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Figure 1. UltraLiDAR learns discrete representations from large-scale LiDAR point clouds and conduct realistic, scalable and controllable
LiDAR completion and generation. Top row: Sparse-to-dense LiDAR completion; Second row: Controllable manipulation of real
LiDAR with actor removal and insertion; Third row: Diverse LiDAR generation with realistic global structure and fine-grained details;
Bottom row: Conditional scene generation with partially observed point clouds (highlighted in red). Please see supp. for more examples.

Abstract
LiDAR provides accurate geometric measurements of the

3D world. Unfortunately, dense LiDARs are very expensive
and the point clouds captured by low-beam LiDAR are often
sparse. To address these issues, we present UltraLiDAR, a
data-driven framework for scene-level LiDAR completion,
LiDAR generation, and LiDAR manipulation. The crux of
UltraLiDAR is a compact, discrete representation that en-
codes the point cloud’s geometric structure, is robust to
noise, and is easy to manipulate. We show that by aligning
the representation of a sparse point cloud to that of a dense
point cloud, we can densify the sparse point clouds as if they
were captured by a real high-density LiDAR, drastically re-
ducing the cost. Furthermore, by learning a prior over the
discrete codebook, we can generate diverse, realistic LiDAR

point clouds for self-driving. We evaluate the effectiveness
of UltraLiDAR on sparse-to-dense LiDAR completion and
LiDAR generation. Experiments show that densifying real-
world point clouds with our approach can significantly im-
prove the performance of downstream perception systems.
Compared to prior art on LiDAR generation, our approach
generates much more realistic point clouds. According to
A/B test, over 98.5% of the time human participants pre-
fer our results over those of previous methods. Please re-
fer to project page https://waabi.ai/research/
ultralidar/ for more information.

1. Introduction
Building a robust 3D perception system is key to bring-

ing self-driving vehicles into our daily lives. To effectively

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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perceive their surroundings, existing autonomous systems
primarily exploit LiDAR as the major sensing modality,
since it can capture well the 3D geometry of the world.
However, while LiDAR provides accurate geometric mea-
surements, it comes with two major limitations: (i) the cap-
tured point clouds are inherently sparse; and (ii) the data
collection process is difficult to scale up.

Sparsity: Most popular self-driving LiDARs are time-of-
flight and scan the environment by rotating emitter-detector
pairs (i.e., beams) around the azimuth. At every time step,
each emitter emits a light pulse which travels until it hits a
target, gets reflected, and is received by the detector. Dis-
tance is measured by calculating the time of travel. Due
to the design, the captured point cloud density inherently
decreases as the distance to the sensor increases. For dis-
tant objects, it is often that only a few LiDAR points are
captured, which greatly increases the difficulty for 3D per-
ception. The sparsity problem becomes even more severe
under poor weather conditions [47], or when LiDAR sen-
sors have fewer beams [4]. One “simple” strategy is to in-
crease the number of LiDAR beams. However, 128-beam
LiDAR sensors are much more expensive than their 64/32-
beam counterparts, not to mention that 512-beam LiDAR
does not exist yet.

Scalability: Training and testing perception systems in
diverse situations are crucial for developing robust au-
tonomous systems. However, due to their intricate design,
LiDARs are much more expensive than cameras. A com-
mercial 64-beam LiDAR usually costs over 25K USD. The
price barrier makes LiDAR less accessible to the general
public and restricts data collection to a small fraction of ve-
hicles that populate our roads, significantly hindering scal-
ing up. One way to circumvent the issue is to leverage exist-
ing LiDAR simulation suites to generate more data. While
the simulated point clouds are realistic, these systems typ-
ically require one to manually create the scene or rely on
multiple scans of the real world in advance, making such a
solution less desirable.

With these challenges in mind, we propose UltraLiDAR,
a novel framework for LiDAR completion and generation.
The key idea is to learn a compact, discrete 3D represen-
tation (codebook) of LiDAR point clouds that encodes the
geometric structure of the scene and the physical rules of
our world (e.g., occlusion). Then, by aligning the represen-
tation of a sparse point cloud to that of a dense point cloud,
we can densify the sparse point cloud as if it were captured
by a high-density LiDAR (e.g., 512-beam LiDAR). Further-
more, we can learn a prior over the discrete codebook and
generate novel, realistic driving scenes by sampling from it;
we can also manipulate the discrete code of the scene and
produce counterfactual scenarios, both of which can drasti-
cally improve the diversity and amount of LiDAR data. Fig.
1 shows some example outputs of UltraLiDAR.

We demonstrate the effectiveness of UltraLiDAR on two
tasks: sparse-to-dense LiDAR completion and LiDAR gen-
eration. For LiDAR completion, since there is no ground
truth for high-density LiDAR, we exploit the performance
of downstream perception tasks as a “proxy” measure-
ment. Specifically, we evaluate 3D detection models on
both sparse and densified point clouds and measure the per-
formance difference. Experiments on Pandaset [46] and
KITTI-360 [27] show that our completion model can gen-
eralize across datasets and the densified results can signifi-
cantly improve the performance of 3D detection models. As
for LiDAR generation, we compare our results with state-
of-the-art LiDAR generative models [3, 53]. Our generated
point clouds better match the statistics of those of ground
truth data. We also conducted a human study where par-
ticipants prefer our method over prior art over 98.5% (best
100%) of the time; comparing to ground truth, our results
were selected 32% of the time (best 50%).

To summarize, the main contributions of this paper are:

1. We present a LiDAR representation that can effectively
capture data priors and enable various downstream ap-
plications, e.g., LiDAR completion and generation.

2. We propose a sparse-to-dense LiDAR completion
pipeline that can accurately densify sparse point clouds
and improve the performance and generalization abil-
ity of trained detection models across datasets.

3. We develop an (un)conditional LiDAR generative
model that can sythesize high-quality LiDAR point
clouds and supports various manipulations.

2. Related Work
LiDAR / Depth Completion: Sparse LiDAR/depth com-
pletion is a beneficial task for many robotic applications as
it can provide more accurate geometry for holistic scenes
compared to images. LiDAR scene completion has been
studied and attracted the computer vision community’s at-
tention in recent years [2,9,34,35,42,48], while the progress
has been pushing forward, most of them focus on directly
predicting semantic labels for the completed coarse voxels
without fine-grained geometry information, thus no other
downstream tasks are benefited. More recently, SPG [47]
was proposed for unsupervised domain adaptation for 3D
object detection via foreground point completion. How-
ever, its completion target is generated by heuristics, thus
an improved holistic understanding of the scene is hard to
achieve. Depth completion [43] instead solves the problem
by relying on a sparse lidar sweep and a paired RGB im-
age to compute a 2.5D pseudo-depth image. However, this
problem is ill-posed as monocular images contain ambigui-
ties and the field of view is also limited. Thus, the accuracy
is hard to improve, and it’s difficult to reconstruct whole
scenes at scale. Our model instead tackles this problem
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Figure 2. Overview of UltraLiDAR pipeline. For (a) LiDAR completion, the sparse encoder maps the sparse point cloud to discrete
codes, and the dense decoder reconstructs dense data from them; For (b) LiDAR generation, the transformer model starts from a blank
canvas or canvas with codes mapped from the partial observations; and iteratively predicts and updates the missing parts. The decoder
produces the LiDAR output given the predicted code as the generation results.

from a representation learning perspective. It captures the
data prior in advance with robust discrete representations
thus generalizing better. It also completes the full scene
with a higher-beam LiDAR pattern, which is generic to var-
ious downstream tasks.

3D Generation: Inspired by the tremendous progress in
2D image generation [11,18,25], 3D content generation has
attracted more and more attention in recent years. Existing
works demonstrated the high-quality generation in differ-
ent representations including point cloud [1,3,50,52], voxel
grid [16, 21, 29, 41, 45], mesh [14, 17, 19, 39] or implicit ge-
ometry [5, 6, 38]. However, these works usually focus on
the object level and cannot handle large scenes (due to non-
compact representation, large memory footprint and limited
model capacity). To enable larger-scale scene synthesis, re-
cent works either define a more compact output space or
procedurally generate the scenes [31, 32]. Unfortunately,
the generated scenes are still quite limited (e.g., indoor en-
vironments) and there are only few works focusing on large-
scale scene generation for self-driving. In this paper, we fo-
cus on the generation of LiDAR point clouds that are highly
unstructured, sparse, and non-uniform. [3] and [36] use
the variational autoencoder (VAE) or generative adversarial
network (GAN) on LiDAR point clouds but the generation
realism is quite limited. Most recently, researchers propose
a novel score-matching diffusion model for higher-quality
LiDAR generation [53] but keep only limited local geom-
etry details and global scenario structures. In contrast, we
present a generic framework to learn discrete representa-
tions to better maintain the structure and semantic informa-
tion for a more realistic and controllable generation.

Learning Discrete Representations: VQ-VAE [44] pro-
posed to learn discrete representations by compressing im-
ages into discrete latent space. It primarily consists of three
components: an encoder that learns to map the input im-
age into latent feature maps; a codebook that contains a set
of learnable latent embeddings where the feature maps are
quantized via nearest neighbor lookup; and a decoder that
reconstructs the input image from the quantized code. [33]
used a multi-scale hierarchical architecture to capture local
and global information in separate codebooks. Based on the
learned codebook and decoder in VQ-VAE, VQ-GAN [13]

proposed to use of a transformer model for image gener-
ation. More recently, MaskGIT [7] shows that the learned
codebook and the decoder are capable of generating impres-
sive realistic RGB images by using mask modeling with bi-
directional transformers. However, all existing works focus
on 2D natural images and it is non-trivial to handle sparse,
unstructured LiDAR points. To our best knowledge, this pa-
per is the first work that conducts discrete representation in
the 3D domain and achieves state-of-the-art performance in
large-scale LiDAR scene completion and generation.

3. UltraLiDAR
In this paper, we seek to learn a compact 3D represen-

tation of scene-level LiDAR point clouds to enable a se-
ries of downstream applications, such as sparse-to-dense Li-
DAR completion, (un)conditional LiDAR generation, and
LiDAR manipulation. Based on the observation that vec-
tor quantized (VQ) representations [13, 33, 44] are robust
to noise, easy to manipulate, and naturally compatible with
generative models, we propose to learn a discrete codebook
for LiDAR point clouds and build our model on top of it.

We start by reviewing the basics of vector-quantized
variational autoencoder (VQ-VAE) [44], a building block
of our approach. Then we showcase how to exploit similar
concepts to encode 3D point clouds into a discrete code-
book. Finally, we discuss how to exploit the discrete repre-
sentation for different tasks.

3.1. Discrete Representations for LiDAR

VQ-VAE revisit: The goal of VQ-VAE is to learn a dis-
crete latent representation that is expressive, robust to noise,
and compatible with generative models. VQ-VAE con-
sists of three parts: (i) an encoder E that encodes the in-
put signal, which for simplicity we assume to be an image,
x ∈ RH×W×3 to a continuous embedding map z = E(x) ∈
Rh×w×D, (ii) an element-wise quantization function q that
maps each embedding to its closest learnable latent code
ek ∈ RD, with k = 1, ...,K, and (iii) a decoder G that takes
as input the quantized representation ẑ = q(z) and outputs
the reconstructed image x̂ = G(ẑ). The whole model can
be trained end-to-end by minimizing:

Lvq = ∥x− x̂∥22 + ∥sg[E(x)]− ẑ∥22 + ∥sg[ẑ]− E(x)∥22,
(1)
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Figure 3. LiDAR completion and 3D detection on Pandaset. With densified point clouds, the detection model can identify more objects
and reduce false negatives. We show detection results in red boxes and ground truth in blue. The missing area far away from ego vehicle
in the densified results is caused by uphill; we refer the reader to the supp. material for the explanation with camera visualization.

where sg[·] denotes the stop-gradient operation.
The limited number of discrete codes e stabilizes the in-

put distribution of the decoder during training; it also forces
the codes to capture meaningful, re-usable information as
the decoder can no longer “seek shortcut” from the con-
tinuous signals for the reconstruction task. VQ-VAE has
enjoyed great success across different modalities, such as
natural images [7, 13], audio [44] and 2.5D images [40]. In
this work, we further extend it to learn discrete representa-
tions for 3D LiDAR point clouds.

VQ-VAE for LiDAR: We aim to learn a discrete code-
book that can effectively represent a set of LiDAR point
clouds. Directly applying VQ-VAE, however, is challeng-
ing, since the fixed set of discrete latents will have to model
point clouds that live in a continuous 3D space, and deal
with the fact that each point cloud may have a different
number of points. To address these issues, we propose to
voxelize the point clouds and instead infer whether each
voxel is occupied or not. By grounding the point clouds
with a pre-defined grid (similar to the 2D pixel grid of im-
ages), we can foster the discrete codebook to learn the over-
all structure rather than the minor 3D positional variations.
This representation also can naturally handle the varying
number of points. While we may sacrifice some precision
during the voxelization process, the impact is negligible for
both LiDAR completion and generation (see Sec. 4).

Now that we have a voxelized point cloud, the next step
is to design the encoder E and the decoder G. For large
scenes with high resolution, 3D convolution becomes very
expensive since we need to infer the occupancy of each
voxel densely. We thus convert the input to Birds-Eye-View
(BEV) images by treating the height dimension of the voxel
grids as feature channel C and then adopt 2D convolutions
instead. In this case, we can process 3D LiDAR data just
like 2D images; we can also exploit existing model archi-
tectures designed for 2D images directly. We note that such
BEV images have been widely adopted in the context of
self-driving perception [8, 51], since they encode rich geo-
metric information. The output of the decoder is a logit grid
x̂ ∈ RH×W×C . It can be further converted to a binary voxel
grid x̂bin ∈ {0, 1}H×W×C through gumbel softmax [23].

Finally, we train our LiDAR VQ-VAE model with Eq. 1,
except that we replace the ℓ2 reconstruction loss with a bi-
nary (occupied or not) cross-entropy loss. To improve the

realism of the reconstruction, we further adopt a pre-trained
voxel-based detector V and measure the feature difference,
similar to perpectual loss [24]. Our full loss is:

Lfeat = Lvq + ∥Vb(x)− Vb(x̂
bin)∥22. (2)

Vb denotes the feature from the last backbone layer of V .

LiDAR manipulation: Once we train the model, we can
easily manipulate arbitrary LiDAR point clouds by editing
their corresponding latent codes. Since objects are spatially
apart in 3D, the model can dedicate specific codes for them.
We can thus identify the codes for objects of interest (e.g.,
vehicles) and insert/remove them into/from the scene. As
shown in Sec. 4, we can populate many vehicles on the
street and create counterfactual scenarios.

3.2. LiDAR Completion

Given a dataset of paired, voxelized LiDAR point clouds
{(xsp

1 ,x
den
1 ), ..., (xsp

N ,xden
N )}, the goal of LiDAR completion

is to learn a function f that maps a sparse LiDAR point
cloud xsp to its dense counterpart xden.

One straightforward strategy is to leverage the pairwise
supervision and directly learn a pix2pix-style network [22]
but on voxels. While this model performs well within the
same data distribution, it degrades significantly when the
input distribution shifts (e.g., when the sparse LiDAR point
clouds come from different datasets). We conjecture that
this is because there is no restriction on the learned rep-
resentation, and the model learns to “cheat” by relying on
non-generalizable details rather than the overall structure.

In this section, we investigate the use of discrete repre-
sentations to alleviate the issue. We first learn a discrete
codebook {eden

1 , ..., eden
K }, an encoder Eden, and a decoder

Gden for each dense LiDAR point cloud xden using the ap-
proach in Sec. 3.1. Then we learn a separate encoder Esp

that maps each sparse LiDAR point cloud xsp to the same
feature space zsp = Esp(xsp) and quantize it with the dense
discrete representation eden. Finally, we decode the quan-
tized representation ẑsp = q(zsp) with the dense decoder
Gden and obtain a densified point cloud x̂sp-den = Gden(ẑsp).
With the help of the learned codebook, we can ensure the
input to the dense decoder Gden is in-domain and the recon-
structed point clouds are high-quality; we can also denoise
the embedding from the encoder and better handle the vari-
ations and distribution shift within the input data.
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Real (not paired, reference only) Projected GAN LiDAR Gen Ours

Figure 4. Qualitative comparison against baselines on unconditional LiDAR generation. We compare with two state-of-the-art LiDAR
generation methods Projected GAN [37] and LiDARGen [53] and include real data for reference. Our model can generate results with
more structured layouts and clearer beam patterns.

Training: In practice, we jointly train the sparse encoder
Esp and the dense VQ-VAE model, since it achieves slightly
better performance than performing two-stage training. We
hypothesize this is because joint training allows the model
to learn a codebook that is easy to decode, and achieves low
quantization error for both encoders Esp and Eden. We use
the same loss functions in Sec. 3.1 to train the whole model,
except that the reconstructed target is always the dense point
cloud (which we can obtain from the paired data).

3.3. LiDAR Generation

As we have alluded to earlier, the learned discrete repre-
sentations can be naturally combined with generative mod-
els. In this section, we describe in detail how we exploit
the discrete codebook to generate high-fidelity LiDAR point
clouds, both unconditionally and conditionally.

Unconditional generation: Given the learned codebook
e and the decoder G, the problem of LiDAR generation can
be formulated as code map generation. Instead of directly
generating LiDAR point clouds, we first generate discrete
code maps in the form of code indices. Then we map the in-
dices to discrete features by querying the codebook and de-
coding them back to LiDAR point clouds with the decoder.
Following Chang et al. [7], we adopt a bi-directional self-
attention Transformer [7, 20] to iteratively predict the code
map. Specifically, we start from a blank canvas. At each
iteration, we select a subset of the predicted codes with top
confidence scores and update the canvas accordingly. With
the help of the Transformer, we can aggregate context from
the whole map and predict missing parts based on already
predicted codes. In the end, the canvas will be filled with
predicted code indices, from which we can decode LiDAR
point clouds. We refer the reader to [7] for more details.

Conditional generation: Our unconditional LiDAR gen-
eration pipeline can be easily extended to perform condi-
tional generation. Instead of starting the generation process
from an empty canvas, one can simply start with a partially
filled code map and let the Transformer predict the rest. For
instance, we can place [CAR] codes at regions of interest;

and run the model multiple times. We can then obtain dif-
ferent traffic scenarios with the pre-defined cars untouched.
Please refer to supp. material for how we identify the codes.

Free space suppression sampling: Our iterative genera-
tion procedure can be viewed as a variant of coarse-to-fine
generation. The codes generated during early iterations de-
termine the overall structure, while the ones generated at
the end are in charge of fine-grained details. While this
pipeline is effective for image generation [7], it may lead to
degenerated results when generating LiDAR point clouds.
One critical reason is that LiDAR point clouds are sparse,
and a large portion of the scene is represented by the same
[BLANK] codes. Since the [BLANK] codes occur fre-
quently, the Transformer tends to predict them with high
scores. If we naively sample the codes based on the out-
put of the Transformer, we may fill most of the canvas with
[BLANK] codes, and little structure will remain. To ad-
dress this issue, we suppress the [BLANK] codes during
the early generation stages by setting their probability to 0.
This ensures the model generates meaningful structures in
the beginning. We identify the [BLANK] codes by look-
ing at the occurrence statistic of all codes across the whole
dataset. We empirically select the top as [BLANK] codes.

Iterative denoising: With free space suppression sam-
pling, we can already obtain good results. However,
the generated point clouds sometimes still contain high-
frequency noise (e.g., there might be some floating points
in the very far range). To mitigate this issue, we randomly
mask out different regions of the output LiDAR point clouds
and re-generate them. The intuition is that if we mask out a
structured region, we can still recover it through the neigh-
borhood context. However, if the masked region corre-
sponds to pure noise that is irrelevant to the surrounding, it
will likely be removed after multiple trials (since the model
cannot infer it from the context).

Training: We first encode all LiDAR point clouds into
frozen discrete representations (code maps) learned in Sec.
3.1. Then, at each training iteration, we randomly mask
out a subset of codes. Finally, we adopt the bi-directional
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Model Sparse to
Dense

Two-stage PIXOR PointPillar
APBEV AP3D APBEV AP3D

Real / 64 - 79.3 62.2 75.5 62.3
Sim / 512 - 78.1 57.7 70.0 55.5
Sim / 512 ContComp 79.7 62.4 75.1 59.8
Sim / 512 Ours 80.3 64.3 76.0 62.8

Table 1. Results on PandaSet. We evaluate all models on Pan-
daSet real 64-beam data, and perform sparse-to-dense during in-
ference optionally with ContComp and our model.

Transformer to predict the correct code for those masked
regions. Since we have GT code map, we supervise the
model with cross-entropy loss. See [7] for more details.

3.4. Implementation Details

In this section, we discuss implementation details that
are crucial for learning discrete LiDAR representations.

Voxel sizes matter: We set the input voxel size to be
15.625 × 15.625 × 15 cm for x, y, z dimensions. We find
that the downsampling ratio when mapping the BEV im-
age to the discrete code has a huge impact on both recon-
struction and generation performance. If the patch size that
each discrete code represents is too large, a single fixed code
does not have enough capacity to model the variations (e.g.,
a small position/rotation shift of a car inside the patch).
We empirically find that downsampling 8× achieves a good
trade-off between preserving high-frequency information in
the LiDAR data and maintaining high-level semantic mean-
ing. Thus the patch size is 8 × 8, leading to 1.25 × 1.25 m
on the spatial dimension that each code represents.

Model hyperparameters: As a typical BEV image usu-
ally has a large spatial range, the resolution of the image
and the number of codes are high. We use Swin Trans-
former [28] instead of the vanilla Vision Transformer [12]
to reduce the computational cost for our generative Trans-
former model. It has 24 layers and 8 heads, and the em-
bedding dimension is set to 512. All other training hyper-
parameters like optimizer settings and label smoothing are
kept the same as in [7]. For simplicity, we use the same
architecture in our VQ-VAE learning. The encoder and de-
coder are both Swin Transformers with 12 layers, respec-
tively. We set the codebook size to 1024 with 1024 hidden
dimensions for each code.

Codebook (re)-initialization: We empirically find that
the codebook can easily collapse (only a few codes are
used) during training. For better codebook learning, we
use data-dependent codebook initialization. Specifically,
we use a memory bank to store the continuous embedding
output from the encoders at each iteration; and use K-Means
centroids of the memory bank to initialize/reinitialize the
codebook if the code utilization percentage is lower than a
threshold (empirically, we define a code is not used for 256
iterations as “dead code” and set the threshold to be 50%).
During the first 2000 iterations of training, we gradually

Model Sparse to
Dense

Two-stage PIXOR PointPillar
APBEV AP3D APBEV AP3D

Real / 64 - 71.7 32.8 60.9 28.1
Sim / 512 - 66.9 33.2 58.5 28.0
Sim / 512 ContComp 74.9 41.5 67.7 36.9
Sim / 512 Ours 76.7 46.3 73.0 40.9

Table 2. PandaSet → KITTI Cross-Dataset Evaluation. The
detection and LiDAR completion models are trained on PandaSet,
and no KITTI data is seen/used before evaluation. Our LiDAR
completion model can do reliable completion on unseen data and
significantly improve the detector performance in zero-shot.

shifted the decoder input from continuous to quantized em-
beddings as a warmup. We find these strategies help achieve
good codebook learning and utilization.

4. Experiments

4.1. Perception with LiDAR Completion
We first conduct experiments to verify that UltraLiDAR

can boost the performance of a 3D detection model per-
formance by performing LiDAR completion and using the
densified results as detection model input. To show that our
model generalizes well and can generate reliable sparse-to-
dense results across datasets with the learned discrete rep-
resentations, we further test the models on KITTI [15] that
are trained on PandaSet [46]. We also evaluate our model
on the SemanticKITTI scene completion benchmark [2] and
show that our model with a generic design can be on par
with models on the leaderboard that are heavily tuned for
this task.

Dataset: We train UltraLiDAR and the 3D detection mod-
els on PandaSet [46]. We reimplement LiDARsim [30] to
generate the 512-beam LiDAR data paired with the real 64-
beam LiDAR sweeps (i.e., the actor placement and back-
ground are identical) and obtain the sparse-to-dense super-
vision. We use a custom train/validation split since there is
no official split; we refer the readers to the supp. materi-
als for more details. We use KITTI [15] dataset for cross-
dataset generalization evaluation; the validation set is used
to obtain results, and no model is trained on it. For Se-
manticKITTI, we use the official train and test split.

Evaluation metrics: To evaluate 3D detection we use the
KITTI metrics and report APBEV and AP3D of the car cat-
egory at IoU = 0.7. For the SemanticKITTI scene comple-
tion benchmark, we report Intersection-over-Union (IoU),
which classifies a voxel as occupied or empty.

Training and implementation details: We use two base
detectors for the 3D detection benchmark: PointPillar [26]
from mmdetection3d [10], and a BEV detector which we
denote Two-stage PIXOR, which improves over [49] by
adding a second stage RoI refinement branch; more details
of Two-stage PIXOR can be found in the supp. materials.
We also modified PointPillar to make it use binary voxels
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SCCNet [42] JS3C-Net [48] Local-DIFs [34] Ours
IoU 29.8 56.6 57.7 56.0

Table 3. SemanticKITTI semantic scene completion results.
Our model with generic design can achieve on-par performance
with state-of-the-art methods that employ architectures/modules
heavily tuned for this task.

instead of pillar features as input; so that the LiDAR com-
pletion results from our model can be used. The voxel size
for detectors is set to be the same as UltraLiDAR. For Se-
manticKITTI, the input data is preprocessed as voxel data,
and we directly use it without modification.

Baselines: We first train detectors on PandaSet real data
with 64-beam and simulated data with 512-beam, denoted
as Real/64 and Sim/512, respectively; during inference, we
perform sparse-to-dense LiDAR completion to densify the
sparse real data for the Sim/512 model. We also train a
LiDAR completion model without the codebook and quan-
tization function (the model thus behaves like an AutoEn-
coder with sparse-to-dense supervision) as another baseline,
denoted as ContComp. We evaluate all models with Pan-
daSet real data; when testing the generalization ability on
KITTI dataset, we directly evaluate all models trained on
PandaSet in zero-shot (i.e., no KITTI data is seen/used be-
fore the evaluation) with KITTI real data.

PandaSet results: From the first two rows in Tab. 1, we
can see that the Sim/512 models perform worse than their
Real/64 counterparts when evaluating on the real data. This
is expected as there is a domain gap between the dense and
sparse data, and the models may learn to rely on the richer
geometry information in the dense data that does not ex-
ist in the sparse counterpart. However, if we perform the
sparse-to-dense operation and lift the model to a higher den-
sity, we can see a decent performance improvement over the
Sim/512 model. Moreover, we see that our model performs
better than the ContComp model that uses continuous rep-
resentations, indicating the effectiveness of using discrete
representation in this task.

Cross-dataset genearlization results: To verify the gen-
eralization ability of our model, we directly test it on KITTI
in a zero-shot manner, that is without seeing KITTI data
in advance. As shown in Tab. 2, both entries that utilize
sparse-to-dense achieve better performance, and even sur-
pass the Real/64 model, showing the benefits of sparse-to-
dense completion. Since the discrete representation is nat-
urally more robust to noise because of the quantization op-
eration, our model with discrete representations can outper-
form ContComp by a very significant margin when doing
zero-shot generalization, once again showing the benefits
of using discrete representations.

SemanticKITTI results: We further test our model on
SemanticKITTI scene completion benchmark. As shown
in Tab. 3, our model can achieve on-par performance with

Method MMDBEV ↓ JSDBEV ↓
LiDAR VAE [3] 1.18× 10−3 0.256
LiDAR GAN [3] 2.07× 10−3 0.275

Projected GAN [37] 1.25× 10−3 0.190
LiDARGen [53] 4.80× 10−4 0.140

Ours 9.67× 10−5 0.132

Table 4. Quantitative results on KITTI-360. Our results show
better statistical alignment with the real data.

state-of-the-art methods [34, 35, 48] that employ architec-
tures and operations heavily tuned for this task, for ex-
ample shape-aware point-voxel interaction [48] or multi-
resolution scene representation [34, 35].

4.2. LiDAR Scene Generation

We first compare quantitative results on KITTI-360 [27]
with other baselines in the unconditional generation setting.
In this case, we directly train our model with the sparse-to-
sparse reconstruction task without the dense encoder; and
use the sparse encoder to generate code maps in the gen-
erative model training instead. We follow LiDARGen [53]
and use the first two sequences as the validation set and use
the rest for model training. In Fig. 41, we show the qual-
itative comparison between our model and two baselines;
and include the real data for reference. We can see that our
model can generate results that are much more similar to the
real data, with more structured and reasonable scene layouts
and more stable/clearer beam patterns. More unconditional
generation results on KITTI-360 can be found in the second
row of Fig. 1 and supp. materials.

Quantitative results: Following [53], we use
the Maximum-Mean Discrepancy (MMD) and
Jensen–Shannon divergence (JSD) with a 100 × 100
2D histogram along the ground plane (x and y coordinates)
as metrics. Since our model generates points based on
voxels, the number of points may differ from the real point
cloud. We thus use occupancy as a measurement when
doing histogram bin count (i.e., points from the same voxel
will only count once) for point clouds from real data and
other baselines. We believe this change captures the global
structure difference better and lowers the weight on the
local point density estimation, which is more reasonable
and aligns better with the perceptual quality. As shown
in Tab. 4, our method achieves superior performance
compared with the baselines.

Model parameters: We calculate the number of parame-
ters to make sure the model capacities are at the same level
when compared with baselines. The number of parameters
of LiDARGen [53] and our model are 29.7M and 40.3M,
which are both smaller than a standard Swin-Small model.

1We contacted the authors of [53] to obtain outputs of all models they
used for visualization and metrics calculation
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Method Percent Prefer Ours
Ours vs LiDAR VAE [3] 99.5%
Ours vs LiDAR GAN [3] 100%

Ours vs ProjGAN [37] 100%
Ours vs LiDARGen [53] 98.5%

Table 5. Human study results on KITTI-360. Results from our
model show significantly better visual quality.

BEV BEV

Figure 5. Unconditional generation results on Pandaset. We
train our model on dense Pandaset data and generate dense results.
The generated samples show diverse scenario layouts with proper
actor placement (e.g., parked car in the right sample). The synthe-
sized point clouds are realistic such that a pre-trained detector can
directly work out-of-the-box.

Human study: We perform an A/B test on a set of 8 re-
searchers who have LiDAR expertise to better evaluate the
visual quality of the generated samples. We use the same
test system as [53], which shows a pair of randomly chosen
images of two point clouds each time and lets the human
decide which one is more realistic. We compare with four
baselines as well as with the real data, with 200 image pairs
each, leading to 1000 image pairs in total. We show the per-
centage of examples where participants believed our gener-
ations are more realistic against other baselines in Tab. 5.
It is clear that our model can generate results with superior
visual quality; over 98.5% of the time (100% for some base-
lines), the testers prefer our results over the baselines. It is
worth noting that in 32% cases, people believe our results
are more realistic than real data, which is very significant
given the fact that for data that is indistinguishable from
real, the winning ratio would be 50% with random choice.

Unconditional generation: Besides the KITTI-360 re-
sults in Fig. 4 and 1, we also train our model on dense
Panadset for dense point cloud generation; and additionally
run detection models on the generated samples, shown in
Fig. 5. We can see that our model is able to generate diverse
scenes with proper actor placement (e.g., parked car in the
right example), indicating the superiority of our model for
this LiDAR generation task. Moreover, the excellent detec-
tion results showcase that the generated samples also have
high fidelity w.r.t. the perception model.

Conditional generation: We show conditional genera-
tion results on KITTI-360 in the bottom row of Fig. 1. Our
model can fully exploit the visible part(colored by purple)
as context, do reasonable extrapolation for the surrounding
environment, and generate diverse scenes (e.g., curved road
or crossroad) that align with the input condition well. See
supp. materials for more results on KITTI-360/PandaSet.

Range View

Figure 6. Conditional LiDAR generation for dirt removal. We
mask the red rectangular region in the range view image to mimic
dirt occluder. Left: Original input. The masked region is not vis-
ible to the model. Right: Our generation results. Our model can
successfully recover the vehicle that is partially observed.

Meanwhile, we further consider a practical setting where
the LiDAR sensor can fail for a specific region due to dirt or
mechanical issues. To mimic this situation, we mask a part
of the range images, as shown in Fig. 6. We can see that
our model can still do accurate completion even on partially
visible cars, recovering the occluded region, and potentially
avoiding dangerous situations.

Manipulation: We show manipulation results with actor
insertion and removal in the second row of Fig. 1. This
is achieved by explicitly changing the code indices on the
code map and letting the decoder generate new results. For
example, we can copy the codes for the ground plane and
paste them to overwrite the region where a car exists, re-
sulting in a controllable manipulation process. We refer the
readers for more results in supp. materials.

5. Conclusion
In this paper, we propose a framework to learn novel Li-

DAR representations that effectively capture the data pri-
ors that enable various downstream applications, including
scene completion and generation. Based on the learned rep-
resentation, we propose a novel sparse-to-dense data recon-
struction pipeline that can accurately densify the sparse in-
put and improve the generalization ability of the trained de-
tection models in a zero-shot manner. We further show that
our model can generate high-quality LiDAR point clouds
unconditionally and do reasonable conditional generation
and manipulation, which leads to more realistic and con-
trollable data-driven LiDAR simulation.

One potential future direction for improving our model
is to exploit the structure in range view representations, in-
cluding beam info (which point from which ray) and occlu-
sion reasoning, and combine them with our existing model.
This may potentially improve the fidelity of our results.
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