-
tion outside of the mask region. Blended diffusion [2] en-
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courages the output to align with the text prompt using the
CLIP score. Repaint [14] proposes to resample in each re-
verse step, but it doesn’t support text input. PaintbyWord [3]
pairs the large-scale GAN with a full-text image retrieval
network to enable multi-modal image editing. However,
due to the structure of GAN, it cannot specifically modify
the region given by the mask. TDANet [29] proposes a dual
attention mechanism to exploit the text features about the
masked region by comparing text with the corrupted image
and its counterpart.

3. Preliminary: Diffusion Model
Given an input image x0, we apply a forward diffusion

Markov process to add noise to the image over a number of
time steps t with scheduled variance βt:

q(xt|xt−1) = N
(√

1− βtxt, βtI
)

(1)

q(x1:T |x0) =
∏

q(xt|xt−1),

where T is the total number of steps. If T → ∞, the output
xT will be isotropic Gaussian. The defined Markov process
allows us to get xt in a closed form

xt =
√
αtxt−1 +

√
1− αtϵt−1 (2)

=
√
ᾱtx0 +

√
1− ᾱtϵ,

where αt = 1− βt, ᾱt =
∏t

i=1 αi, ϵt ∼ N (0, I).
To generate images from random noise, we need to invert

above diffusion process, i.e., learning q(xt−1|xt) that is also
a Gaussian when βt is small enough. However, q(xt−1|xt)
is unknown since it is inaccessible to the true distribution of
x0. Thus, we train a neural network pθ to approximate the
conditional distribution.

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)) , (3)

where µθ is trained to predict xt−1 =
1√
αt

(
xt − 1−αt√

1−ᾱtϵt

)
, which is derived from Eq. (2).

Since we already have xt during training, we can train a
network ϵθ to predict ϵt instead of training µθ [7]. We
obtain the objective for training the diffusion model.

L = Et∼[1,T ],x0,ϵt ∥ϵt − ϵθ(xt, t)∥22 (4)

At test time, we start from a random noise xT ∼ N (0, I)
and then iteratively apply the model ϵθ to obtain xt−1 from
xt until t = 0. We may employ more efficient sampling
techniques like DDIM [25] and PNDM [13] to speed up the
sampling, and adopt classifier free guidance [9] to improve
the sample quality.

As for conditional diffusion models, e.g., text-to-image
and inpainting models, conditional information can be fed
into the network ϵθ without changing the loss function. The
model will learn to utilize the conditions to generate high
quality conditional images.

4. Our Approach
Given an image x, text prompt d and a binary mask m

to indicate which region of x we should modify, our goal is
to generate an image x̃ such that the background of x̃ is the
same as input x while the generation in the masked region
x̃⊙m aligns well with the text prompt d and the mask m.

4.1. Text and Shape Guided Diffusion

Existing inpainting models randomly erase part of the
images and are trained to inpaint the erased region. As a re-
sult, the randomly erased region may contain only parts of
an object or contain areas of background around a given ob-
ject. Therefore, we propose to utilize the text and shape in-
formation from existing instance or panoptic segmentation
datasets. These datasets contain annotated masks {mi}Ni=1

where N is the number of annotations and each masked re-
gion x ⊙ mi contains only one object. For each mask we
also have a corresponding class label ci, e.g., hat or cat.

In the forward process, we randomly draw a segmenta-
tion mask m and its corresponding class text label c for im-
age x. We define x0 = x and only add noise in the masked
region instead of all pixels:

x̃t =
√
ᾱtx0 +

√
1− ᾱtϵ (5)

xt = x̃t ⊙m+ x0 ⊙ (1−m),

where ϵ ∼ N (0, I) and t is the timestep in the forward pro-
cess. We use xt, m, and c as input to the model so it can
learn to utilize the clean background information and learn
to recover the masked region x0⊙m. This ensures that gen-
erated objects in the foreground m are consistent with the
background. Following [7] we train a network ϵθ to predict
the noise ϵ from the noisy xt:

LDM = Eϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t,m, c)∥22

]
. (6)

In the inference phase, we generate random Gaussian noise
in the masked region xT = ϵ ⊙m + x0 ⊙ (1 −m), where
T is the number of sampling steps. Then we reverse the
diffusion process and obtain the inpainted result x0.

4.2. Shape Precision Control

Our training masks come from the segmentaion anno-
tations and thus are accurate instance masks. Training the
model with these masks will encourage the model to exactly
follow the shape of the input mask at test time. To allow
users to provide masks that are either accurate (e.g., in the
shape of a cat) or coarse (e.g., a bounding box) we propose
to generate masks with different precision. To achieve this,
we randomly augment the masks during training to degrade
the shape of the original mask. Specifically, given an ac-
curate instance mask m, we use a mask precision indicator
s ∼ [0, S] and define a set of parameters for each indicator:
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Figure 2. Text and shape guided object inpainting. Given an image x0, accurate mask m and object description d, we transform the mask
m to different precision levels (from accurate to coarse) as ms. We add noise in the masked region to provide rich background information
to the diffusion model and train the model to predict the added noise as well as the accurate mask m. During inference, we apply the
diffusion model repeatedly until t = 0.

ms = GaussianBlur(m, ks, σs), (7)

where ks denotes Gaussian kernel size, and σs is standard
deviation of the kernel. If s = 0, the mask stays unchanged
and corresponds to the accurate instance mask from the
dataset annotation. When s = S, the mask ms is a bound-
ing box of the instance mask m, and it loses all detailed
shape information. During training, for each training sam-
ple (object), we employ a set of masks {ms, s} from fine to
coarse and condition the diffusion model on the precision
indicator s:

Lseg-DM = Eϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t,ms, c, s)∥22

]
. (8)

Through this, we can control whether the generated object
should align with the input mask by specifying different
mask precision indicators s. We present a sample of masks
in Fig. 5.

4.3. Background Preservation

During inference, the diffusion model will denoise the
masked region and generate objects according to the given
text prompt. As a result, the background in the masked re-
gion will be changed if the input masks are coarse. For
example, the model may generate a cat in the given square
box mask region but the other pixels in the square box re-
gion will also be changed. Ideally we would like to preserve
the background, however, this is challenging since we do
not know where in the coarse mask the model will generate
the desired object.

We address this challenge by utilizing the information of
mask precision. Specifically, we train our diffusion network
to also predict an accurate instance mask m from the coarse
input version ms:

Lprediction = H(ϵθ(ms),m), (9)

where H can be any suitable criterion for segmentation. We
choose to use the DICE loss, i.e., H(X,Y ) = 1− 2|X∩Y |

|X|+|Y | .
For this, we simply add an extra output channel to our dif-
fusion model which contains the instance mask prediction.

During inference, we are able to predict where the object
is generated inside the coarse mask ms using the diffusion
model’s prediction. We first feed a coarse mask ms into
the diffusion model and switch to using the predicted mask
to perform denoising. With the predicted mask, we know
where the object is generated within the masked region
which helps to preserve background information around the
generated object.

4.4. Training Strategy

Combining Eqs. (8) and (9), our final training objective
can be expressed as follows.

Ltotal = Lseg-DM + λLprediction, (10)

where λ is a hyper-parameter which balances the two losses.
In our experiment, λ = 0.01.

Our model can be built based on pre-trained text-to-
image generation models, e.g., Stable Diffusion and Ima-
gen, to speed up the training process. In the experiments, we
finetune based on the Stable Diffusion text-to-image model
v1.2 with our conditions (Fig. 2) and loss function Ltotal
(Eq. (10)). To align text descriptions with the local mask
content, avoiding text misalignment as aforementioned, we
train with the training split of OpenImages v6 , which has
segmentation and corresponding labels that can serve as lo-
cal descriptions. From our empirical study, such categor-
ical text would degrade the generation quality from long
sentences. Therefore, we employ the BLIP model [11] to
collect richer and longer captions for those local segments.

https://github.com/CompVis/stable-diffusion
https://storage.googleapis.com/openimages/web/index.html
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During the training, we randomly pair the segmentation la-
bel or BLIP caption to the corresponding mask. Therefore,
the model can handle both single word text and short phrase
well during the inference.

Multi-task Training To leverage more training data and
handle more diverse text descriptions and image contents,
beyond the domain of the segmentation dataset, we propose
a multi-task training strategy by jointly training our main
task and the foundational text-to-image generation task, us-
ing image/text paired data from LAION-Aesthetics v2 5+
subset [22] following Stable Diffusion [20]. For text-to-
image, we set the input mask to cover the entire image,
and treat it as a special inpainting case. As demonstrated
in Sec. 5, our final model trained with all these components
significantly outperforms state-of-the-art methods in terms
of visual quality of generated objects, as well as their con-
sistency to text description and mask shape.

5. Experimental Evaluation

5.1. Experimental Setup

We set λ = 0.01 in the total loss function Eq. (10) and
batch size to be 1024. Following the training strategy dis-
cussed in Sec. 4.4, we train the inpainting task and text-to-
image generation task with the probability of 80% and 20%,
respectively. Our model was trained around 20K steps on 8
A100 GPUs. As a reference, Stable Inpainting takes 256
A100 GPUs around 440K steps.

Baselines We choose the state-of-the-art image inpaint-
ing methods as our baselines, i.e., Blended Diffusion [2],
GLIDE [16], Stable Diffusion [20], and Stable Inpaint-
ing [20]. We also compare with DALLE-2 [18] on limited
images since its model is not open source yet. Stable Diffu-
sion, Stable Inpainting, and our SmartBrush support image
generation on the size of 512×512. Since Blended Diffu-
sion and GLIDE only support images size of 256×256, we
resize all results to 256×256 for fair comparison.

Testing Datasets We evaluate our model on two pop-
ular segmentation datasets, i.e., OpenImages [22] and
MSCOCO [12]. We sample 2 masks for each image in the
testing dataset of MSCOCO, so the number of testing im-
ages is 9311. As for OpenImages, we sample images with
resolution higher than 512 and use one mask for each im-
age. Then, the number of testing images is 13400. The
input prompts are directly from segmentation class labels.

Evaluation Metrics We first measure the image qual-
ity by Frechet Inception Distance (FID) [23]. Since our
main task is object generation in the masked region, the
global FID cannot well reflect the generation quality since
the masked region may occupy a small part of the image.
Therefore, we crop the images according to the bounding
box of the mask and measure FID on the local regions,
which is referred to as “Local FID”. To measure the align-

ment between text and generated content, we adopt the
CLIP score [17].

5.2. Text and Shape Guided Inpainting

The proposed SmartBrush can inpaint not only objects
but also generic scene like sunset sky by following the text
and shape guidance. For object inpainting, we consider two
common use cases: 1) accurate object masks and 2) bound-
ing box masks. The former expects the generated object to
follow the given mask shape, while the latter does not con-
strain the shape of generated objects as long as they are in-
side of the box. Corresponding quantitative results are listed
in Tabs. 1 and 2. Our SmartBrush achieves the best perfor-
mance in both tasks on all metrics, which demonstrates the
effectiveness of our proposed training strategy with text and
shape guidance.

Fig. 3 visualizes inpainting examples from the baselines
and our SmartBrush. In general, we can generate high-
quality objects/scenes well following both the mask shape
and text, no matter short words or long sentences. By con-
trast, all baselines failed following the mask shape. Besides
object inpainting, our SmartBrush also supports scene in-
painting as illustrated by the last two rows in Fig. 3. More
examples can be found in the supplementary. Still, as com-
pared to our SmartBrush, it is difficult for existing inpaint-
ing models to follow the mask shape.

We also conduct user studies through Amazon Mechani-
cal Turk. Over 300 workers were asked 1) which result fol-
lows the object mask best, 2) which result follows the input
text description best, and 3) which result looks most nat-
ural/realistic. The survey result is shown in Fig. 4, where
more than 50% users vote our results as the best on each
question.

5.3. Mask Precision Control

In the real world, users will not always provide the pre-
cise mask of the object they want to inpaint. We may en-
counter a coarse mask, so SmartBrush accepts the control of
how closely the inpainted object is to the given mask. Fig. 5
shows the results with different types of masks, which fol-
low the blurring rule during training, i.e., applying Gaussian
blur iteratively to obtain masks from fine to coarse. The Sta-
ble Diffusion results are not affected by mask types since it
is not trained that way. The results of Stable Inpainting only
change the object size with the mask size but do not follow
the mask shape. By contrast, ours strictly follow the mask
shape when providing a finer mask, while roughly follow-
ing the mask if given a coarser mask. For extremely, given
a box-like mask (the last column), we allow the generation
to happen anywhere inside the box.

22432



Input+Mask Blended Diffusion Stable Diffusion GLIDE Stable Inpainting DALLE-2 SmartBrush
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Figure 3. Comparison of text and shape guided inpainting.
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Table 1. Text-guided object inpainting with bounding box mask.

OpenImages MSCOCO
Local FID ↓ CLIP Score ↑ FID ↓ Local FID ↓ CLIP Score ↑ FID ↓

Blended Diffusion [2] 29.16 0.265 11.05 41.43 0.251 12.68
GLIDE [16] 22.45 0.252 9.70 30.72 0.241 9.32
Stable Diffusion [20] 15.28 0.265 9.10 25.61 0.250 12.29
Stable Inpainting [20] 12.57 0.264 7.07 18.13 0.246 8.50

SmartBrush (Ours) 9.71 0.266 6.00 13.22 0.252 8.05

Table 2. Text-guided object inpainting with object layout mask.

OpenImages MSCOCO
Local FID ↓ CLIP Score ↑ FID ↓ Local FID ↓ CLIP Score ↑ FID ↓

Blended Diffusion [2] 21.93 0.261 9.72 26.25 0.244 8.16
GLIDE [16] 21.09 0.250 9.03 24.25 0.235 6.98
Stable Diffusion [20] 12.27 0.263 6.90 17.16 0.246 7.78
Stable Inpainting [20] 10.98 0.261 5.84 15.16 0.243 6.54

SmartBrush (Ours) 7.82 0.263 4.70 9.80 0.249 5.76

Method LFID↓ CLIP↑ FID ↓
Ours 13.22 0.252 8.05
+ Background Preservation 12.26 0.251 7.19
- Mask Precision Cond 15.31 0.252 8.57
- BLIP Prompts 13.52 0.249 10.69
- Multi-Task 15.26 0.250 8.26

Stable Inpainting (SOTA) 18.13 0.246 8.50
+ Finetune on Our Dataset 18.34 0.245 8.38

Table 3. Quantitative ablation study on MSCOCO dataset.

Shape Alignment Text Alignment Realism0%

25%

50%

75%

100%
DALLE-2
SmartBrush
Stable Inpainting

Figure 4. We ask users to choose the generation that best aligns
with the mask and input text, and looks most realistic. Our method
SmartBrush outperforms the baselines by a large margin.

5.4. Background Preservation

To inpaint an object, especially when giving a box-like
mask, it is important to preserve the background since the
inpainted object will only partially occupy the mask area.
Fig. 6 compares different methods in background preserva-

Input Mask 0 Mask1 Mask2 Mask3 Mask4

SDiffusion

SInpainting

Ours

Figure 5. Mask precision control samples with prompt “astro-
naut”. As we increase the mask type, our method give more free-
dom to the model and the outputs gradually become different from
the input object shape mask.

tion when giving box-like masks. Without any background
preservation regularization, DALLE-2 generates objects in-
side the mask and changes the non-object pixels inside the
mask. Our SmartBrush, with object mask prediction (shown
in Fig. 7), could much better preserve the background by
utilizing the predicted mask during sampling.

5.5. Ablation Study

We remove the proposed component separately and test
the results on MSCOCO dataset with bounding box mask.
The main results are listed in Tab. 3. We didn’t apply back-
ground preservation in Table .1 as it is an optional function
for users. We observe that the proposed background preser-
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Figure 6. Comparison of background preservation in inpainting. We only compare with DALLE-2 here for better visualization, and more
baseline results are provided in the supplementary. We observe that DALLE-2 and SmartBrush w/o background preservation change the
background surrounding the generated object, e.g., the door bell, clouds behind the mountain, flowers behind the cat, and landscape behind
the teddy bear. By contrast, our SmartBrush better preserves the background pixels.

Input 0 10 20 30 40 50

Figure 7. Predicted object masks corresponding to examples from
Fig. 6. The numbers denote the sampling time steps. The mask
prediction becomes sharper after around 10 steps.

vation improves the quantitative results as more pixels are
preserved. If we don’t apply mask precision conditioning,
the generated objects are not well controlled and lead to
bad Local FID (LFID). The degraded performance without
BLIP and Multi-task training also demonstrate that they are
useful for the object inpainting task.

6. Conclusion, Limitation, and Future Work

Existing text and shape guided image inpainting models
face three typical challenges: mask misalignment, text mis-
alignment, and background preservation. In this paper, we
propose a novel training method that utilizes the text and

shape guidance from the segmentation dataset to address
the text misalignment problem. Then we further propose
to create different levels of masks (from fine to coarse) to
allow precision control of the generation. Finally, we pro-
pose an additional training loss function to encourage the
model to make object predictions from the input box mask.
Then we can utilize the predicted mask to avoid unneces-
sary changes inside the mask. The quantitative and qualita-
tive results demonstrate the superiority of our method.

The main limitation of our method is the large shadow
case, where the shadow of the object exceeds the object
mask, e.g., the shadow of a person can be very long in
the morning while the bounding box usually fails to cover
the whole shadow. Our method may not be able to gener-
ate such long shadow since the coarsest mask is the object
bounding box. We will explore it in the near future.
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