
A Unified Spatial-Angular Structured Light for Single-View Acquisition of
Shape and Reflectance

Xianmin Xu1* Yuxin Lin1* Haoyang Zhou1 Chong Zeng1 Yaxin Yu1 Kun Zhou1,2 † Hongzhi Wu1 †

1State Key Lab of CAD&CG, Zhejiang University 2 ZJU-FaceUnity Joint Lab of Intelligent Graphics

Abstract

We propose a unified structured light, consisting of an
LED array and an LCD mask, for high-quality acquisition
of both shape and reflectance from a single view. For ge-
ometry, one LED projects a set of learned mask patterns to
accurately encode spatial information; the decoded results
from multiple LEDs are then aggregated to produce a final
depth map. For appearance, learned light patterns are cast
through a transparent mask to efficiently probe angularly-
varying reflectance. Per-point BRDF parameters are differ-
entiably optimized with respect to corresponding measure-
ments, and stored in texture maps as the final reflectance.
We establish a differentiable pipeline for the joint capture to
automatically optimize both the mask and light patterns to-
wards optimal acquisition quality. The effectiveness of our
light is demonstrated with a wide variety of physical ob-
jects. Our results compare favorably with state-of-the-art
techniques.

1. Introduction

Joint acquisition of both shape and appearance of a static
object is one key problem in computer vision and computer
graphics. It is critical for various applications, such as cul-
tural heritage, e-commerce and visual effects. Represented
as a 3D mesh and a 6D Spatially-Varying Bidirectional Re-
flectance Distribution Function (SVBRDF), a digitized ob-
ject can be rendered to reproduce the original look in the
virtual world with high fidelity for different view and light-
ing conditions.

Active lighting is widely employed in high-quality ac-
quisition. It probes the physical domain efficiently and
obtains measurements strongly correlated with the target,
leading to high signal-to-noise ratio (SNR) results. For ge-
ometry, structured illumination projects carefully designed
pattern(s) into the space to distinguish rays for accurate
3D triangulation [15,32]. For reflectance, illumination mul-
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Figure 1. Our hardware prototype. It consists of an LED array, an
LCD mask and a camera (left). One LED can project a set of mask
patterns for shape acquisition (center), and multiple LEDs can be
programmed to cast light patterns through a transparent mask for
reflectance capture (right).

tiplexing programs the intensities of different lights over
time, physically convolving with BRDF slices in the angu-
lar domain to produce clues for precise appearance deduc-
tion [13, 35].

While active lighting for geometry or reflectance alone
has been extensively studied, it is difficult to apply the idea
to joint capture. At one hand, directly combining the two
types of lights ends up with a bulky setup [39] and compet-
ing measurement coverages (i.e., a light for shape capture
cannot be co-located with one for reflectance). On the other
hand, existing work usually adopts one type of active light
only, and has to perform passive acquisition on the other,
leading to sub-optimal reconstructions. For example, Hol-
royd et al. [16] use projectors to capture geometry and im-
pose strong priors on appearance. Kang et al. [19] build a
light cube to densely sample reflectance in the angular do-
main. But the quality of its passive shape reconstruction is
severely limited, if the object surface lacks prominent spa-
tial features.

To tackle the above challenges, we propose a unified
structured light for high-quality acquisition of 3D shape
and reflectance. Our lightweight prototype consists of an
LED array and an LCD mask, which essentially acts as a
restricted lightfield projector to actively probe the spatial
and angular domain. For geometry, each LED projects a
set of mask patterns into the space to encode shape infor-
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mation. For appearance, the same LED array produces dif-
ferent light patterns, which are cast through a transparent
mask to sample the reflectance that varies with the light an-
gle. The prototype helps capture sufficient physical infor-
mation to faithfully recover per-pixel depth and reflectance
even from a single view.

To program the novel light towards optimal acquisition
quality, we establish a differentiable pipeline for the joint
capture, so that both mask and light patterns can be auto-
matically optimized to harness our hardware capability. For
geometry, a set of mask patterns are independently learned
for each LED, by minimizing the depth uncertainty along
an arbitrary camera ray. We also exploit the physical con-
volution that causes blurry mask projections in our setup, to
encode richer spatial information for depth disambiguation.
Multiple LEDs can be employed to project different sets of
mask patterns, for improving the completeness and accu-
racy of the final shape. For reflectance, the light patterns are
optimized as part of an autoencoder, which learns to cap-
ture the essence of appearance [19]. The reflectance is then
optimized with respect to the measurements under such pat-
terns, taking into account the reconstructed geometry for a
higher-quality estimation.

The effectiveness of our approach is demonstrated on a
number of physical samples with considerable variations in
shape and reflectance. Using 4×18 = 72 mask patterns and
32 light patterns, we achieve on average a geometric accu-
racy of 0.27mm(mean distance) and a reflectance accuracy
of 0.94(SSIM), on a lightweight prototype with an effective
spatial resolution of only 320× 320 and an angular resolu-
tion of 64× 48. Our results are compared with state-of-the-
art techniques on shape and reflectance capture, as well as
validated against photographs. In addition, we evaluate the
impact of different factors over the final results and discuss
exciting future research directions.

2. Related Work
Due to space limit, here we mainly review geometry

and/or reflectance acquisition techniques with active illu-
mination. Interested readers are directed to excellent recent
surveys for a broader view of the topic [7, 14, 31, 38, 40].

2.1. Shape Acquisition

This category of work can be divided into two groups,
depending on whether the light samples the spatial or angu-
lar domain.

Highly accurate geometry can be captured with laser-
stripe triangulation [23] or structured lighting [15, 26, 32].
These methods project single or multiple spatially distinc-
tive patterns onto object surface, essentially encoding the
light rays for subsequent 3D triangulation. Over the years,
various patterns have been studied to improve robustness
[15, 27], computational efficiency [9, 10] and acquisition

speed [20]. Directly applying existing work to our setup re-
sults in a less satisfactory accuracy, due to the low spatial
resolution and defocusing nature of our light. It is desirable
to develop a pipeline that exploits our joint sampling capa-
bility/characteristics in the spatial and angular domain.

On the other hand, photometric stereo estimates a nor-
mal field from appearance variations with changing light
angles. The result can be integrated into a depth map. Start-
ing with the seminal work [41], substantial progress has
been made to improve accuracy [4], efficiency [17] and ro-
bustness [2, 24, 33]. However, photometric stereo typically
does not measure depths directly, and thus suffers from low-
frequency shape distortions out of normal integration. In
comparison, our light enables per-pixel measurements that
are directly related to depths for accurate 3D reconstruction.

2.2. Reflectance Capture

Despite its high quality, exhaustive sampling a 6D
SVBRDF on a known shape is prohibitively time consum-
ing [6, 21]. One way to reduce the acquisition cost is to
introduce priors over the reflectance [8, 22, 42] at the cost
of compromised reconstruction quality. Another highly suc-
cessful class of approaches are based on illumination multi-
plexing, which programs the intensities of lights at multiple
angles, and recovers the reflectance from measurements un-
der different lighting conditions. The lightstage reconstructs
appearance from a pre-computed inverse lookup table [13].
Planar SVBRDF can be estimated from the appearance vari-
ation with respect to a moving linear light source [3, 12].
A frequency domain analysis is performed for capturing
isotropic reflectance with an LCD panel as the light source
[1].

Recently, differentiable acquisition techniques map both
light patterns and the corresponding reconstruction algo-
rithm to an autoencoder for an automatic, joint optimiza-
tion. High-fidelity results are demonstrated on planar sam-
ples [18] and non-planar ones with structured [19] and un-
structured conditions [25]. We build upon this line of work.
One major difference is that we do not rely on network in-
ference. Instead, our reflectance result is fine-tuned with re-
spect to the measurements under optimized patterns. This
leads to a higher reconstruction quality and more flexibility
in handling challenging factors such as self-shadows with
no compromise in acquisition efficiency.

2.3. Joint Estimation

Carefully engineered patterns in the angular domain are
projected to sample appearance with an LED arc [35] or a
light cube [19]. For each view, per-pixel reflectance maps
are computed and then fed to a multi-view stereo algorithm.
The geometry of textureless regions cannot be well recov-
ered in passive shape reconstruction. Zhou et al. [44] cap-
ture different views of an object with circular LED lights.
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Multi-view photometric stereo is applied to estimate the
geometry, followed by reflectance computation. A gantry
with a projector-camera pair is constructed in [16]. Phase-
shift patterns are used to acquire depths, and a strong re-
flectance prior is imposed due to the sparse angular sam-
ples. Recently, Nam et al. [28] take hundreds of flash pho-
tographs from different views. The shape and reflectance
are estimated with an involved alternating optimization.

Unlike our approach, none of the work above can effi-
ciently probe both the spatial and angular domain, resulting
in a tradeoff between geometry and reflectance reconstruc-
tion quality.

3. Hardware Prototype
Our lightweight acquisition setup consists of a spatial-

angular light and a camera (Fig. 1). The light includes a
rectangular RGB LED array and an LCD mask, which are
parallel to and 15cm apart from each other. The LED array
has 64×48 = 3, 072 RGB LEDs, with a pitch of 1cm and a
maximum total power of 240W. The intensity of each LED
is independently controlled, and quantized with 8 bits per
channel for FPGA implementation via pulse width modula-
tion. The IPS LCD mask is ripped off from a conventional
monitor, with a size of 59.8cm×33.6cm and a resolution of
1920× 1080. It is directly controlled by on-device chip via
HDMI. A 45MP Canon EOS R5 camera is mounted over
the top edge of the mask, with a focal length of 24mm and
an aperture of f/22. We define the valid volume of 3D points
as a cube of 15cm×15cm×15cm, whose center is 15cm in
front of the center of the mask. Physical objects are placed
in this volume for acquisition.

Note that in mask pattern projection, we only use green
LEDs to alleviate the undesirable spectral dispersion af-
ter passing the LCD. Due to the non-negligible size of
each LED and the lack of dedicated optics for focusing
light, the projected masks appear blurred on the object sur-
face (Fig. 3). We use binary mask patterns, as two levels
are sufficient for spatial encoding in our experiments and
the potential tedious calibration of angular-varying trans-
parency for every additional grayscale level can be avoided.
Moreover, the effective spatial resolution of LCD mask is
320 × 320, as mask pixels not in this region will be pro-
jected to outside the valid volume.

Calibration. In addition to conventional camera intrin-
sic parameters/response curve calibrations and color cor-
rection, we calibrate the pose of each LED/mask as well
as the spatial and angular LED intensity distribution: first,
the LED of interest is turned on and the mask is set to a
2D array of 1x1 transparent squares with a spacing of 10
pixels; we then take photographs of the mask projection on
a board with printed ARTags [11] that facilitate pose esti-
mation; the board is placed at different poses to constrain
the subsequent computation; finally, we minimize the dif-

ferences between the photographs and the rendering results
with the current estimates of parameters (Eq. 1), essentially
performing differentiable calibrations. Please find more de-
tails in the supplemental material.

4. Overview
To capture a physical object from a single view, we first

place it in the valid volume. For geometry acquisition, we
set learned binary patterns to the LCD mask and turn on one
of selected LEDs at a time, essentially projecting the pat-
terns onto the object surface. Corresponding photographs
are processed to produce a depth map result. Next, for re-
flectance capture, we set the LCD mask to fully transpar-
ent and program the intensities of the entire LED array ac-
cording to learned light patterns. Finally, given the recon-
structed shape, we perform differentiable optimization with
respect to the image measurements to obtain the reflectance
results, which are stored as spatially-varying BRDF param-
eters in texture maps. Please refer to Fig. 2 for an illustration
of the pipeline and Fig. 3 for sample patterns and captured
images.

5. Depth Acquisition
This section introduces depth acquisition with a single

LED source, exploiting the characteristics of our setup. Be-
low we first formulate our problem as code matching, then
describe how to optimize mask patterns based on this for-
mulation, and finally how to perform runtime computation.
The extension to aggregate information acquired with dif-
ferent LEDs is introduced at the end.

5.1. Problem Formulation

Given a set of optimized mask patterns {Mj}j , for each
camera pixel visible to a particular LED, we collect a set of
corresponding image measurements {Igj }j under such pat-
terns. Our job is to take as input {Igj }j and output a depth
along the camera ray of the current pixel. To do so, we first
sample 3D candidates {xk}k along the line segment on the
camera ray within the valid volume. For each xk, we sim-
ulate its image measurements Igj,k under the mask pattern
Mj via rendering with an area light source:

Igj,k =

∫
A

L(xl,−ω)Mj(xl ↔ xk)ρFdA,

≈ ρF

∫
A

L(xl,−ω)Mj(xl ↔ xk)dA,

≈ ρFL(−ω)

∫
A

L(xl)Mj(xl ↔ xk)dA. (1)

Here xl is a point on the current LED l, modeled as an
area light of 2mm×2mm based on our calibration; nl/nk

is the surface normal of xl/xk, respectively. The light di-
rection ω is a unit vector pointing from xk towards xl. We
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Figure 2. The complete pipeline. We first illuminate the physical project with learned mask patterns. For each valid pixel, we assemble the
corresponding image measurements and transform into a code, which is matched against counterparts computed using sampled candidates
along the current camera ray. The depth of the best matched result is selected as output. The masked patterns are pre-computed by opti-
mizing a classification formulation among all codes of candidates. Next, we project pre-learned light patterns and also assemble the image
measurements for each valid pixel. These measurements are compared with simulated measurements using a set of GGX parameters and
the previously computed shape. Their difference is used to drive the optimization of a set of neural reflectance parameters, which produce
the GGX parameters. The final reflectance results are stored as texture maps that represent different GGX parameters.

denote L as the emitted light from the LED, ρ the albedo,
F = (ω·nk)

+(−ω·nl)
+

||xl−xk||2 the form factor, and Mj(xl ↔ xk)

the mask value where the ray from xl to xk intersects with
the LCD. The integral is computed over the surface area
A of l. Due to the small solid angle subtended by A with
respect to xk, we assume constant ρ/F/ω across the in-
tegral and factor L as L(xl,−ω) = L(xl)L(−ω) with∫
A
L(xl)dA = 1. We implement L(xl) as a 5 × 5 kernel,

whose values are determined from calibration.

Next, we apply zero-mean and normalization [5] to
{Igj }j , to obtain a code ck = [c0k, c

1
k, ...] that is indepen-

dent of factors like albedo and form factor. Note that cjk is a
scalar in the range of [0,1] and can be expressed as:

cjk = α

∫
A

L(xl)Mj(xl ↔ xk)dA, (2)

where α is a constant across different j. The above con-
volution encodes high-precision spatial information, as cjk
varies continuously with changing xk. This is in contrast
with an ideal point light that projects perfectly in-focused
masks, as cjk would stay the same as long as xk backpro-
jects to the same mask pixel. Our superior sensitivity of cjk
to xk(i.e., depth) leads to geometric reconstruction beyond
the low spatial resolution of the LCD.

Now the problem can be formulated as follows. Given
mask patterns {Mj}j and corresponding image measure-
ments {Igj }j , compute a code c; match c with the codes sim-
ulated for all sampled candidates {xk}k; output the depth of
the best match xkbest

.

5.2. Mask Pattern Training

Ideal mask patterns should make the codes {ck}k of can-
didates along a camera ray as distinguishable from each
other as possible, to reduce mismatches that result in ge-
ometric errors. We cast this problem as standard multi-class
classification, so that mask patterns can be optimized with
a cross entropy loss.

Specifically, we randomly select a valid camera pixel
first. Each pre-sampled candidate xk along the correspond-
ing camera ray is viewed as a different class. Next, we ran-
domly pick xt from {xk}k as the ground-truth class label.
For each code ck, we compute its ZNCC score [5] as the
dot product between ck and ct. All scores then go through a
softmax layer to produce a probability distribution, based on
which a cross entropy loss is defined. The loss encourages
a high probability for the labeled class. Now we can train
{Mj}j for a given mask pattern number, since they are con-
nected to the loss in a differentiable fashion (Fig. 2). Note
that ZNCC is adopted here, because of its application in re-
lated work [26] to increase the robustness against factors
including ambient illumination, varying albedos and acqui-
sition noise.

In practice, each pixel in a mask pattern is initialized
with a Gaussian noise. This value goes through a sigmoid
function to fit in the valid range of [0,1]. Plus, we add a
penalty that is increased over training iteration to encourage
each mask pixel to be either 0 or 1. To increase robustness,
we also add random zero-mean Gaussian noise to the syn-
thetic measurements corresponding to xt during training.
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5.3. Runtime Computation

At runtime, for each valid camera pixel, we transform its
image measurements {Igj }j to a code c via zero-mean and
normalization. Next, the code is matched with its counter-
parts of sampled candidates {xk}k along the current camera
ray. The candidate with the highest ZNCC score is selected
to output a depth.

Below we extend our idea to multiple LEDs available in
the setup. Geometric accuracy and completeness can be fur-
ther improved, because the likelihood that a pixel is not vis-
ible to any LED often reduces and more LEDs impose more
constraints to solve depth ambiguities [39]. Suppose we se-
lect n LEDs, each of which projects its own optimized mask
patterns to the object, resulting in n sets of image measure-
ments. For a valid camera pixel, we first determine its vis-
ibility with respect to each of n LEDs by applying [43].
It tests if any of the measurements, after subtracting their
minimum, is above a certain threshold. Next, for each visi-
ble LED, we compute its code out of corresponding image
measurements. Finally, these codes are concatenated into a
single one, which is used to match its counterparts of the
candidates {xk}k by compute ZNCC scores.

6. Reflectance Capture

With the reconstructed geometry, we compute the re-
flectance independently at each valid pixel via differen-
tiable optimization. For a given pixel, our input is the im-
age measurements {Irk}k at that location under a set of
learned light patterns {Lk}k. The output is the parameters
for anisotropic GGX BRDF [37] (diffuse/specular albedos
and roughnesses) as well as the shading frame (normal and
tangent), which are stored in texture maps as the final result.

Light Pattern Training. While taking pictures with one
LED on at a time is a straightforward way to sample ap-
pearance, it is highly inefficient due to the limited power
of each LED and the sheer number of LEDs in the array.
Therefore, we adopt [19] to learn a small number of light
patterns that probe the reflectance in a compressive manner.
Millions of lumitexels [22] are synthetically generated by
the GGX BRDF model with random parameters along with
a random local frame/position in the valid volume. These
data, representing possible physical appearance, are used to
train an autoencoder. Its encoder corresponds to light pat-
terns used in acquisition, and the decoder is for computa-
tional reconstruction. Please refer to [19] for details.

Runtime Optimization. From image measurements un-
der optimized light patterns {Lk}k, state-of-the-art work
[19] employs a decoder to predict lumitexels as output,
which are subsequently fitted to GGX parameters. In this
paper, we decide to keep the encoder only, as it captures key
reflectance information efficiently; and we discard the orig-
inal decoder and optimize the reflectance result by minimiz-

ing the differences between simulated and physical mea-
surements under {Lk}k via differentiable rendering.

There are two reasons for developing our approach. First,
compared with network inference in [19], our optimiza-
tion better fits the measurements, producing appearance re-
sults that more closely match photographs. Next, it is easier
to deal with challenging global effects. Specifically, self-
shadows are not handled in [19], due to the difficulty in enu-
merating all possible visibility functions at training. In com-
parison, we can incorporate the reconstructed shape in dif-
ferentiable rendering while simulating measurements (e.g.,
by computing visibility in the presence of the shape), result-
ing in a higher-quality estimation of reflectance.

Note that in differentiable rendering, we do not directly
optimize GGX parameters. Instead, we reparameterize the
GGX model with 16D neural parameters and jointly train
5 fully-connected networks, each of which transforms the
neural parameters into one of the GGX parameters (Fig. 2)
for each object. Please see the supplemental material for de-
tails. Compared with the original GGX model, our object-
specific neural BRDF reparameterization is more amenable
for deep learning and results in higher-quality reconstruc-
tions.

7. Results
We acquire the shape and reflectance of 7 physical ob-

jects from a single view. The maximum dimension of each
object ranges from 9 to 15cm. A typical acquisition process
uses 4×18 = 72 mask patterns and 32 light patterns. We set
20s of exposure time for each mask pattern, due to the lim-
ited power of a single LED, and 0.2s for each light pattern.
Only LDR photographs are captured, with no HDR imag-
ing. It takes about 24 minutes to finish the process. Subse-
quently, we manually specify a segmentation for each object
to indicate regions of interest. In comparison with state-of-
the-art work on geometric reconstruction, we use the projec-
tion of an object onto the camera as the segmentation result,
regardless of the light visibility. PyTorch is used to imple-
ment the entire pipeline. We use Adam optimizer in all ex-
periments. The computation is performed on a workstation
with dual Intel Xeon 4210 CPUs, 256GB DDR4 memory
and 4 GeForce RTX 3090 graphics cards. The reconstruc-
tion results are rendered with path tracing using OptiX.

Training. It takes 15 minutes to train 18 mask patterns
for a single LED, using a learning rate of 5 × 10−4 and a
batch size of 512. For each valid camera pixel, we sample
candidates xk with a density of 10 points/mm. For train-
ing 32 light patterns, it takes about 4 hours with the same
learning rate of 5× 10−4 and a batch size of 256.

Runtime. For geometry reconstruction, it takes 8 min-
utes to compute a depth map of about 1500×1500 with
a batch size of 800, from measurements under a single
LED. This time scales linearly with the number of LEDs
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Figure 3. Visualization of learned mask patterns (1st row) and
learned light patterns (3rd row). The corresponding photographs
are listed one row below the patterns. Note that not all pat-
terns/photographs are shown due to limited space.

used. To optimize the reflectance stored in texture maps of
1024×1024, it takes 1 hour with a learning rate of 1×10−3

and a batch size of 1024. The final appearance results are
shown in Fig. 4.

7.1. Comparisons

Geometry. To facilitate quantitative analysis, we cap-
ture the “ground-truth” shapes of physical objects using a
industrial handheld 3D scanner [34]. Geometric errors are
reported in accuracy/completeness percentage at a 0.5mm
threshold (denoted as A/C).

In the last three columns of Fig. 5, we compare against
micro phase shifting (MPS) [15] and Gray code [36], which
are two representative work on continuous/discrete shape
encoding, respectively. Based on the effective spatial reso-
lution of our LCD, a frequency-band of 16 pixels and 15 fre-
quencies are used to generate 34 MPS patterns; in addition,
36 Gray code patterns, including the complement codes, are
computed. Note that for robustness, we encode both x and
y information with MPS and Gray code patterns. For a fair
comparison, the same single LED is used to project different
sets of mask patterns. Our results outperform existing tech-
niques quantitatively. The periodic depth artifacts with [15]
and [36] are due to their inferior performance with the low
effective mask resolution and the blurred light projection in
our setup (Eq. 1). For the grapefruit sample, we are not able
to obtain a ground-truth shape due to its non-rigidity. Nev-
ertheless, one can still visually compare the depth qualities.

Fig. 6 further compares with PS-FCN [4] and DVR [29],

Diff. Albedo Spec. Albedo Normal Roughnesses

Figure 4. Reflectance results, represented as GGX BRDF parame-
ters. Note that tangent maps are not shown due to limited space.

two state-of-the-art techniques on photometric stereo and
single-image geometry estimation, respectively. For PS-
FCN, we feed 192 images captured with a varying point
source. Our results compare favorably against both meth-
ods, due to their lack of direct depth measurements or the
mechanism for exploiting extra information beyond one
single-view image.

Reflectance. We compare against two state-of-the-art
methods [19] and [25], as well as validate against pho-
tographs taken at a novel lighting condition, in Figs. 5 and 7.
In all cases, our results are of higher quality, due to the opti-
mization that specifically fine-tunes with respect to the mea-
surements of each object. Please refer to the accompanying
video for animated results.

7.2. Ablations

We evaluate the impact of different factors over the re-
sults. In Fig. 8, the shape quality improves with the number
of mask patterns. In Fig. 9 and the 4-5th columns in Fig. 5,
both the 3D accuracy and completeness increase with the
number of LEDs used in acquisition. These results show
that our learning-based approach can automatically exploit
the increase of input information for a better geometric re-
construction.
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Photo Ours Light Cube [19] Ours(4 LEDs) Ours(1 LED) MPS [15] Gray Code [36]

SSIM=0.96 SSIM=0.95 A=0.88/C=0.82 A=0.80/C=0.73 A=0.72/C=0.66 A=0.56/C=0.51

SSIM=0.95 SSIM=0.93 A=0.93/C=0.92 A=0.79/C=0.76 A=0.74/C=0.71 A=0.56/C=0.54

SSIM=0.95 SSIM=0.94 A=0.72/C=0.69 A=0.56/C=0.51 A=0.55/C=0.50 A=0.41/C=0.37

SSIM=0.95 SSIM=0.93 A=0.78/C=0.74 A=0.64/C=0.58 A=0.54/C=0.49 A=0.45/C=0.41

SSIM=0.90 SSIM=0.89 20(mm)

0

Figure 5. Comparisons with state-of-the-art techniques on shape and reflectance capture. From the left column to right, photograph with
a lighting condition not used in our optimization, rendering with the reflectance results of our approach and light cube [19], depth maps
reconstructed with our approach (4/1 LED), MPS [15] and Gray code [36]. Quantitative errors are reported in accuracy/completeness
percentage and SSIM. Due to the difficulty in obtaining the ground-truth shape for grapefruit sample, 2D depth slices are shown instead.

Fig. 10 shows the results of using different mask patterns
in conjunction with our pipeline. Our patterns outperform
others, as the patterns are specifically optimized towards the
goal of reducing depth error on this setup.

We study the impact of light patterns on reflectance qual-
ity in Fig. 11. First, our patterns outperform the same num-
ber of randomly point lights, which has a much smaller
coverage of light directions. This demonstrates the supe-
rior angular sampling efficiency of our optimized patterns
over point sampling. In the same figure, we test different

numbers of light patterns. Our current choice of 32 strikes
a good balance between reconstruction quality and acquisi-
tion speed, and is consistent with existing work [19].

8. Limitations and Future Work
Our work is subject to a number of limitations. First, for

depth acquisition, a long exposure time must be set due to
the drastically reduced radiances after going through the
LCD even with a transparent mask. High-dynamic-range
lightfield display with dedicated optics might be used to
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Ours(4 LEDs) PS-FCN [4] DVR [29]

Figure 6. Comparison with state-of-the-art photometric stereo [4]
and single-image shape estimation technique [29]. We use 192 in-
put images for [4].

Photo Ours

SSIM=0.91

Light Cube [19]

SSIM=0.89

MatScan [25]

SSIM=0.87

Figure 7. Comparison with state-of-the-art reflectance acquisition
methods. From the left to right: photograph, our result, light cube
[19] and using a handheld material scanner [25].

12 Patterns

A=0.78/C=0.71

18 Patterns

A=0.80/C=0.73

24 Patterns

A=0.84/C=0.77

Figure 8. Impact of the number of mask patterns over recon-
structed depths.

1 LED

A=0.52/C=0.42

4 LEDs

A=0.62/C=0.52

9 LEDs

A=0.66/C=0.56

Figure 9. Impact of the number of LEDs used in acquisition over
reconstructed depths.

substantially improve light transport efficiency, leading to
a much shorter capture time. Next, the current set of multi-
ple LEDs are manually selected and may not be optimal. It
will be useful to automatically pick LEDs, based on a rough
estimation of light visibility over the current object, for op-

Ours(1 LED)

20(mm)

0

A=0.79/C=0.76

MPS [15]

A=0.71/C=0.68

Gray code [36]

A=0.72/C=0.69

Figure 10. Impact of mask patterns over reconstructed depths. For
the left to right, results from our optimized patterns, MPS [15] and
Gray code [36] patterns used in conjunction with our pipeline.

SSIM=0.95 SSIM=0.95 SSIM=0.96 SSIM=0.96

Figure 11. Impact of light patterns over recovered reflectance.
From the left image to right, photograph, reflectance results from
32 randomly selected point patterns, 24, 32 and 48 optimized pat-
terns.

timal reconstructions. Third, more complex light transport
like interreflections are not considered in reflectance estima-
tion, though applying a more advanced differentiable ren-
derer [30] should solve this problem in a straightforward
fashion. Moreover, we experiment with a single view only.
A turntable can be added to scan a complete object from a
sparse number of views.

We believe that this paper is only a small step towards
structured illumination in the spatial-angular domain. It
could open up many exciting research possibilities in the
future. For example, instead of separately capturing shape
and reflectance, it will be interesting to explore joint mul-
tiplexing of both LEDs and masks for improved acquisi-
tion efficiency. It is also promising to establish an adaptive
pipeline for the joint capture. Last but not least, with spe-
cialized hardware, we are intrigued to develop a handheld
scanner with spatial-angular structured illumination.
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