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Abstract

Incorporating the audio stream enables Video Saliency
Prediction (VSP) to imitate the selective attention mech-
anism of human brain. By focusing on the benefits of
joint auditory and visual information, most VSP methods
are capable of exploiting semantic correlation between vi-
sion and audio modalities but ignoring the negative effects
due to the temporal inconsistency of audio-visual intrinsics.
Inspired by the biological inconsistency-correction within
multi-sensory information, in this study, a consistency-
aware audio-visual saliency prediction network (CASP-
Net) is proposed, which takes a comprehensive considera-
tion of the audio-visual semantic interaction and consistent
perception. In addition a two-stream encoder for elegant
association between video frames and corresponding sound
source, a novel consistency-aware predictive coding is also
designed to improve the consistency within audio and vi-
sual representations iteratively. To further aggregate the
multi-scale audio-visual information, a saliency decoder is
introduced for the final saliency map generation. Substan-
tial experiments demonstrate that the proposed CASP-Net
outperforms the other state-of-the-art methods on six chal-
lenging audio-visual eye-tracking datasets. For a demo of
our system please see our project webpage.

1. Introduction

The task of saliency prediction is to automatically esti-
mate the most prominent area in a scenario by simulating
human selective attention. It has been extended to an al-
ternative way to extract the most valuable information from
a massive of data, which serves wide applications such as
robotic camera control [7], video captioning [35], motion
tracking [30], image quality evaluation [50] and video com-
pression [51], etc.

In recent years, a lot of saliency prediction works have
been developed by their increasing attention [4, 15, 41–43,
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Figure 1. The example figure shows the saliency results of our
model compared to STAViS [39] in audio and video temporal se-
quences. In the last time segment, the audio information that oc-
curs in the event is inconsistent with the visual information. Our
method can cope with such challenge by automatically learning to
align the audio-visual features. The results of STAViS, however,
show that it is incapable to address the problem of audio-visual
inconsistency. GT denotes ground truth.

49]. According to different data types, these studies can be
categorized into Image Saliency Prediction (ISP) and Video
Saliency Prediction (VSP). The ISP investigates how to
combine the low-level heuristic characteristics (e.g., colour,
texture and luminance) with high-level semantic image at-
tributes to predict prominent areas in the scene [15, 41, 42].
Differently, VSP exploits how to apply the spatio-temporal
structure information in videos, and benefits the perception
and identification of dynamic scenes [4, 49].

From the view of data modalities, the vision and au-
dio present the video content from different sensing, which
complement each other to enhance the perception. Based
on multi-modal data, more recent studies have that audio
information can significantly improve the understanding of
the video semantics [33, 37, 39]. Min et al. [33] conduct
a cross-modal kernel canonical correlation analysis (CCA)

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6441



by exploring audio-visual correspondence clues, and ef-
fectively enhance the video-level saliency prediction accu-
racy. Tsiami et al. [39] propose a deep model by combin-
ing spatio-temporal visual and auditory information to ad-
dress the video saliency estimation efficiently. Neverthe-
less, these works heavily depend on temporal consistency
of visual and audio information, and thus may suffer an
unexpected degradation in practical scenarios, where such
consistency cannot be satisfied as shown in Figure 1.

Temporal inconsistency commonly exists in real-life
videos because realistic visual scenarios usually contain
multiple sound sources, which may come from on-screen
(e.g., dialogue in a talk show), or from off-screen (e.g., nar-
ration in a movie). Without understanding the complex sce-
nario components, simply performing audio-visual consis-
tency learning would result in an irrelevant semantic match-
ing. A promising solution to this challenge is motivated
by the study of neuroscience [18, 36], which explains how
our brain minimizes the matching errors within multisen-
sory data using both iterative inference and learning, and
also inspired the Consistency-aware Audio-visual Saliency
Prediction network CASP-Net of this study.

By substantially exploring the latent semantic correla-
tions of cross-modal signals, in CASP-Net, the potential
temporal inconsistency between different modalities can be
corrected as well. In addition, a two-stream network is
also introduced to elegantly associate video frames with
the corresponding sound source, which is able to achieve
semantic similarities between audio and visual features by
cross-modal interaction. To further reason the coherent vi-
sual and audio content in an iterative feedback manner, a
consistency-aware predictive coding (CPC) module is de-
signed. Subsequently, a saliency decoder (SalDecoder) is
proposed to aggregate the multi-scale audio-visual informa-
tion from all previous decoder’s blocks and to generate the
final saliency map. The main contributions in this work can
be summarized as follows:

(1) A novel audio-visual saliency prediction model is
proposed by comprehensively considering the functionali-
ties of audio-visual semantic interaction and consistent per-
ception. (2) A consistency-aware predictive coding module
is designed to improve the consistency within audio and vi-
sual representations iteratively. (3) Solid experiments have
been conducted on six audio-visual eye-tracking datasets,
which demonstrate a superior performance of the proposed
method in comparison to the other state-of-the-art works.

2. Related Work

2.1. Video Saliency Prediction
For video saliency prediction, different strategies of

modeling temporal motion information have been proposed
to estimate the saliency maps over consecutive frames [4,
26,31]. Bak et al. [4] propose a two-stream spatio-temporal

network to process video frames with optical flow maps, si-
multaneously. The Long-Short Term Memory (LSTM) [24]
and Gated Recurrent Unit (GRU) [14] have also been in-
corporated into the video saliency prediction, and subse-
quently Wang et al. [43] propose to combine the Conv-
LSTM with dynamic attention mechanism into a network
to further enhance the prediction performance. Similarly
to model long-term temporal characteristics, Lai et al. [29]
propose STRA-Net based on a lightweight convGRU. After
Min et al. [31] adopt a S3D model [45] to build TASED-Net
with 3D convolutions, the training paradigm of 3D convo-
lution has been widely used in the VSP task. Bellitto et
al. [5] design a 3D fully convolutional architecture to ob-
tain multi-scale saliency instances for the combination of
output saliency maps. Jain et al. [26] adopt a 3D encoder-
decoder structure in a U-Net-like fashion, this enables the
decoding features of various layers to be constantly con-
catenated with the corresponding feature of an encoder in
the temporal dimension. Also benefit from spatio-temporal
modeling of 3D convolution but unlike previous works, a
novel saliency decoder is designed in our work to perform
aggregation of the multi-scale features.

2.2. Audio-Visual Saliency Prediction
Early audio-visual saliency prediction methods at-

tempted to establish the cross-modal connections between
the two modalities by using CCA [32,33], but an end-to-end
deep learning scheme is still far from in-depth study. More
recently, Tavakoli et al. [37] propose to train two indepen-
dent 3D ResNet for audio and visual modalities, and the
outputs are directly concatenated as a late fusion strategy.
With SoundNet [3] for audio representation learning, Tsi-
ami et al. [39] perform a spatial sound source localization to
obtain audio features, which are then fused with the visual
feature maps by bilinear operation. In the same way, Jain et
al. [26] also employ bilinear fusion operation on the audio
features of SoundNet and visual features to predict saliency
maps. For these solutions based on a bilinear-based fusion
scheme, the large number of learning parameters causes the
model learning not easy to converge [38, 48]. In our work,
an attention-based fusion is exploited to learn the cross-
modal semantic interaction to overcome such a limitation.

2.3. Audio-Visual Consistency Learning
For the intrinsic structure of video stream, the audio

is naturally paired and synced with the visual component,
which means that the audio-visual correspondence can be
effectively utilized to draw direct supervision for differ-
ent tasks: such as visually guided-source separation [19],
audio-visual navigation [11], active speaker detection [46],
and audio-visual speech recognition [1], etc. Unfortunately,
most current audio-visual saliency predictions [26, 39] rely
heavily on temporal consistency of visual and audio infor-
mation, while ignoring the negative impacts of inconsistent

6442



STFT

Audio Encoder
Waveform (A) 

𝑓𝐴

ASPP

ASPP

ASPP

ASPP

AVIM

AVIM

AVIM

AVIM

MLP

CPC

Dense

Dense

Dense

4X

8X

4X

Video Clips (X)

𝐻 ×𝑊 × 3 × 𝑇

𝐻

4
×
𝑊

4
× 𝐶1 ×

𝑇

2

𝐻

8
×
𝑊

8
× 𝐶2 ×

𝑇

2

𝐻

16
×
𝑊

16
× 𝐶3 ×

𝑇

4 𝐻

32
×
𝑊

32
× 𝐶4 ×

𝑇

8

Predicted 
Saliency Map

ASPP Atrous Spatial Pyramid Pooling AVIM Audio-Visual Interaction Module CPC Consistency-aware Predictive Coding

Dense Dense Block

dec4 dec3 dec2
dec1

Visual Feature

Feature GenerationFeature Fusion Conv+UpsampleX Upsample

𝐻

4
×
𝑊

4
× 𝐶 × 2

𝐻

8
×
𝑊

8
× 𝐶 × 2

𝐻

16
×
𝑊

16
× 𝐶 × 2

𝐻

32
×
𝑊

32
× 𝐶 × 2

Figure 2. An overview of the proposed CASP-Net. By combining multi-scale visual features and audio features, the designed AVIM and
CPC modules enable the network to learn audio-visual semantic interaction and consistent perception. The final saliency decoder utilizes
multi-scale audio-visual information to generate saliency maps.

samples. As a promising solution, audio-visual consistency
detection can be taken into consideration to ensure the per-
formance of saliency prediction [12,47]. This also becomes
a motivation for this study to devise consistency-aware pre-
dictive coding that reasons coherent visual and audio con-
tent in an iterative feedback manner.

3. CASP-Net
As shown in Figure 2, the proposed CASP-Net is com-

posed of: a two-stream network to obtain visual saliency
and auditory saliency feature, an audio-visual interaction
module to integrate the visual and auditory conspicuity
maps, a consistency-aware predictive coding module to rea-
son the coherent spatio-temporal visual feature with audio
feature, and a saliency decoder to estimate saliency map
with multi-scale audio-visual features. Each part is elab-
orated in the below.

3.1. Two-Stream Encoders
Let X ∈ RHv×Wv×3×Tv and A ∈ RTA denote video

frames and the corresponding audio signal, respectively.
Video Encoder: We employ the off-the-shelf S3D [45] as a
video backbone network to encode the spatio-temporal in-
formation. This is because that S3D is lightweight and pre-
trained on a large dataset, which makes it fast and effective
for transfer learning. The backbone consists of 4 convo-
lutional stages, and outputs hierarchical visual feature maps
during the encoding process, as shown in Figure 2. The gen-
erated features are denoted as fXi

∈ Rhi×wi×Ci×Ti , where
(hi, wi) = (Hv,Wv)/2

i+1, i = 1, ..., 4.
Audio Encoder: For audio representation, the 1D audio

waveform needs to be converted into the 2D spectrogram by
Short-Time Fourier Transform (STFT). Instead of directly
applying 1D CNNs on time domain audio signals, a 2D
fully convolutional network is employed for this operation.
When audio is cropped to match the visual frames duration
(e.g., Tv = 16), the log-Mel spectrogram is calculated for
each matched signal by taking absolute values of a complex
STFT, following the natural logarithm. For the high-level
semantic information, we employ the VGGish network [23]
with pre-trained weights on AudioSet. An audio embedding
is generated as the original audio feature fA ∈ RCA from
the layers before the final post-processing stage.

3.2. Cross-Modal Semantic Interaction
To find cross-modal semantics with implicitly associ-

ated audio and visual representations in videos, we per-
form Atrous Spatial Pyramid Pooling (ASPP) [13] on the
post-process of visual features fXi

to fVi
∈ Rhi×wi×C×Ti ,

where C = 256. With multiple parallel filters of differ-
ent rates, the pooling operation helps to recognize visual
objects with different receptive fields, e.g., different-sized
moving objects.

Considering visual and auditory features have different
feature dimensions, an affine transformation is applied to
the audio feature to match the channel of visual feature fVi .
Then it is duplicated hiwiTi times in spatio-temporal di-
mension, and reshaped to the same size as fVi

, which is
denoted as fÂ. To learn the correspondence between the au-
dio and visual features fÂ, fVi

, two different audio-visual
interaction approaches are investigated:
Audio-Visual Interaction (Quadratic): For the encoding
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Figure 3. Quadratic vs. Linear. L denotes the number of tokens
(Tihiwi) in feature, and C denotes a constant (i.e., C = 256).
Quadratic-attention scales with the square of the L. Using a de-
composable kernel ϕ(·), we can rearrange the order of operations
such that linear attention scales linearly with L. Dashed-blocks in-
dicate order of computation with corresponding time complexities
attached.

of audio-video correlations, the mechanism of self-attention
[40] is adopted. According to the calculation method of
self-attention , the audio and visual feature matrices need to
be transformed into the vector format as fVi

∈ RTihiwi×C

and fÂ ∈ RTihiwi×C , respectively. Such an audio-visual
interaction can be measured by dot-product, then the up-
dated feature maps fVi

at the i-th stage becomes,

Q = α(fVi
); K = β(fÂ); V = γ(fVi

)

Ã = softmax(
QKT

N
)V

fVi
= fVi

+ δ(Ã)

(1)

where α, β, γ and δ are 1× 1× 1 convolutions, N = Ti ×
hi × wi is a scale factor, and Ã denotes the audio-visual
similarity matrix. Each visual pixel can be associated with
all auditory information by audio-visual interaction.

However, Equation 1 shows that the computational cost
of self-attention increases quadratically with the number of
tokens (Tihiwi) in feature. The same is true for the memory
requirements because the similarity matrix Ã must be saved
to calculate the gradients with respect to the Q, K and V
(see also Figure 3(a)).
Audio-Visual Interaction (Linear): As in [27], the audio-
visual similarity matrix Ã can be generalized by treating
softmax(·) as a pairwise similarity between Q and K.
That is, for some similarity function sim(·), we have,

Ã = sim(Q,K)V (2)

If choose a decomposable kernel with feature represen-
tation ϕ(·) ≥ 0 as sim(x, y) = ϕ(x)ϕ(y)T , we have

Ã(ϕ) = (ϕ(Q)ϕ(K)T )V (3)

Then by associativity, the order of computation can be
changed as,

Ã(ϕ) = ϕ(Q)(ϕ(K)TV ) (4)

which allows us to compute ϕ(K)TV . This leads to an
operation O(TihiwiC

2) to create a C2 matrix instead of
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Figure 4. Consistency-aware Predictive Coding combines two dif-
ferent phases as follows. For brevity, we use vis and aud to denote
fV4 and fA, respectively. (A) The vis propagated up the hierarchy
in a feedforward manner, utilising the non-linear function fφ(·).
(B) The initial values for µ are then used to predict the activity
at the layer below, transformed by the iterative functions fθ(·).
These predictions incur prediction error ϵ, which are then used to
update activity µ. This process is repeated N times, after which
perceptual inference is complete.

a (Tihiwi)
2 one, where C is usually much less than Tihiwi

(see also Figure 3(b)). To implement the similarity matrix,
the following kernel function is designed as:

ϕ(x) = gelu(x) + 0.2 (5)

where gelu(·) denotes the gaussian error linear units [22].

3.3. Consistency-aware Predictive Coding
To overcome the potential inconsistencies introduced by

audio and visual features, consistency-aware predictive cod-
ing (CPC) is proposed to improve the performance of rea-
soning multi-modal features. Inspired by the predictive cod-
ing (PC) in theoretical neuroscience [2,6], it represents top-
down signalling in the perceptual hierarchy to predict the
cause of sensory data. For predictive coding, each hierar-
chical layer predicts the activity of the layer below it (with
the lowest layer predicting the sensory data). Such predic-
tions are then iteratively refined by minimizing the predic-
tion errors, (i.e., the difference between predictions and the
actual activity), in each layer [18, 36]. Comparatively, the
proposed CPC adopts bottom-up fφ(·) and top-down fθ(·)
paths to represent the prediction and iterative process re-
spectively, as shown in Figure 4. The CPC inputs the visual
feature vis as a type of prior knowledge to predict the au-
dio feature aud iteratively. It is composed of L hierarchical
layers, in which each layer i is composed of a variable unit
µi and an error unit ϵi.
Feedforward Process: A set of feedforward parameters φ
are defined in correspondence to bottom-up connections.
The feedforward parameters represent non-linear functions
which map activity at one layer to activity at above layer.
Thereby a bottom-up prediction is implemented as:

µi = fφ(µi−1) (6)
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Iterative Inference: The iterative phase updates the activity
µi again by generating top-down prediction fθ(µi+1) with
the prediction error ϵpredi .

ϵpredi = MSE(µi − fθ(µi+1))

µi ← µi − α∇ϵpredi

(7)

where∇ϵpredi denotes the gradient with respect to the activ-
ity of µi+1, the hyper-parameter α is introduced to reduce
the prediction error.

To decrease the prediction error in CPC, the operations
of feedforward process and iterative inference are alter-
nately performed while gradually improving the represen-
tations of all layers. When the entire inference ends, the
bottom layer is directly output with perceptually consistent
audio-visual features.

3.4. SalDecoder
A new decoder architecture is also proposed for saliency

estimation. The decoder consists of 4 blocks, i.e., decx,
where x = 1, ..., 4. Figure 2 presents the overview of the
decoder’s block. Each of the blocks consists of a dense
block [25] and a feature generation block. Moreover, the
blocks dec1, dec2, and dec3 have a fusion function among
them named fusion blocks, which combine the output of
the previous decoder with the output from the dense block.
The final saliency map is obtained using the combination of
Conv and Upsample in the dec1 stage.

Specifically, the audio-visual feature representations
{fXi

}(i = 1, ..., 4) are taken as input from AVIM to the
decoder. In each stream, the dense block is firstly utilized
to process representation by its feature propagation, and
align the temporal dimensions of each feature to facilitate
subsequent fusion. All blocks except dec4 contain a fu-
sion block to integrate multi-scale features. For the explicit
operation in the fusion block, each feature is initialized to
align in the spatial dimension via upsampling, and fused by
element-wise summation. The fused feature are fed into the
feature generation block, which consists of BN-ReLU-3D
Conv layers, to obtain the semantic features with context
information. In the dec1, the combination of 3D Conv and
Upsample is also performed to generate the final saliency
map.

3.5. Saliency Losses
We refer to the training paradigm of multiple loss func-

tions in [10, 39], which contains: Kullback-Leibler (KL)
divergence, Linear Correlation Coefficient (CC) and Simi-
larity Metric (SIM ). Assuming that the predicted saliency
map is Spred ∈ [0, 1], the labeled binary fixation map is
Sfix ∈ {0, 1}, and the dense saliency map generated by the
fixation map is Sden ∈ [0, 1], then LKL, LCC , and LNSS

are employed to signify three different loss functions, re-
spectively. The first is the KL loss between the predicted
map Spred and the dense map Sden:

Data Method #Params CC↑ NSS↑ SIM↑

AVA
CASP-Net(FCN) 1.77 0.659 3.57 0.509
CASP-Net(UNet) 3.94 0.665 3.65 0.512
CASP-Net(Sal) 2.49 0.671 3.67 0.515

ETMD
CASP-Net(FCN) 1.77 0.606 3.21 0.463
CASP-Net(UNet) 3.94 0.611 3.27 0.468
CASP-Net(Sal) 2.49 0.613 3.30 0.471

Table 1. Comparison between SalDecoder and the other different
decoders on AVAD and ETMD datasets (visual-only). #Params
represent the number of parameters per decoder.

LKL(Spred, Sden) =
∑
x

Sden(x)ln
Sden(x)

Spred(x)
(8)

where x represents the spatial domain of a saliency map.
The second loss function is based on the CC that has been
widely used in saliency evaluation, and used to measure
the linear relationship between the predicted saliency map
Spred and the dense map Sden:

LCC(Spred, Sden) = −
cov(Spred, Sden)

ρ(Spred)ρ(Sden)
(9)

where cov(·) and ρ(·) represent the covariance and the stan-
dard deviation respectively. The last one is derived from the
SIM , which can measure the similarity between two distri-
butions:
LSIM (Spred, Sden) =

∑
x

min{ζ(Spred(x)), ζ(Sden(x))}

(10)
where ζ represents the normalization operation. The
weighted summation of the above KL, CC and SIM is
taken to represent the final loss function:

Ltotal = LKL + λ1LCC + λ2LSIM (11)

where λ1, λ2 are the weights of CC and SIM , respec-
tively.

4. Experiment
Experiments are conducted on a total of seven datasets

including a pure visual dataset and six audio-visual eye-
tracking datasets. In the following subsections, the imple-
mentation details and evaluation metrics are firstly intro-
duced. We represent the experimental results with analysis
via the ablation studies and comparison with the state-of-
the-art works.
4.1. Setup

4.1.1 Datasets
Visual Dataset: The DHF1k [43] is one of the most pop-
ular visual-only datasets in the study of video saliency, It
contains 1000 videos where 600 videos are for training and
100 for validation. In addition, a test set of 300 videos is
also released but without public ground truth. Considering
that the main focus of our model is on multi-modal scenar-
ios, its visual branch is pre-trained using this dataset.
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Method AVAD ETMD

CC ↑ SIM ↑ CC ↑ SIM ↑

Visual-Only 0.671 0.515 0.613 0.469
V+A+Bilinear 0.670 0.510 0.609 0.469
V+A+IQuadratic 0.674 0.517 0.615 0.471
V+A+ILinear 0.675 0.519 0.615 0.470
V+A+ILinear +C 0.685 0.528 0.616 0.476

Table 2. Ablation Studies. The visual-only (V) denotes the visual
branch of CASP-Net. A refers to the audio branch, I refers to the
audio-visual interaction module, C refers to the consistency-aware
predictive coding, and the subscripts represent two schemes with
different computational complexity.

Data Metric i-th stage of Video Encoder, i ∈ {1, 2, 3, 4}
1 2 3 4 2,3,4 1,2,3,4

AVA CC 0.670 0.672 0.673 0.671 0.674 0.675
SIM 0.510 0.512 0.514 0.513 0.515 0.518

ETMD CC 0.610 0.613 0.611 0.611 0.613 0.615
SIM 0.467 0.469 0.468 0.467 0.471 0.470

Table 3. Audio-visual Interaction at various video encoder stages.
In both the AVAD and ETMD datasets, the model achieves almost
the best performance when the AVIM is used in all four stages.

Audio-Visual Dataset: There are six audio-visual datasets
in video saliency: AVAD [32], Coutrot1 [16], Coutrot2 [17]
, DIEM [34], ETMD [28], and SumMe [21], which are
used for our evaluation comparison. In detail, (i) the AVAD
dataset contains 45 video clips with a duration of 5-10 sec-
onds. These clips cover a variety of audio-visual activities,
e.g., playing the piano, playing basketball, making an in-
terview, etc. The dataset contains eye-tracking data from
16 participants. (ii) The Coutrot1 and Coutrot2 datasets are
separated from the Coutrot dataset. The Coutrot1 dataset
contains 60 video clips covering 4 visual categories: one
moving object, several moving objects, landscapes, and
faces. The corresponding eye-tracking data are from 72
participants. The Coutrot2 dataset contains 15 video clips,
which record 4 persons having a meeting. The correspond-
ing eye-tracking data are from 40 participants. (iii) The
DIEM dataset contains 84 video clips including game trail-
ers, music videos, advertisements and etc. which are cap-
tured from 42 participants. It should be noted that the audio
and visual tracks in these videos do not correspond natu-
rally. The ETMD dataset contains 12 video clips from sev-
eral Hollywood movies, with the eye-tracking data anno-
tated by 10 different people. The SumMe dataset consists of
25 video clips with diverse topics, e.g., playing ball, cook-
ing, travelling, etc., and the corresponding eye-tracking data
are collected from 10 viewers.

4.1.2 Implementation Details
We use pre-trained S3D model [45] on Kinetics [9] and
pre-trained VGGish [23] on AudioSet [20]. The input sam-
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Figure 5. Performance analysis of CPC’s iterations on AVAD and
DIEM datasets.
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Visual
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Figure 6. Comparison of saliency maps with different CPC’s iter-
ations. GT denotes ground truth.

ples of the network consist of 16-frame video clips of size
224×384×3 with the corresponding audio stream, which is
transformed into 96 × 64 log-Mel spectrograms. For a fair
comparison, two different training strategies are designed
depending on whether the DHF1k dataset is used or not.
The first is to train the entire model on the six audio-visual
datasets from scratch. The other is to train the visual branch
of the model on the DHF1k dataset, and then use this weight
to fine-tune the entire model on these audio-visual datasets.
Both strategies end up with the same evaluation as [39].

For the CPC module, we mainly adopt 3D Conv layers
in the feedforward process and 3D Deconv layers in the it-
erative inference. The hyper-parameter α is set to 0.1. The
proposed training process chooses Adam as the optimizer
with the started learning rate of 1e-4. The loss weight is to
−0.1, i.e., λ1 = λ2 = −0.1. The computation platform is
configured by an NVIDIA GeForce RTX 3090 GPU with
batch-size 8 for entire experiments.
4.1.3 Evaluation metrics
For the evaluation of CASP-Net, four widely-used evalua-
tion metrics are adopted [8]: CC, NSS, AUC-Judd (AUC-

6446



Method Pretrained DIEM Coutrot1 Coutrot2
CC ↑ NSS ↑ AUC-J ↑ SIM ↑ CC ↑ NSS ↑ AUC-J↑ SIM ↑ CC↑ NSS↑ AUC-J↑ SIM↑

ACLNet(V) [44] - 0.522 2.02 0.869 0.427 0.425 1.92 0.850 0.361 0.448 3.16 0.926 0.322
TASED-Net(V) [31] - 0.557 2.16 0.881 0.461 0.479 2.18 0.867 0.388 0.437 3.17 0.921 0.314
STAViS(V) [39] - 0.567 2.19 0.879 0.472 0.458 1.99 0.861 0.384 0.652 4.19 0.940 0.447
STAViS(AV) [39] - 0.579 2.26 0.883 0.482 0.472 2.11 0.868 0.393 0.734 5.28 0.958 0.511
CASP-Net(V) - 0.638 2.54 0.902 0.529 0.555 2.65 0.882 0.449 0.756 6.01 0.961 0.566
CASP-Net(AV) - 0.649 2.58 0.904 0.536 0.560 2.66 0.887 0.453 0.766 6.11 0.963 0.573
ViNet(V) [26] DHF1k 0.626 2.47 0.898 0.483 0.551 2.68 0.886 0.423 0.724 5.61 0.95 0.466
ViNet(AV) [26] DHF1k 0.632 2.53 0.899 0.498 0.56 2.73 0.889 0.425 0.754 5.95 0.951 0.493
TSFP-Net(V) [10] DHF1k 0.649 2.63 0.905 0.529 0.57 2.75 0.894 0.451 0.718 5.30 0.957 0.516
TSFP-Net(AV) [10] DHF1k 0.651 2.62 0.906 0.527 0.571 2.73 0.895 0.447 0.743 5.31 0.959 0.528
CASP-Net(V) DHF1k 0.649 2.59 0.904 0.538 0.559 2.64 0.888 0.445 0.756 6.07 0.963 0.567
CASP-Net(AV) DHF1k 0.655 2.61 0.906 0.543 0.561 2.65 0.889 0.456 0.788 6.34 0.963 0.585

Table 4. Comparison of saliency on DIEM, Coutrot1 and Coutrot2 datasets. The experimental table is divided into two groups according
to whether the DHF1k dataset is used as pre-training data. We show the modalities used for each method in brackets: (V) for visual, and
(AV) for audio-visual.

Method Pretrained AVAD ETMD SumMe
CC ↑ NSS ↑ AUC-J ↑ SIM ↑ CC↑ NSS↑ AUC-J↑ SIM↑ CC↑ NSS↑ AUC-J ↑ SIM↑

ACLNet(V) [44] - 0.580 3.17 0.905 0.446 0.477 2.36 0.915 0.329 0.379 1.79 0.868 0.296
TASED-Net(V) [31] - 0.601 3.16 0.914 0.439 0.509 2.63 0.916 0.366 0.428 2.1 0.884 0.333
STAViS(V) [39] - 0.604 3.07 0.915 0.443 0.560 2.84 0.929 0.412 0.418 1.98 0.884 0.332
STAViS(AV) [39] - 0.608 3.18 0.919 0.457 0.569 2.94 0.931 0.425 0.422 2.04 0.888 0.337
CASP-Net(V) - 0.671 3.67 0.931 0.515 0.613 3.30 0.938 0.471 0.481 2.50 0.901 0.374
CASP-Net(AV) - 0.685 3.77 0.932 0.528 0.616 3.31 0.939 0.476 0.486 2.52 0.904 0.377
ViNet(V) [26] DHF1k 0.694 3.82 0.928 0.504 0.569 3.06 0.928 0.409 0.466 2.40 0.898 0.345
ViNet(AV) [26] DHF1k 0.674 3.77 0.927 0.491 0.571 3.08 0.928 0.406 0.463 2.41 0.897 0.343
TSFP-Net(V) [10] DHF1k 0.688 3.79 0.931 0.530 0.576 3.09 0.932 0.433 0.463 2.28 0.894 0.362
TSFP-Net(AV) [10] DHF1k 0.704 3.77 0.932 0.521 0.576 3.07 0.932 0.428 0.464 2.30 0.894 0.360
CASP-Net(V) DHF1k 0.681 3.75 0.931 0.526 0.616 3.31 0.938 0.471 0.485 2.52 0.904 0.382
CASP-Net(AV) DHF1k 0.691 3.81 0.933 0.528 0.620 3.34 0.940 0.478 0.499 2.60 0.907 0.387

Table 5. Comparison of saliency on AVAD, ETMD and SumMe datasets. The experimental table is divided into two groups according to
whether the DHF1k dataset is used as pre-training data. We show the modalities used for each method in brackets: (V) for visual, and (AV)
for audio-visual.

J), and SIM. The CC measures the linear correlation coef-
ficient between the ground truth and the predicted saliency
map. The NSS focuses on measuring the saliency value on
human fixations, the AUC-J is a location-based metric for
evaluating the predicted saliency map, and the SIM mea-
sures the similarity between the predicted saliency map and
the ground truth.

4.2. Ablation Studies

Table 1 and Table 2 show ablation studies on different
configurations of CASP-Net. All the ablations are per-
formed with the training on the AVAD and ETMD training
sets and evaluated on their validation sets. From Table 1,
three different architecture of decoders are compared w.r.t.
their parameters and performance, namely FCN, UNet and
Sal (ours). The FCN decoder simply uses multi-layers net-
work with architecture: 3D Deconv + ReLU + BN. UNet
decoder represents the progressive upsampling process that
alternates 3D Conv and Trilinear layers while adding UNet
skip connections operation. Experimental results show that
CASP-Net(Sal) outperforms CASP-Net(FCN) and CASP-
Net(UNet) with a smaller parameter quantity. It suggests
that the decoder FCN and UNet can be replaced in tasks

of dense prediction such as saliency prediction, and further
confirms the effectiveness of our proposed decoder.

To analyze the performance of each part in the proposed
work, a baseline model Visual-Only is formed based on
a visual encoder and a SalDecoder as shown in Table 2.
Moreover, the Bilinear fusion operation [38] is also intro-
duced to compare with the designed AVIM, the obtained
observations are listed below: (i) The combination of AVIM
and CPC can continuously improve the performance of the
model, which achieves the best performance, (ii) The lin-
ear version of AVIM has roughly the same performance as
the quadratic version, but the computational complexity is
much lower, (iii) The Bilinear-based model performs much
worse than the AVIM-based model, and even not better than
the Visual-Only model. This means that the ability of audio-
visual feature aggregation from Bilinear operation is infe-
rior to that of the proposed AVIM.
Cross-modal Interaction at Various Stages. For cross-
modal interaction, the AVIM has a plug-in architecture that
can be applied in any stage. As shown in the Table 3, the
prediction performance fluctuates when the AVIM is used in
different single stage. On both AVAD and ETMD datasets,
it is noticed that AVIM performs better in the second and
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third stages because the acquired semantics of the visual
features is limited in the initial stage. Since our SalDecoder
adopts a skip-connection, it would be beneficial to apply
the AVIM in multiple stages, as verified in the right part of
Table 3. On both datasets, the best performance is achieved
by applying AVIM at four stages, which also indicates the
model has the ability to fuse and balance the features from
multiple stages.
Further Analysis of CPC. The impact of the iterative num-
ber of the CPC on its performance also needs to be ana-
lyzed. Figure 5 shows that the prediction metrics tend to rise
when more iterative computations are performed, especially
in the first three iterations. Thus, the iteration number N is
set to 3 by default. Figure 6 depicts the predicted saliency
maps of our method on some audio-visual samples, which
shows that the CPC iteratively resolves the internal incon-
sistencies in audio and visual features. It is also noticed
that the saliency maps are inaccurate in early iterations, till
later iterations, the model has corrected itself to pay more
accurate attention to the objects of interest.

4.3. Comparisons with State-of-the-art Methods
The proposed CASP-Net is compared with recent state-

of-the-art saliency works on six audio-visual datasets as
shown in Table 4 and Table 5. The experiment results
can be divided into two groups according to whether the
DHF1k dataset is used as pre-training data. Results in the
two groups highlight the superiority of the proposed audio-
visual scheme, as it outperforms the other state-of-the-art
works on almost all datasets and metrics. It can be observed
that the CASP-Net is able to significantly surpass the prior
saliency predictions, such as STAViS [39] and TASED-
Net [31], with the configuration trained on six audio-visual
datasets directly. The CASP-Net(AV) achieves an aver-
age performance improvement of 11.5% CC and 13% SIM
compared to STAViS(AV), and becomes a new state-of-the-
art on six benchmarks.

The proposed work also shows an obvious superiority
in audio-visual saliency prediction with the DHF1k pre-
training dataset. Compared to ViNet [26] and TSFP-Net
[10], the CASP-Net(AV) achieves the best performance in
most datasets, especially on the Countrot2, ETMD and
SumMe test sets. Moreover, after incorporating audio fea-
tures into the pure visual model, the relative improvement
on these three datasets is the most significant (average 3 %
relative improvement in CC and 2 % relative improvement
in SIM). This reflects the high audio-visual correspondence
of three datasets, as well as the model’s capability to take
full advantage of these audio-visual cues. Overall, the ex-
periment results in both groups have shown that pre-training
on a large-scale video dataset enables the proposed CASP-
Net to be effectively generalized on the other datasets. For
qualitative analysis, the CASP-Net is further compared with
the STAViS and ViNet on Coutrot2, ETMD, AVAD and

SumMe datasets to show superior performance.

In Figure 7, the advantages of the proposed work have
been demonstrated in the audio-visual scenarios having
multiple speakers. The first and second rows are the frames
and the corresponding ground truth saliency map. The third
row presents the prediction saliency maps from our CASP-
Net, and the final 2 rows are the same maps for STAViS
and ViNet. In particular, our results are closer to the ground
truth.
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Figure 7. Sample frame from Coutrot2, ETMD, AVAD and
SumMe databases with their eye-tracking data, and the cor-
responding ground truth, CASP-Net, and other state-of-the-art
audio-visual saliency maps for comparisons.

5. Conclusion
We propose a consistency-aware audio-visual saliency

prediction network (CASP-Net), which effectively ad-
dresses potential audio-visual inconsistency in video
saliency prediction. A two-stream network is designed to
elegantly associate video frames with the corresponding
sound source, achieving cross-modal semantic similarities
between audio and visual features. In addition, a novel
consistency-aware predictive coding module is introduced
to improve the consistency within audio and visual repre-
sentations iteratively. Besides, a saliency decoder is also
designed to aggregate the multi-scale audio-visual infor-
mation and obtain the final saliency map. Experiments
show surprising results that CASP-Net outperforms 5 state-
of-the-art approaches on 6 challenging audio-visual eye-
tracking datasets.
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