
CAPE: Camera View Position Embedding for Multi-View 3D Object Detection

Kaixin Xiong*,1, Shi Gong∗,2, Xiaoqing Ye∗,2, Xiao Tan2, Ji Wan2,
Errui Ding2, Jingdong Wang†,2, Xiang Bai1

1Huazhong University of Science and Technology, 2Baidu Inc.
kaixinxiong@hust.edu.cn, {gongshi, yexiaoqing}@baidu.com wangjingdong@outlook.com

Abstract

In this paper, we address the problem of detecting 3D ob-
jects from multi-view images. Current query-based methods
rely on global 3D position embeddings (PE) to learn the ge-
ometric correspondence between images and 3D space. We
claim that directly interacting 2D image features with global
3D PE could increase the difficulty of learning view trans-
formation due to the variation of camera extrinsics. Thus
we propose a novel method based on CAmera view Position
Embedding, called CAPE. We form the 3D position embed-
dings under the local camera-view coordinate system instead
of the global coordinate system, such that 3D position em-
bedding is free of encoding camera extrinsic parameters.
Furthermore, we extend our CAPE to temporal modeling by
exploiting the object queries of previous frames and encod-
ing the ego motion for boosting 3D object detection. CAPE
achieves the state-of-the-art performance (61.0% NDS and
52.5% mAP) among all LiDAR-free methods on nuScenes
dataset. Codes and models are available.1

1. Introduction
3D perception from multi-view cameras is a promising

solution for autonomous driving due to its low cost and rich
semantic knowledge. Given multiple sensors equipped on
autonomous vehicles, how to perform end-to-end 3D percep-
tion integrating all features into a unified space is of critical
importance. In contrast to traditional perspective-view per-
ception that relies on post-processing to fuse the predictions
from each monocular view [44, 45] into the global 3D space,
perception in the bird’s-eye-view (BEV) is straightforward
and thus arises increasing attention due to its unified repre-
sentation for 3D location and scale, and easy adaptation for
downstream tasks such as motion planning.

The camera-based BEV perception is to predict 3D ge-
ometric outputs given the 2D features and thus the vital
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Figure 1. Comparison of the network structure between PETRv2
and our proposed CAPE. (a) In PETRv2, position embedding of
queries and keys are in the global system. (b) In CAPE, position
embeddings of queries and keys are within the local system of
each view. Bilateral cross-attention is adopted to compute attention
weights in the local and global systems independently.

challenge is to learn the view transformation relationship
between 2D and 3D space. According to whether the explicit
dense BEV representation is constructed, existing BEV ap-
proaches could be divided into two categories: the explicit
BEV representation methods and the implicit BEV repre-
sentation methods. The former constructs an explicit BEV
feature map by lifting the 2D perspective-view features to 3D
space [12, 19, 34]. The latter mainly follow DETR-based [3]
approaches in an end-to-end manner. Without projection or
lift operation, those methods [24, 25, 52] implicitly encode
the 3D global information into 3D position embedding (3D
PE) to obtain 3D position-aware multi-view features, which
is shown in Figure 1(a).

Though learning the transformation from 2D images to
3D global space is straightforward, we reveal that the in-
teraction in the global space for the query embeddings and
3D position-aware multi-view features hinders performance.
The reasons are two-fold. For one thing, defining each cam-
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Figure 2. View transformation comparison. In previous methods,
view transformation is learned from the image to the global 3D
coordinate system directly. In our method, the view transformation
is learned from image to local (camera) coordinate system.

era coordinate system as the 3D local space, we find that
the view transformation couples the 2D image-to-local trans-
formation and the local-to-global transformation together.
Thus the network is forced to differentiate variant camera
extrinsics in the high-dimensional embedding space for 3D
predictions in the global system, while the local-to-global
relationship is a simple rigid transformation. For another,
we believe the view-invariant transformation paradigm from
2D image to 3D local space is easier to learn, compared to
directly transforming into 3D global space. For example,
though two vehicles in two views have similar appearances
in image features, the network is forced to learn different
view transformations, as depicted in Figure 2 (a).

To ease the difficulty in view transformation from 2D
image to global space, we propose a simple yet effective
approach based on local view position embedding, called
CAPE, which performs 3D position embedding in the lo-
cal system of each camera instead of the 3D global space.
As depicted in Figure 2 (b), our approach learns the view
transformation from 2D image to local 3D space, which
eliminates the variances of view transformation caused by
different camera extrinsics.

Specially, as for key 3D PE, we transform camera frus-
tum into 3D coordinates in the camera system using camera
intrinsics only, then encoded by a simple MLP layer. As for
query 3D PE, we convert the 3D reference points defined in
the global space into the local camera system with camera
extrinsics only, then encoded by a simple MLP layer. In-
spired by [25, 29], we obtain the 3D PE with the guidance
of image features and decoder embeddings, for keys and
queries, respectively. Given that 3D PE is in the local space
whereas the output queries are defined in the global coordi-
nate system, we adopt the bilateral attention mechanism to
avoid the mixture of embeddings in different representation
spaces, as shown in Figure 1(b).

We further extend CAPE to integrate multi-frame tempo-
ral information to boost the 3D object detection performance,

named CAPE-T. Different from previous methods that either
warp the explicit BEV features using ego-motion [11, 19]
or encode the ego-motion into the position embedding [25],
we adopt separated sets of object queries for each frame and
encode the ego-motion to fuse the queries.

We summarize our key contributions as follows:

• We propose a novel multi-view 3D detection method,
called CAPE, based on camera-view position embed-
ding, which eliminates the variances of view transfor-
mation caused by different camera extrinsics.

• We further generalize our CAPE to temporal modeling,
by exploiting the object queries of previous frames and
leveraging the ego-motion explicitly for boosting 3D
object detection and velocity estimation.

• Extensive experiments on the nuScenes dataset show
the effectiveness of our proposed approach and we
achieve the state-of-the-art among all LiDAR-free meth-
ods on the challenging nuScenes benchmark.

2. Related Work
2.1. DETR-based 2D Detection

DETR [3] is the pioneering work that successfully adopts
transformers [42] in the object detection task. It adopts a
set of learnable queries to perform cross-attention and treat
the matching process as a set prediction case. Many follow-
up methods [5, 15, 22, 48, 53] focus on addressing the slow
convergence problem in the training phase. For example,
Conditional DETR [29] decouples the items in attention into
spatial and content items, which eliminates the noises in
cross attention and leads to fast convergence.

2.2. Monocular 3D Detection

Monocular 3D Detection task is highly related to multi-
view 3D object detection since they both require restoring the
depth information from images. The methods can be roughly
grouped into two categories: pure image-based methods and
depth-guided methods. Pure image-based methods mainly
learn depth information from objects’ apparent size and ge-
ometry constraints provided by eight keypoints or pin-hole
model [1, 14, 16, 20, 23, 27, 31, 43]. Depth-guided meth-
ods need extra data sources such as point clouds and depth
images in the training phase [7, 28, 36, 37, 50]. Pseudo-
LiDAR [46] converts pixels to pseudo point clouds and
then feeds them into a LiDAR-based detector [8, 26, 40, 50].
DD3D [32] claims that pre-training paradigms could replace
the pseudo-lidar paradigm. The quality of depth estimation
would have a large influence on those methods.

2.3. Multi-View 3D Detection

Multi-view 3D detection aims to predict 3D bounding
boxes in the global system from multi-cameras. Previous
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Figure 3. The overview of CAPE. The multi-view images are fed into the backbone network to extract the 2D features including N views.
Key position embedding is formed by transforming camera-view frustum points to 3D coordinates in the camera system with camera
intrinsics. Images features are used to guide the key position embedding in K-FPE; Query positional embedding is formed by converting the
global 3D reference points into N camera-view coordinates with camera extrinsics. Then we encode them under the guidance of decoder
embeddings in Q-FPE. The decoder embeddings are updated via the interaction with image features in the decoder. The updated decoder
embeddings are used to predict 3D bounding boxes and object classes.

methods [4,44,45] mostly extend from monocular 3D object
detection. Those methods cannot leverage the geometric
information in multi-view images. Recently, several meth-
ods [10,19,34,38,39] attempt to percept objects in the global
system using explicit bird’s-eye view (BEV) maps. LSS [34]
conducts view transform via predicting depth distribution
and lift images onto BEV. BEVFormer [19] exploits spatial
and temporal information through predefined grid-shaped
BEV queries. BEVDepth [18] leverages point clouds as the
depth supervision and encodes camera parameters into the
depth sub-network.

Some methods learn implicit BEV features following
DETR [3] paradigm. These methods mainly initialize 3D
sparse object queries and interact with 2D features by atten-
tion to directly perform 3D object detection. For example,
DETR3D [47] samples 2D features from the projected 3D
reference points and then conducts local cross attention to
update the queries. PETR [24] proposes 3D position em-
bedding in the global system and then conducts global cross
attention to update the queries. PETRv2 [25] extends PETR
with temporal modeling and incorporate ego-motion in the
position embedding. CAPE conducts the attention in image
space and local 3D space to eliminate the variances in view
transformation. CAPE could preserve the pros in single-view
approaches and leverage the geometric information provided
by multi-view images.

2.4. View Transformation

The view transformation from the global view to local
view in 3D scenes is an effective approach to boost per-
formances for detection tasks. This could be treated as a
normalization by aligning all the views, which could facili-
tate the learning procedure greatly. Several LiDAR-based 3D
detectors [9, 30, 35, 40, 41] estimate local coordinates rather

than global coordinates for instances in the second stage,
which could fully extract ROI features. For example, PointR-
CNN [40] proposes the canonical 3D box refinement in the
canonical system for more precise regression. To reduce the
data variability for point cloud, AziNorm [6] proposes a gen-
eral normalization in the data pre-process stage. Different
from these methods, our method conduct view transforma-
tion for eliminating the extrinsic variances brought by multi
cameras with camera-view position embedding.

3. Our Approach
We present a camera-view position embedding (CAPE)

approach for multi-view 3D detection and construct the po-
sition embeddings in each camera coordinate system.

Architecture. We adopt the multi-view DETR framework,
a multi-view extension of DETR, depicted in Figure 3. The
input multi-view images, {I1, I2, . . . , IN}, are processed
with the encoders to extract the image embeddings,

Xn = Encoder(In). (1)

The N image embeddings are simply concatenated together,
X = [X1 X2 . . . XN ]. The associated position embed-
dings are also concatenated together, P = [P1 P2 . . . PN ].
Xn,Pn ∈ RC×I , where I is the pixels number.

The decoder is similar to DETR decoder, with a stack of
L decoder layers that is composed of self-attention, cross-
attention , and feed-forward network (FFN). The l-th decoder
layer is formulated as follows,

Ol = DecoderLayer(Ol−1,R,X,P). (2)

Here, Ol−1 and Ol are the output decoder embedding of the
(l − 1)th and the lth layer, respectively. R are 3D reference
points following the design in [24, 53].
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Figure 4. The cross-attention module of CAPE. (I): Feature-guided
Key Position Embedding (K-FPE); (II): Feature-guided Query Posi-
tion Encoder (Q-FPE). The multi-head setting and fully connected
layers are omitted for the sake of simplicity.

Self-attention is the same as the normal DETR, and takes
the sum of Ol−1 and the position embedding of the reference
points P as input. Our work lies in learning 3D position
embeddings. In contrast to PETR [24] and PETRv2 [25]
that form the position embedding in the global coordinate
system, we focus on learning position embeddings in the
camera coordinate system for cross-attention.

Key Position Embedding Construction. We take one
camera view (one image) as an example and describe how
to construct the position embeddings for one view. Each
2D position in the image plane corresponds to D 3D co-
ordinates along the predefined depth bins in the frustum:
{c1, c2, . . . , cD}. The 3D coordinate in the image frustum
is transformed to the camera coordinate system,

c′d = T−1
i cd, (3)

where Ti is the intrinsic matrix for i-th camera. The D
transformed 3D coordinates {c′1, c′2, . . . , c′D} are mapped
into the single embedding,

p = ϕ(c′). (4)

Here, c′ is a (D × 3)-dimensional vector, with c′ =

[c′
⊤
1 c′

⊤
2 . . . c′

⊤
D]. ϕ is instantiated by a multi-layer per-

ceptron (MLP) of two layers.

Query Position Embedding Construction. We use a set of
learnable 3D reference points R = {r1, r2, . . . , rM} in the
global space to form object queries. We transform the M 3D
points into the camera coordinate system for each view,

r̄nm = Te
nrm, (5)

where Te
n is the extrinsic parameter matrix for the n-th

camera denoting the coordinate transformation from the
global (LiDAR) system to the camera-view system. The
transformed 3D coordinates are then mapped into the query
position embedding,

gnm = ψ(r̄nm), (6)

where ψ(·) is a two-layer MLP.
Considering that the decoder embedding O ∈ RC×M and

query position embeddings are about different coordinate
systems: global coordinate system and camera view coor-
dinate system, respectively, we form the camera-dependent
decoder queries through concatenation(denote as [·]):

Qn = [O⊤ G⊤
n ]

⊤, (7)

where Gn = [gn1gn2 . . .gnM ] ∈ RC×M . Accordingly, the
keys for cross-attention between queries and image features
are also formed through concatenation, Kn = [X⊤

n P⊤
n ]

⊤.
The n−view pre-normalized cross-attention weights Wn ∈
RI×M is computed from:

Wn = K⊤
nQn = X⊤

nO+P⊤
nGn (8)

The decoder embedding is updated by aggregating informa-
tion from all views:

O←− O+
∑
n

Xnσ(Wn), (9)

where σ is the soft-max. Note that projection layers are
omitted for simplicity.
Feature-guided Key and Query Position Embeddings.
Similar to PETRv2 [25], we make use of the image features
to guide the key position embedding computation by learning
the scaling weights and update Eq.4 as:

p = ϕ(c′)⊙ ξ(x), (10)

where ξ(·) is a two-layers MLP and ⊙ denotes the element-
wise multiplication and x is the image features at the corre-
sponding position. It is assumed to provide some informative
guidance (e.g., depth).

On the query side, inspired by conditional DETR [29],
we use the decoder embedding to guide the query position
embedding computation and update Eq.6 as:

gnm = ψ(r̄nm)⊙ η(om,T
e
n). (11)

The extrinsic parameter matrix Te
n is used to transform the

spatial decoder embedding om to camera coordinate system,
for alignment with the reference point position embeddings.
Specifically, η(·) is instantiated as:

η(om,T
e
n) = ηl(om ⊙ ηg(Te

n)). (12)
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Figure 5. The pipeline of our temporal modeling. The ego-motion
embedding modulates the decoder embedding for spatial alignment.
Then each decoder embedding is scaled by the attention weights
(w1, w2) that predicted from the aligned embeddings.

Here ηl(·) and ηg(·) are two-layers MLP.
Temporal modeling with ego-motion embedding. We uti-
lize the previous frame information to boost the detection
for the current frame. The reference points of the previ-
ous frame are transformed from the reference points of the
current frame using the ego-motion matrix M,

Rt′ = MRt. (13)

Considering the same moving objects may have different
3D positions in two frames, we build the separated decoder
embeddings (Ot,Ot′) that can represent different position
information for each frame. The interaction between the
decoder embeddings of two frames for l-th decoder layer is
formulated as follows:

(ŌL
t , Ō

L
t′) = f(OL

t ,O
L
t′ ,M). (14)

We elaborate on the interaction between queries in two
frames in Figure 5. Given that Ot and Ot′ are not in the
same ego coordinate system, we inject the ego-motion infor-
mation into the decoder embedding Ot′ for spatial alignment.
Then we update decoder embeddings with channel attention
weights generated from the concatenation of the decoder
embeddings of two frames. Compared with using one set of
queries learning objects in different frames, queries in our
method have a stronger capability in positional learning.
Heads and Losses. The detection heads consist of the classi-
fication branch that predicts the probability of object classes
and the regression branch that regresses 3D bounding boxes.
The regression branch predicts the relative offsets w.r.t. the
coordinates of 3D reference points in the global system. As
for the loss function, we adopt focal loss [21] for classifi-
cation Lcls and L1 loss for regression Lreg following prior
works [24, 47]. The label assignment strategy here is the
Hungarian algorithm [13]. Suppose that σ is the assign-
ment function, the loss for 3D object detection for the model

without temporal modeling can be summarized as:

Lcur(y, ŷ) = λclsLcls(c, σ(ĉ)) + Lreg(b, σ(b̂)), (15)

where y = (c,b) and ŷ = (ĉ, b̂) denote the set of ground
truths and predictions respectively. λcls is a hyper-parameter
to balance losses. As for the network with temporal model-
ing, different from other methods supervise predictions only
on the current frame, we predict results and supervise them
on previous frames as auxiliary losses to enhance the tempo-
ral consistency. We use the center location and velocity of
the ground truth on the current frame to generate the ground
truths on the previous frame.

Lall = Lcur + λLprev. (16)

Lcur andLprev denote the losses for the current and previous
frame separately. λ is a hyper-parameter to balance losses.

4. Experiments
4.1. Dataset

We evaluate CAPE on the large-scale nuScenes [2]
dataset. This dataset is composed of 1000 scene videos,
with 700/150/150 scenes for training, validation, and testing
set, respectively. Each sample consists of RGB images from
6 cameras and has 360 ° horizontal FOV. There are 20s video
frames for each scene and 3D annotations are provided with
every 0.5s. We report nuScenes Detection Score (NDS),
mean Average Precision (mAP), and five True Positive (TP)
metrics: mean Average Translation Error (mATE), mean
Average Scale Error (mASE), mean Average Orientation
Error (mAOE), mean Average Velocity Error (mAVE), mean
Average Attribute Error (mAAE).

4.2. Implementation Details

We follow the PETR [24] to report the results. We stack
six transformer layers and adopt eight heads in the multi-
head attention. Following other methods [12, 24, 47], CAPE
is trained with the pre-trained model FCOS3D [45] on vali-
dation dataset and with DD3D [32] pre-trained model on the
test dataset as initialization. We use regular cropping, resiz-
ing, and flipping as data augmentations. The total batch size
is eight, with one sample per GPU. We set λ = 0.1 to balance
the loss weight between the current frame and the previous
frame and set λcls = 2.0 to balance the loss weight between
classification and regression. For validation dataset setting,
we train CAPE for 24 epochs on 8 A100 GPUs with a start-
ing learning rate of 2e−4 that decayed with cosine annealing
policy. For test dataset setting, we adopt denoise [51] for
faster convergence. We train 24 epochs with CBGS on the
single-frame setting. Then we load the single-frame model
of CAPE as the pre-trained model for multi-frame training
of CAPE-T and train 60 epochs without CBGS.
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Table 1. Comparison of recent works on the nuScenes test set. ‡ is test time augmentation. Setting “S”: only using single-frame information,
“M”: using multi-frame (two) information. “L”: using extra LiDAR data source as depth supervision.

Methods Year Backbone Setting NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
BEVDepth‡ [18] arXiv2022 V2-99 M, L 0.600 0.503 0.445 0.245 0.378 0.320 0.126
BEVStereo‡ [17] arXiv2022 V2-99 M, L 0.610 0.525 0.431 0.246 0.358 0.357 0.138
FCOS3D‡ [45] ICCV2021 Res-101 S 0.428 0.358 0.690 0.249 0.452 1.434 0.124
PGD‡ [44] CoRL2022 Res-101 S 0.448 0.386 0.626 0.245 0.451 1.509 0.127
DETR3D [47] CoRL2022 Res-101 S 0.479 0.412 0.641 0.255 0.394 0.845 0.133
BEVDet‡ [12] arXiv2022 V2-99 S 0.488 0.424 0.524 0.242 0.373 0.950 0.148
PETR [24] ECCV2022 V2-99 S 0.504 0.441 0.593 0.249 0.383 0.808 0.132
CAPE - V2-99 S 0.520 0.458 0.561 0.252 0.389 0.758 0.132
BEVFormer [19] ECCV2022 V2-99 M 0.569 0.481 0.582 0.256 0.375 0.378 0.126
BEVDet4D‡ [11] arXiv2022 Swin-B M 0.569 0.451 0.511 0.241 0.386 0.301 0.121
PETRv2 [25] arXiv2022 V2-99 M 0.582 0.490 0.561 0.243 0.361 0.343 0.120
CAPE-T - V2-99 M 0.610 0.525 0.503 0.242 0.361 0.306 0.114

Table 2. Comparison on the nuScenes validation set with large backbones. All listed methods are trained with 24 epochs without CBGS.
Methods Backbone Resolution Setting NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
BEVDet [12] Swin-B 1408× 512 S 0.417 0.349 0.637 0.269 0.490 0.914 0.268
PETR [24] V2-99 1600× 900 S 0.455 0.406 0.736 0.271 0.432 0.825 0.204
CAPE V2-99 1600× 900 S 0.479 0.439 0.683 0.267 0.427 0.814 0.197
BEVDet4D [11] Swin-B 1600× 900 M 0.515 0.396 0.619 0.260 0.361 0.399 0.189
PETRv2 [25] V2-99 800× 320 M 0.503 0.410 0.723 0.269 0.453 0.389 0.193
CAPE-T V2-99 800× 320 M 0.536 0.440 0.675 0.267 0.396 0.323 0.185

Table 3. Comparison on the nuScenes validation set with ResNet
backbone. “†”: the results are reproduced for a fair comparison
with our method(trained with 24 epochs).

Method Backbone Resolution CBGS NDS↑ mAP↑
PETR† [24] Res-50 1408× 512 % 0.367 0.317
CAPE Res-50 1408× 512 % 0.380 0.337
FCOS3D [45] Res-101 1600× 900 ! 0.415 0.343
PGD [44] Res-101 1600× 900 ! 0.428 0.369
DETR3D [47] Res-101 1600× 900 ! 0.434 0.349
BEVDet [12] Res-101 1056× 384 ! 0.396 0.330
PETR [24] Res-101 1600× 900 ! 0.442 0.370
CAPE Res-101 1600× 900 ! 0.463 0.388
BEVFormer [19] Res-50 800× 450 % 0.354 0.252
PETRv2† [25] Res-50 704× 256 % 0.402 0.293
CAPE-T Res-50 704× 256 % 0.442 0.318
BEVFormer [19] Res-101 1600× 640 ! 0.517 0.416
PETRv2 [25] Res-101 1600× 640 ! 0.524 0.421
CAPE-T Res-101 1600× 640 ! 0.533 0.431

4.3. Comparison with State-of-the-art

We show the performance comparison in the nuScenes
test set in Tab. 1. We first compare the CAPE with state-of-
the-art methods on the single-frame setting and then compare
CAPE-T(the temporal version of CAPE) with methods that
leverage temporal information. As for the model on the
single-frame setting, as far as we know, CAPE(NDS=52.0)
could achieve the first place on nuScenes benchmark com-
pared with vision-based methods with the single-frame set-
ting. As for the model with temporal modeling, CAPE-T
still outperforms all listed methods. CAPE achieves 61.0%
on NDS and 52.5% on mAP. We point out that using LiDAR
as supervision could largely improve the mATE metric, thus
it’s not fair to compare methods (w/wo LiDAR supervision)
together. Nevertheless, even compared with contemporary

methods leveraging LiDAR as supervision, CAPE outper-
forms BEVDepth [18] 1.0% on NDS and 2.2% on mAP and
achieves comparable results to BEVStereo [17].

We further show the performance comparison on the
nuScenes validation set in Tab. 2 and Tab. 3. It could be
seen that CAPE surpasses our baseline to a large margin and
performs well compared with other methods.

4.4. Ablation Studies

In this section, we validate the effectiveness of our de-
signed components in CAPE. We use the 1600× 900 reso-
lution for all single-frame experiments and the 800 × 320
resolution for all multi-frames experiments.

Effectiveness of camera view position embedding. We
validate the effectiveness of our proposed camera view po-
sition embedding in Tab 4. In Setting(a), we simply adopt
PETR with feature-guided position embedding as our base-
line. When we adopt the bilateral attention mechanism with
3D position embedding in the LiDAR system in Setting(b),
the performance can be improved by 0.5% on NDS. When
using camera 3D position embedding without bilateral atten-
tion mechanism in Setting(c), the model could not converge
and only get 2.5% NDS. It indicates that the 3D position
embedding in the camera system should be decoupled with
output queries in the LiDAR system. The best performances
could be achieved when we use camera view position em-
beddings along with the bilateral attention mechanism. For
fair comparison with 3D position embedding in the LiDAR
system, camera view position embedding improves 1.4% in
NDS and 2.4% in mAP (see Setting(b) and (d)).
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Table 4. Ablation study of camera view position embedding
and bilateral attention mechanism on the nuScenes validation set.
“Cam.View”: 3D position embeddings are constructed in the camera
system, otherwise 3D position embeddings are constructed in the
global (LiDAR) system.“Bilateral”: bilateral attention mechanism
is adopted in the decoder.

Setting Cam.View Bilateral NDS↑ mAP↑ mATE↓ mAOE↓
(a) 0.460 0.409 0.734 0.424
(b) ✓ 0.465 0.415 0.708 0.420
(c) ✓ 0.025 0.100 1.117 0.918
(d) ✓ ✓ 0.479 0.439 0.683 0.427

Table 5. Ablation study of feature guided position embedding in
queries and keys on the nuScenes validation set. “Q-FPE”: feature-
guided design in queries.“K-FPE”: feature-guided design in keys.

Setting Q-FPE K-FPE NDS↑ mAP↑ mATE↓ mAOE↓
(a) 0.447 0.415 0.719 0.515
(b) ✓ 0.449 0.421 0.693 0.551
(c) ✓ 0.463 0.420 0.700 0.473
(d) ✓ ✓ 0.479 0.439 0.683 0.427

Effectiveness of feature-guided position embedding.
Tab. 5 shows the effect of feature-guided position embed-
ding in both queries and keys. Different from the FPE in
PETRv2 [33], our K-FPE here is formed under the local
camera-view coordinate system instead of the global coor-
dinate system. Compared with Setting(a) and (b), we find
the Q-FPE increases the location accuracy (see the improve-
ment of mAP and mATE), but decreases the orientation
performance in mAOE, mainly owing to the lack of image
appearance information in the local view attention. Com-
pared with Setting(a) and (c), using K-FPE could improve
1.6% on NDS and 4.2% on mAOE, which benifits from more
precise depth and orientation information in image appear-
ance features. Compared with Setting(c) and (d), adding
Q-FPE could bring 1.6% and 1.9% gain on NDS and mAP
further. The benefit brought by Q-FPE could be explained
by 3D anchor points being refined by input queries in high-
dimensional embedding space. It could see that using both
Q-FPE and K-FPE achieves the best performances.

Effectiveness of the temporal modeling approach. We
show the necessity of using a set of queries for each frame in
Tab. 6. It could be observed that decomposing queries into
different frames could improve 0.9% on NDS and 0.8% on
mAP. With the multi-group design, one object query could
correspond to one instance on each frame respectively, which
is proper for DETR-based paradigms. Similar conclusion is
also observed in 2D instance segmentation tasks [49]. Since
we use multi groups of queries, auxiliary supervision on
previous frames can be added to better align object queries
between frames. Meanwhile, the generated ground truth on
the previous frame could be treated as a type of data aug-
mentation to avoid overfitting. When we adopt the previous
loss, the mAP increases 0.5%, which proves the validity of
supervision on multi-frames. Compared with Setting(a) and
(c), our temporal modeling approach could improve 1.4%

Table 6. Ablation studies of our temporal modeling approach
with ego-motion embedding on the nuScenes validation set. We
validate the necessity of using a group of queries for each frame
and the effectiveness of conducting the supervision on previous
frames. “QT”: whether sharing Queries for each frame in Temporal
modeling. “LP”: using auxiliary Loss on Previous frames.

Setting QT LP NDS↑ mAP↑ mAOE↓ mAVE↓
(a) Share 0.522 0.428 0.454 0.341
(b) Not Share 0.531 0.436 0.401 0.346
(c) Not Share ✓ 0.536 0.440 0.396 0.323

Table 7. Ablation study of our temporal fusion approach on
nuScenes validation set. “Ego”: using ego motion embedding
in the fusion process; “concat + ML”: simply concatenating queries
in two frames and using a two-layer MLP to output fused queries;
“channel att”: learning channel attention weights for each query.

Setting Fusion ways Ego NDS↑ mAP↑ mAOE↓ mAVE↓
(a) concat + MLP 0.527 0.432 0.413 0.343
(b) concat + MLP ✓ 0.531 0.439 0.432 0.318
(c) channel att 0.530 0.432 0.400 0.333
(d) channel att ✓ 0.536 0.440 0.396 0.323

on NDS and 1.2% on mAP on the validation dataset.

Effectiveness of different fusion approaches. The fusion
module is used to fuse different frames for temporal model-
ing. We explore some common fusion approaches for tem-
poral fusion in Tab. 7. We first try a simple fusion approach
“concat with MLP”, and achieve 52.7% on NDS, which has
0.5% improvement compared with sharing queries. Con-
sidering queries on each frame have similar semantic infor-
mation and different positional information, we propose the
fusion model inspired by the channel attention. As is seen in
Tab. 7, our proposed fusion approach “channel att” achieves
higher performance compared to simple concatenation op-
eration. We claim that the performance gain is not from the
increased parameters since only three fully-connected layers
are added in our model. Since queries are defined in each
frame’s system and the ego motion occurs between frames,
we encode the ego-motion matrix as a high dimensional em-
bedding to align queries in the current frame’s system. With
ego-motion embeddings, our fusion approach could further
improve 0.6% on NDS and 0.8% on mAP.

4.5. Visualization

We show the visualization of attention maps in Figure 6
from 4 heads out of 8 heads. We display attention maps after
the soft-max normalized operation. From the up-bottom way
in each row, there are local view attention maps, global view
attention maps, and overall attention maps separately. We ob-
verse and draw three conclusions from visualization results.
Firstly, local view attention mainly tends to highlight the
neighbor of objects, such as the front, middle, and bottom of
the objects, while global view attention pays more attention
to the whole of images, especially on the ground plane and
the same type of objects, as shown in Figure 6 (a). This
phenomenon indicates that local view attention and global
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(a)

(b)

(c)

Figure 6. Visualization of attention maps from an object query in the last decoder layer. Four heads out of eight are shown here. We only
show a single view for simplicity, (a): the normalized G⊤

nPn (local view attention maps), (b): the normalized X⊤
nO (global view attention

maps), (c): the overall attention maps that are the normalized weights of the summation of the former two items.

Noisy level on camera extrinsics
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Figure 7. The performance drop of PETRv2 and CAPE-T under
different camera extrinsics noise levels on nuScenes validation set.

view attention are complementary to each other. Secondly,
as shown in Figure 6 (a) and (c), it can be seen that over-
all attention maps are highly similar to local view attention
maps, which means the local view attention maps play the
dominant role compared to global view attention. Thirdly,
we could obverse that the overall attention maps are further
concentrating on the foreground objects in a fine-grained
way, which implies superior localization accuracy.

4.6. Robustness Analysis

We evaluate the robustness of our method on camera ex-
trinsic interference in this section. Camera extrinsic interfer-
ence is an unavoidable dilemma caused by calibration errors,
vehicle jittering, etc. We imitate extrinsics noises on the
rotation with different noisy levels following PETRv2 [25]
for a fair comparison. Specifically, we randomly sample an

angle within the specific range and then multiply the gen-
erated noisy rotation matrix by the camera extrinsics in the
inference. We present the performance drop of metric mAP
on both PETRv2 and CAPE-T in Fig.7. We could see that
our method has more robust performances on all noisy levels
compared to PETRv2 [25] when facing extrinsics interfer-
ence. For example, in the noisy level setting Rmax = 4,
CAPE-T drops 1.31% while PETRv2 drops 2.39%, which
shows the superiority of camera-view position embeddings.

5. Conclusion
In this paper, we study the 3D positional embeddings

of sparse query-based approaches for multi-view 3D object
detection and propose a simple yet effective method CAPE.
We form the 3D position embedding under the local camera-
view system rather than the global coordinate system, which
largely reduces the difficulty of the view transformation
learning. Furthermore, we extend our CAPE to temporal
modeling by exploiting the fusion between separated queries
for temporal frames. It achieves state-of-the-art performance
even without LiDAR supervision, and provides a new insight
of position embedding in multi-view 3D object detection.
Limitation and future work. The computation and memory
cost would be unaffordable when it involves the temporal
fusion of long-term frames. In the future, we will dig deeper
into more efficient spatial and temporal interaction of 2D
and 3D features for autonomous driving systems.
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