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Abstract

We introduce algebraic machine reasoning, a new rea-
soning framework that is well-suited for abstract reasoning.
Effectively, algebraic machine reasoning reduces the diffi-
cult process of novel problem-solving to routine algebraic
computation. The fundamental algebraic objects of interest
are the ideals of some suitably initialized polynomial ring.
We shall explain how solving Raven’s Progressive Matri-
ces (RPMs) can be realized as computational problems in
algebra, which combine various well-known algebraic sub-
routines that include: Computing the Gröbner basis of an
ideal, checking for ideal containment, etc. Crucially, the
additional algebraic structure satisfied by ideals allows for
more operations on ideals beyond set-theoretic operations.

Our algebraic machine reasoning framework is not only
able to select the correct answer from a given answer set,
but also able to generate the correct answer with only the
question matrix given. Experiments on the I-RAVEN dataset
yield an overall 93.2% accuracy, which significantly out-
performs the current state-of-the-art accuracy of 77.0% and
exceeds human performance at 84.4% accuracy.

1. Introduction
When we think of machine reasoning, nothing captures

our imagination more than the possibility that machines
would eventually surpass humans in intelligence tests and
general reasoning tasks. Even for humans, to excel in IQ
tests, such as the well-known Raven’s progressive matrices
(RPMs) [5], is already a non-trivial feat. A typical RPM
instance is composed of a question matrix and an answer
set; see Fig. 1. A question matrix is a 3 × 3 grid of panels
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Figure 1. An example of RPM instance from the I-RAVEN dataset.
The correct answer is marked with a red box.

that satisfy certain hidden rules, where the first 8 panels are
filled with geometric entities, and the 9-th panel is “miss-
ing”. The goal is to infer the correct answer for this last
panel from among the 8 panels in the given answer set.

The ability to solve RPMs is the quintessential display of
what cognitive scientists call fluid intelligence. The word
“fluid” alludes to the mental agility of discovering new re-
lations and abstractions [28], especially for solving novel
problems not encountered before. Thus, it is not surprising
that abstract reasoning on novel problems is widely hailed
as the hallmark of human intelligence [6].

Although there has been much recent progress in ma-
chine reasoning [15, 17, 30–33, 37, 38, 46, 47], a common
criticism [9, 25, 26] is that existing reasoning frameworks
have focused on approaches involving extensive training,
even when solving well-established reasoning tests such as
RPMs. Perhaps most pertinently, as [9] argues, reasoning
tasks such as RPMs should not need task-specific perfor-
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Figure 2. An overview of our algebraic machine reasoning framework, organized into 2 stages.

mance optimization. After all, if a machine optimizes per-
formance by training on task-specific data, then that task
cannot possibly be novel to the machine.

To better emulate human reasoning, we propose what we
call “algebraic machine reasoning”, a new reasoning frame-
work that is well-suited for abstract reasoning. Our frame-
work solves RPMs without needing to optimize for perfor-
mance on task-specific data, analogous to how a gifted child
solves RPMs without needing practice on RPMs. Our key
starting point is to define concepts as ideals of some suitably
initialized polynomial ring. These ideals are treated as the
“actual objects of study” in algebraic machine reasoning,
which do not require any numerical values to be assigned to
them. We shall elucidate how the RPM task can be realized
as a computational problem in algebra involving ideals.

Our reasoning framework can be broadly divided into
two stages: (1) algebraic representation, and (2) algebraic
machine reasoning; see Fig. 2. In the first stage, we rep-
resent RPM panels as ideals, based on perceptual attribute
values extracted from object detection models. In the sec-
ond stage, we propose 4 invariance modules to extract pat-
terns from the RPM question matrix.

To summarize, our main contributions are as follows:
• We reduce “solving the RPM task” to “solving a

computational problem in algebra”. Specifically, we
present how the discovery of abstract patterns can
be realized very concretely as algebraic computations
known as primary decompositions of ideals.

• In our algebraic machine reasoning framework, we in-
troduce 4 invariance modules for extracting patterns
that are meaningful to humans.

• Our framework is not only able to select the correct an-
swer from a given answer set, but also able to generate
answers without needing any given answer set.

• Experiments conducted on RAVEN and I-RAVEN
datasets demonstrate that our reasoning framework
significantly outperforms state-of-the-art methods.

2. Related Work

RPM solvers. There has been much recent interest in
solving RPMs with deep-learning-based methods [15, 23,
32, 47, 48, 51–54]. Most methods extract features from raw
RPM images using nueral networks, and select answers by
measuring panel similarities. Several works instead focus
on generating correct answers without needing the answer
set [27, 34]. To evaluate the reasoning capabilities of these
methods, RPM-like datasets such as PGM [32] and RAVEN
[46] have been proposed. Subsequently, I-RAVEN [12] and
RAVEN-FAIR [3] are introduced to overcome a shortcut
flaw in the answer set generation of RAVEN.

Algebraic methods in AI. Using algebraic methods
in AI is not new. Systems of polynomial equations are
commonly seen in computer vision [29] and robotics [8],
which are solved algebraically via Gröbner basis compu-
tations. In statistical learning theory, methods in algebraic
geometry [41] and algebraic statistics [10] are used to study
singularities in statistical models [22, 42, 43, 45], to analyze
generalization error in hierarchical models [39,40], to learn
invariant subspaces of probability distributions [18,20], and
to model Bayesian networks [11, 36]. A common theme in
these works is to study suitably defined algebraic varieties.
In deep learning, algebraic methods are used to study the
expressivity of neural nets [7, 16, 24, 50]. In automated
theorem proving, Gröbner basis computations are used in
proof-checking [35]. Recently, a matrix formulation of
first-order logic was applied to the RPM task [49], where
relations are approximated by matrices and reasoning is
framed as a bilevel optimization task to find best-fit matrix
operators. As far as we know, methods from commutative
algebra have not been used in machine reasoning.

3. Proposed Algebraic Framework

In abstract reasoning, a key cognitive step is to “discover
patterns from observations”, which can be formulated con-
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cretely as “finding invariances in observations”. In this sec-
tion, we describe how algebraic objects known as ideals are
used to represent RPM instances, how patterns are extracted
from such algebraic representations, and how RPMs can be
solved, both for answer selection and answer generation, as
computational problems in algebra.

3.1. Preliminaries

Throughout, let R = R[x1, . . . , xn] be the ring of poly-
nomials in variables x1, . . . , xn, with real coefficients. In
particular, R is closed under addition and multiplication of
polynomials, i.e., for any a, b ∈ R, we have a+ b, ab ∈ R.

3.1.1 Algebraic definitions
Ideals in polynomial rings. A subset I ⊆ R is called an
ideal if there exist polynomials g1, . . . , gk in R such that

I = {f1g1 + · · ·+ fkgk|f1, . . . , fk ∈ R}
contains all polynomial combinations of g1, . . . , gk. We say
that G = {g1, . . . , gk} is a generating set for I , we call
g1, . . . , gk generators, and we write either I = ⟨g1, . . . , gk⟩
or I = ⟨G⟩. Note that generating sets of ideals are not
unique. If I has a generating set consisting only of mono-
mials, then we say that I is a monomial ideal. (Recall that a
monomial is a polynomial with a single term.) Given ideals
J1 = ⟨g1, . . . , gk⟩ and J2 = ⟨h1, . . . , hℓ⟩, there are three
basic operations (sums, products, intersections):

J1 + J2 := ⟨g1, . . . , gk, h1, . . . , hℓ⟩;
J1J2 := ⟨{gihj |1 ≤ i ≤ k, 1 ≤ j ≤ ℓ}⟩;

J1 ∩ J2 := {r ∈ R : r ∈ J1 and r ∈ J2}.
Most algebraic computations involving ideals, especially

“advanced” operations (e.g. primary decompositions), re-
quire computing their Gröbner bases as a key initial step.
More generally, Gröbner basis computation forms the back-
bone of most algorithms in algebra; see Appendix A.2.
Primary decompositions. In commutative algebra, pri-
mary decompositions of ideals are a far-reaching general-
ization of the idea of prime factorization for integers. Its
importance to algebraists cannot be overstated. Informally,
every ideal J has a decomposition J = J1 ∩ · · · ∩ Js as an
intersection of finitely many primary ideals. This intersec-
tion is called a primary decomposition of J , and each Jj is
called a primary component of the decomposition. In the
special case when J is a monomial ideal, there is an unique
minimal primary decomposition with maximal monomial
primary components [2]; We denote this unique set of pri-
mary components by pd(J). See Appendix A.3 for details.

3.1.2 Concepts as monomial ideals
We define a concept to be a monomial ideal of R. In partic-
ular, the zero ideal ⟨0⟩ ⊆ R is the concept “null”, and could
be interpreted as “impossible” or “nothing”, while the ideal
⟨1⟩ = R is the concept “conceivable”, and could be in-
terpreted as “possible” or “everything”. Given a concept

J ⊆ R, a monomial in J is called an instance of the con-
cept. For example, xblackxsquare is an instance of ⟨xsquare⟩
(the concept “square”). For each xi, we say ⟨xi⟩ ⊆ R is a
primitive concept, and xi is a primitive instance.

Theorem 3.1. There are infinitely many concepts in R, even
though there are finitely many primitive concepts in R. Fur-
thermore, if J ⊆ R is a concept, then the following hold:

(i) J has infinitely many instances, unless J = ⟨0⟩.
(ii) J has a unique minimal generating set consisting of

finitely many instances, which we denote by mingen(J).
(iii) If J ̸= ⟨1⟩, then J has a unique set of associated con-

cepts {P1, . . . , Pk}, together with a unique minimal
primary decomposition J = J1 ∩ · · · ∩ Jk, such that
each Ji is a concept contained in Pi, that is maximal
among all possible primary components contained in
Pi that are concepts.

See Appendix A.4 for a proof of Theorem 3.1 and for
more details on why defining concepts as monomial ideals
captures the expressiveness of concepts in human reasoning.

3.2. Stage 1: Algebraic representation

We shall use the RPM instance depicted in Fig 1 as our
running example, to show the entire algebraic reasoning
process: (1) algebraic representation; and (2) algebraic ma-
chine reasoning. In this subsection, we focus on the first
stage. Recall that every RPM instance is composed of 16
panels filled with geometric entities. For our running exam-
ple, each entity can be described using 4 attributes: “color”,
“size”, “type”, and “position”. We also need one additional
attribute to represent the “number” of entities in the panel.

3.2.1 Attribute concepts

In human cognition, certain semantically similar concepts
are naturally grouped to form a more general concept. For
example, concepts such as “red”, “green”, “blue”, “yellow”,
etc., can be grouped to form a new concept that represents
“color”. Intuitively, we can think of “color” as an attribute,
and “red”, “green”, “blue”, “yellow” as attribute values.

For our running example, the 5 attributes are represented
by 5 concepts (monomial ideals). In general, all possible
values for each attribute are encoded as generators for the
concept representing that attribute. However, for ease of
explanation, we shall consider only those attribute values
that are involved in Fig. 1 to explain our example:

Anum := {xone, xtwo},
Apos := {xleft, xright},
Atype := {xtriangle, xsquare, xpentagon, xhexagon, xcircle},
Acolor := {xwhite, xgray, xdgray, xblack},
Asize := {xsmall, xavg, xlarge}.

Let L := {num, pos, type, color, size} be the set of at-
tribute labels, and let Aall :=

⋃
ℓ∈LAℓ. Initialize the ring
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R := R[Aall] of all polynomials on the variables in Aall
with real coefficients. For each ℓ ∈ L, let Jℓ be the con-
cept ⟨Aℓ⟩ ⊆ R. These concepts, which we call attribute
concepts, are task-specific. We assume humans tend to dis-
cover and organize complex patterns in terms of attributes.
Thus for pattern extraction, we shall use the inductive bias
that a concept representing a pattern is deemed meaningful
if it is in some attribute concept.

3.2.2 Representation of RPM panels

In order to encode the RPM images algebraically, we first
need to train perception modules to extract attribute infor-
mation directly from raw images. One possible approach
for perception, as used in our experiments, is to train 4 Reti-
naNet models (each with a ResNet-50 backbone) separately
for all 4 attributes except “number”, which can be directly
inferred by counting the number of bounding boxes.

After extracting attribute values for entities, we can rep-
resent each panel as a concept. For example, the top-left
panel of the RPM in Fig. 1 can be encoded as the concept
J1,1 = ⟨xtwoxleftxsquarexblackxavg, xtwoxrightxtrianglexgrayxavg⟩
in the polynomial ring R. Here, J1,1 represents a panel with
two entities, a black square of average size on the left, and
a gray triangle of average size on the right. The indices
in J1,1 tell us that the panel is in row 1, column 1. Simi-
larly, we can encode the remaining 7 panels of the question
matrix as concepts J1,2, J1,3, . . . , J3,2 and encode the 8 an-
swer options as concepts Jans1, . . . , Jans8. In general, every
monomial generator of each concept describes an entity in
the associated panel.

The list of 8 concepts J = [J1,1, . . . , J3,2] shall be called
a concept matrix; this represents the RPM question matrix
with a missing 9-th panel. Let Ji := [Ji,1, Ji,2, Ji,3] (for
i = 1, 2) represent the i-th row in the question matrix.

3.3. Stage 2: algebraic machine reasoning

Previously in Section 3.2, we have already encoded the
question matrix in an RPM instance as a concept matrix J =
[J1,1, . . . , J3,2]. In this subsection, we will introduce the
reasoning process of our algebraic framework.

Our goal of extracting patterns for a single row of J
can be mathematically formulated as “finding invariance”
across the concepts that represent the panels in this row.
(The same process can be applied to columns.) This seem-
ingly imprecise idea of “finding invariance” can be realized
very concretely via the computation of primary decompo-
sitions. Ideally, we want to extract patterns that are mean-
ingful to humans. Hence we have designed 4 invariance
modules to mimic human cognition in pattern recognition.

3.3.1 Prior knowledge

To use algebraic machine reasoning, we adopt:
• Inductive bias of attribute concepts (see Section 3.2.1);

• Useful binary operations on numerical values;
• Functions that map concepts to concepts.
There are numerous binary operations, such as +,−,×,

÷,min,max, etc., that can be applied to numerical values
extracted from concepts. For the RPM task, we use +,−.

In algebra, the study of functions between algebraic ob-
jects is a productive strategy for understanding the under-
lying algebraic structure. Analogously, we shall use maps
on concepts to extract complex patterns. For the RPM task,
we need to cyclically order the values in Aℓ for each at-
tribute ℓ ∈ L before we can extract sequential information.
To encode the idea of “next”, we introduce the function
fnext(J |∆) defined on concepts J , where ∆ represents the
step-size. Each variable x ∈ Aℓ that appears in a genera-
tor of J is mapped to the ∆-th variable after x, w.r.t. the
cyclic order on Aℓ. For example, fnext(⟨xsquarexgrayxavg⟩|1)
= ⟨xpentagonxdgrayxlarge⟩, and fnext(⟨xsquare⟩| − 2) = ⟨xcircle⟩.

3.3.2 Reasoning via primary decompositions

Given concepts J1, . . . , Jk that share a common “pattern”,
how do we extract this pattern? Abstractly, a common pat-
tern can be treated as a concept K that contains all of these
concepts J1, . . . , Jk. If there are several common patterns
K1, . . . ,Kr, then each concept Ji can be “decomposed” as
Ji = K1 ∩ · · · ∩Kr ∩K ′

i for some ideal K ′
i. Thus, we have

the following algebraic problem: Given J1, . . . , Jk, com-
pute their common components K1, . . . ,Kr.

Recall that a concept J has a unique minimal primary de-
composition, since concepts are monomial ideals. Thus, to
extract the common patterns of concepts J1, . . . , Jk, we first
have to compute pd(J1), . . . , pd(Jk), then extract the com-
mon primary components. The intersection of (any subset
of) these common components would yield a new concept,
which can be interpreted as a common pattern of the con-
cepts J1, . . . , Jk. As part of our inductive bias, we are only
interested in those primary components that are contained
in attribute concepts. See Appendix A.3 for further details.

3.3.3 Proposed invariance modules

Our 4 proposed invariance modules are: (1) intra-invariance
module, (2) inter-invariance module, (3) compositional in-
variance module, and (4) binary-operator invariance mod-
ule. Intuitively, they check for 4 general types of invari-
ances across a sequence of concepts J1, . . . , Jk (e.g. a row
Ji = [Ji,1, Ji,2, Ji,3] for the RPM task). Such invariances
apply not just to the RPM task, but could be applied to other
RPM-like tasks, e.g. based on different prior knowledge,
different grid layouts, etc. Full computational details for
our running example can be found in Appendix B.3.
1. Intra-invariance module extracts patterns where the set
of values for some attribute within concept Ji remains in-
variant over all i. First, we define J+ := J1 + · · ·+ Jk and
J∩ := J1 ∩ · · · ∩ Jk; see Section 3.1.1. Intuitively, J+ and
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J∩ are concepts that capture information about the entire
sequence J1, . . . , Jk in two different ways. Next, we com-
pute the common primary components of J+ and J∩ that
are contained in attribute concepts. Finally, we return the
attributes associated to these common primary components:
Pintra([J1 . . . Jk]) :=

{
attr ∈ L | ∃I ∈ pd(J+) ∩ pd(J∩), I ⊆ ⟨Aattr⟩

}
.

2. Inter-invariance module extracts patterns arising from
the set difference between pd(J∩) and pd(J+). There-
after, we check for the invariance of these extracted patterns
across multiple sequences. The extracted set of patterns is:

Pinter([J1, . . . , Jk]) :=

{
(attr, I)

∣∣∣∣∣ I ⊆ pd(J∩)− pd(J+),
attr ∈ L, I ⊆ ⟨Aattr⟩ ∀I ∈ I

}
,

where I is a set of concepts, and “−” refers to set difference.
We omit pd(J+) so that we do not overcount the patterns
already extracted in the previous module. Informally, for
each pair (attr, I), the concepts in I can be interpreted as
those “primary” concepts that correspond to at least one of
J1, . . . , Jk, that do not correspond to all of J1, . . . , Jk, and
that are contained in ⟨Aattr⟩.
3. Compositional invariance module extracts patterns
arising from invariant attribute values in the following new
sequence of concepts:
[J ′

1, . . . , J
′
k] = [fk−1(J1), f

k−2(J2), . . . , f(Jk−1), Jk],

where f is some given function. Intuitively, for such pat-
terns, there are some attributes whose values are invariant
in [f(Ji), Ji+1] for all i = 1, . . . , k − 1. By checking the
intersection of primary components of the concepts in the
new sequence, the extracted set of patterns is given by:

Pcomp([J1, . . . , Jk]) :=

{
(attr, f)

∣∣∣∣∣ ∃I ∈
⋂k

i=1 pd(fk−i(Ji)),
attr ∈ L, I ⊆ ⟨Aattr⟩

}
.

The given function used for the RPM task is fnext(·|∆),
where ∆ represents the number of steps; see Section 3.3.1.
4. Binary-operator module extracts numerical patterns,
based on a given real-valued function g on concepts, and a
given set Λ of binary operators. The extracted patterns are:

Pbinary(Ji) :=

{
⊘

∣∣∣∣∣ ⊘ = [⊘1, . . . ,⊘k−2], ⊘i ∈ Λ,
g(J1)⊘1 · · · ⊘k−2 g(Jk−1) = g(Jk)

}
.

3.3.4 Extracting row-wise patterns
Given a concept matrix J = [J1,1, . . . , J3,2], how do we
extract the patterns from its i-th row? We first begin by
extracting the common position values among all 8 panels:

comPos(J) :=
{
p ∈ Apos | ∃I ∈

⋂
J∈J pd(J), p ∈ I

}
For each common position p ∈ comPos(J), we generate
two new concept matrices J̄(p) and Ĵ(p), such that:

• Each concept J̄ (p)
i,j in J̄(p) is generated by the unique

generator in Ji,j that is divisible by p;
• Each concept Ĵ (p)

i,j in Ĵ(p) is generated by all genera-
tors in Ji,j that are not divisible by p.

(Recall that generators of a concept are polynomials.)
Informally, we are splitting each panel in the RPM im-

age into 2 panels, one that contains only the entity in the

common position p, and the other that contains all remain-
ing entities not in position p. This step allows us to reason
about rules that involve only a portion of the panels.

Consequently, if comPos(J) = {p1, . . . , pk}, then we
can extend the single concept matrix into a list of concept
matrices [J, J̄(p1), Ĵ(p1), . . . , J̄(pk), Ĵ(pk)].

For each concept matrix J̌ from the extended list, we
consider its i-th row J̌i = [J̌i,1, J̌i,2, J̌i,3] (left-to-right)
and extract patterns from J̌i via the 4 modules from Sec-
tion 3.3.3. Let P(J̌i) be the set of all such patterns, i.e.,
P(J̌i) := Pintra(J̌i) ∪ Pinter(J̌i) ∪ Pcomp(J̌i) ∪ Pbinary(J̌i).

Finally, for row i = 1, 2, we define
P (all)
i (J) :=

⋃
J̌

{
(K, J̌) | K ∈ P(J̌i)

}
, (1)

where the union ranges over all concept matrices J̌ in the
extended list, i.e. J̌ ∈ [J, J̄(p1), Ĵ(p1), . . . , J̄(pk), Ĵ(pk)].
Note that P (all)

i (J) can be regarded as all the patterns ex-
tracted from the i-th row of the original concept matrix J. If
instead J = [J1,1, . . . , J3,3] is a list containing 9 concepts,
then we can define P (all)

3 (J) analogously.

Algorithm 1 Answer selection.
Inputs: Concept matrix J = [J1,1 . . . J3,2], and associated
answer set [Jans1, . . . , Jans8].

1: Initialize comPattern = [0, . . . , 0]1×8.
2: Compute P1,2(J) := P (all)

1 (J) ∩ P (all)
2 (J). // see (1)

3: for i from 1 to 8 do
4: J← [J1,1, . . . , J3,2, Jansi]

5: Compute P (all)
3 (J).

6: comPattern[i]← |P1,2(J) ∩ P (all)
3 (J)|

7: return answer index i = argmaxi′ comPattern[i′].

3.4. Solving RPMs
3.4.1 Answer selection
In Section 3.3.4, we described how row-wise patterns can
be extracted using the 4 invariance modules. Thus, a natural
approach for answer selection is to determine which answer
option, when inserted in place of the missing panel, would
maximize the number of patterns that are common to all
three rows. Consequently, answer selection is reduced to a
simple optimization problem; see Algorithm 1.

3.4.2 Answer generation
Since our algebraic machine reasoning framework is able
to extract common patterns that are meaningful to humans,
hidden in the raw RPM images, it provides a new way to
generate answers without needing a given answer set. This
is similar to a gifted human who is able to solve the RPM
task, by first recognizing the patterns in the first two rows,
then inferring what the missing panel should be. Intuitively,
we are applying “inverse” operations of the 4 invariance
modules to generate the concept representing the missing
panel; see Algorithm 2 for an overview.
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Briefly speaking, for a given RPM concept matrix J, we
first compute the common patterns among the first two rows
via P1,2(J) := P (all)

1 (J) ∩ P (all)
2 (J); see (1). Each element

in P1,2(J) is a pair (K, J̌), where K is a common pattern
(for rows 1 and 2) specific to one attribute, and J̌ is the
corresponding concept matrix. (This represents the difficult
step of pattern discovery by a gifted human.) Then, we go
through all common patterns to compute the attribute values
for the missing 9th panel. (This represents a routine consis-
tency check of the discovered patterns; see Appendix B.2
for full algorithmic details, and B.3 for an example.)

In general, when integrating all the attribute values for
J3,3 derived from the patterns in P1,2(J), it is possible that
entities (i) have multiple possible values for a single at-
tribute; or (ii) have missing attribute values. Case (i) oc-
curs when there are multiple patterns extracted for a sin-
gle attribute, while case (ii) occurs when there are no non-
conflicting patterns for this attribute. For either case, we
randomly select an attribute value from the possible values.

Algorithm 2 Answer generation.
Inputs: Concept matrix J = [J1,1 . . . J3,2].

1: for (K, J̌) ∈ P (all)
1 (J) ∩ P (all)

2 (J) do // see (1)
2: if [J̌3,1, J̌3,2] does not conflict with pattern K then
3: Compute attribute value for J̌3,3 using pattern K.
4: Collect all the above attribute values for J3,3.
5: while ∄ unique value for some attribute of an entity do
6: Randomly choose one valid attribute value.
7: Generate ideal J3,3 ⊆ R.
8: return J3,3 and the corresponding image.

4. Discussion
Algebraic machine reasoning provides a fundamentally

new paradigm for machine reasoning beyond numerical
computation. Abstract notions in reasoning tasks are en-
coded very concretely as ideals, which are computable al-
gebraic objects. We treat ideals as “actual objects of study”,
and we do not require numerical values to be assigned to
them. This means our framework is capable of reasoning
on more qualitative or abstract notions that do not naturally
have associated numerical values. Novel problem-solving,
such as the discovery of new abstract patterns from observa-
tions, is realized concretely as computations on ideals (e.g.
computing the primary decompositions of ideals). In partic-
ular, we are not solving a system of polynomial equations,
in contrast to existing applications of algebra in AI (cf. Sec-
tion 2). Variables (or primitive instances) are not assigned
values. We do not evaluate polynomials at input values.

Theory-wise, our proposed approach breaks new ground.
We established a new connection between machine reason-
ing and commutative algebra, two areas that were com-
pletely unrelated previously. There is over a century’s worth

of very deep results in commutative algebra that have not
been tapped. Could algebraic methods be the key to tack-
ling the long-standing fundamental questions in machine
reasoning? It was only much more recently in 2014 that
Léon Bottou [4] suggested that humans should “build rea-
soning capabilities from the ground up”, and he speculated
that the missing ingredient could be an algebraic approach.

Why use ideals to represent concepts? Why not use sets?
Why not use symbolic expressions, e.g. polynomials? In-
tuitively, we think of a concept as an “umbrella term” con-
sisting of multiple (potentially infinitely many) instances of
the concept. Treating concepts as merely sets of instances
is inadequate in capturing the expressiveness of human rea-
soning. A set-theoretic representation system with finitely
many “primitive sets” can only have finitely many possible
sets in total. In contrast, we proved that we can construct
infinitely many concepts from only finitely many primitive
concepts (Theorem 3.1). This agrees with our intuition that
humans are able to express infinitely many concepts from
only finitely many primitive concepts. The main reason is
that the “richer” algebraic structure of ideals allows for sig-
nificantly more operations on ideals, beyond set-theoretic
operations. See Appendix A.4 for further discussion.

Why is our algebraic method fundamentally different
from logic-based methods, e.g. those based on logic pro-
gramming? At the heart of logic-based reasoning is the
idea that reasoning can be realized concretely as the res-
olution (or inverse resolution) of logical expressions. In-
herent in this idea is the notion of satisfiability; cf. [14].
Intuitively, we have a logical expression, usually expressed
in a canonical normal form, and we want to assign truth
values (true or false) to literals in the logical expression,
so that the entire expression is satisfied (i.e. truth value
is “true”); see Appendix C.1 for more discussion. In fact,
much of the exciting progress in automated theorem prov-
ing [1, 13, 19, 21, 44, 55] is based on logic-based reasoning.

In contrast, algebraic machine reasoning builds upon
computational algebra and computer algebra systems. At
the heart of our algebraic approach is the idea that reasoning
can be realized concretely as solving computational prob-
lems in algebra. Crucially, there is no notion of satisfia-
bility. We do not assign truth values (or numerical values)
to concepts in R = k[x1, . . . , xn]. In particular, although
primitive concepts ⟨x1⟩, . . . , ⟨xn⟩ in R correspond to the
variables x1, . . . , xn, we do not assign values to primitive
concepts. Instead, ideals are treated as the “actual objects of
study”, and we reduce “solving a reasoning task” to “solv-
ing non-numerical computational problems involving ide-
als”. Moreoever, our framework can discover new patterns
beyond the actual rules of the RPM task; see Section 5.2.

In the RPM task, we have attribute concepts representing
“position”, “number”, “type”, “size”, and “color”; these are
concepts that categorize the primitive instances according
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Method Avg. Acc. Center 2×2G 3×3G O-IC O-IG L-R U-D

1 LSTM [46] 18.9 / 13.1 26.2 / 13.2 16.7 / 14.1 15.1 / 13.7 21.9 / 12.2 21.1 / 13.0 14.6 / 12.8 16.5 / 12.4
2 WReN [32] 23.8 / 34.0 29.4 / 58.4 26.8 / 38.9 23.5 / 37.7 22.5 / 38.8 21.5 / 22.6 21.9 / 21.6 21.4 / 19.7
3 ResNet [46] 40.3 / 53.4 44.7 / 52.8 29.3 / 41.9 27.9 / 44.3 46.2 / 63.2 35.8 / 53.1 51.2 / 58.8 47.4 / 60.2
4 ResNet+DRT [46] 40.4 / 59.6 46.5 / 58.1 28.8 / 46.5 27.3 / 50.4 46.0 / 69.1 34.2 / 60.1 50.1 / 65.8 49.8 / 67.1
5 LEN [51] 41.4 / 72.9 56.4 / 80.2 31.7 / 57.5 29.7 / 62.1 52.1 / 84.4 31.7 / 71.5 44.2 / 73.5 44.2 / 81.2
6 CoPINet [47] 46.1 / 91.4 54.4 / 95.1 36.8 / 77.5 31.9 / 78.9 52.2 / 98.5 42.8 / 91.4 51.9 / 99.1 52.5 / 99.7
7 DCNet [54] 49.4 / 93.6 57.8 / 97.8 34.1 / 81.7 35.5 / 86.7 57.0 / 99.0 42.9 / 91.5 58.5 / 99.8 60.0 / 99.8
8 NCD [52] 48.2 / 37.0 60.0 / 45.5 31.2 / 35.5 30.0 / 39.5 62.4 / 40.3 39.0 / 30.0 58.9 / 34.9 57.2 / 33.4
9 SRAN [12] 60.8 / - 78.2 / - 50.1 / - 42.4 / - 68.2 / - 46.3 / - 70.1 / - 70.3 / -
10 PrAE [48] 77.0 / 65.0 90.5 / 76.5 85.4 / 78.6 45.6 / 28.6 63.5 / 48.1 60.7 / 42.6 96.3 / 90.1 97.4 / 90.9
11 Our Method 93.2 / 92.9 99.5 / 98.8 89.6 / 91.9 89.7 / 93.1 99.6 / 98.2 74.7 / 70.1 99.7 / 99.2 99.5 / 99.1

Human [46] - / 84.4 - / 95.5 - / 81.8 - / 79.6 - / 86.4 - / 81.8 - / 86.4 - / 81.8

Table 1. Performance on I-RAVEN/RAVEN. We report mean accuracy, and the accuracies for all configurations: Center, 2x2Grid,
3x3Grid, Out-InCenter, Out-InGrid, Left-Right, and Up-Down.

to their semantics, into what humans would call attributes.
Intuitively, an attribute concept combines certain primitive
concepts together in a manner that is “meaningful” to the
task. For example, ⟨xwhite, xgray, xblack⟩ is “more meaning-
ful” than ⟨xwhite, xcircle, xlarge⟩ as a “simpler” or “general-
ized” concept, since we would treat xwhite, xgray, xblack as
instances of a single broader “color” concept.

Notice that the primitive concepts correspond precisely
to the prediction classes of our object detection models.
Such prediction classes are already implicitly identified by
the available data. Consequently, our method is limited by
what our perception modules can perceive. For other tasks,
e.g. where text data is available, entity extraction meth-
ods can be used to identify primitive concepts. Note also
that our method requires prior knowledge, since there is no
training step for the reasoning module. This limitation can
be mitigated if we replace user-defined functions on con-
cepts with trainable functions optimized via deep learning.

In general, the identification of attribute concepts is task-
specific, and the resulting reasoning performance would de-
pend heavily on these identified attribute concepts. Effec-
tively, our choice of attribute concepts would determine the
inductive bias of our reasoning framework: As we decom-
pose a concept J into “simpler” concepts (i.e. primary com-
ponents in pd(J)), only those “simpler” concepts contained
in attribute concepts are deemed “meaningful”. Concretely,
let J, J ′ ⊊ R be concepts such that pd(J) = {J1, . . . , Jk}
and pd(J ′) = {J ′

1, . . . , J
′
ℓ}, i.e. J, J ′ have minimal primary

decompositions J = J1∩· · ·∩Jk and J ′ = J ′
1∩· · ·∩J ′

ℓ, re-
spectively. We can examine their primary components and
extract out those primary components (between the two pri-
mary decompositions) that are contained in some common
attribute concept. For example, if A is an attribute concept
of R such that J1 ⊆ A and J ′

1 ⊆ A, then J and J ′ share a
“common pattern”, represented by the attribute concept A.

5. Experiment results
To show the effectiveness of our framework, we con-

ducted experiments on the RAVEN [46] and I-RAVEN
datasets. In both datasets, RPMs are generated according to
7 configurations. We trained our perception modules on
4200 images from I-RAVEN [12] (600 from each configu-
ration), and used them to predict attribute values of entities.
The average accuracy of our perception modules is 96.24%.
For both datasets, we tested on 2000 instances for each
configuration. Overall, our reasoning framework is fast (7
hours for 14000 instances on a 16-core Gen11 Intel i7 CPU
processor). See Appendix B for full experiment details.

5.1. Comparison with other baselines

Table 1 compares the performance of our method with
10 other baseline methods. We use the accuracies on I-
RAVEN reported in [12, 52] for methods 1-7, and the accu-
racies on RAVEN reported in [46, 52] for methods 1-5. All
the other accuracies are obtained from the original papers.
As a reference, we also include the human performance on
the RAVEN dataset (i.e. not I-RAVEN) as reported in [46].

5.2. Ambiguous instances and new patterns

Although our method outperforms all baselines, some in-
stances have multiple answer options that are assigned equal
top scores by our framework. Most of these cases occur due
to the discovery of (i) “accidental” unintended rules (e.g.
Fig. 3); or (ii) new patterns beyond the actual rules in the
dataset (e.g. Fig. 4). Case (i) occurs because in the design
of I-RAVEN, at most one rule is assigned to each attribute.

Interestingly, case (ii) reveals that our framework is able
to discover completely new patterns that are not originally
designed as rules for I-RAVEN. In Fig. 4, the new pattern
discovered is arguably very natural to humans.
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Figure 3. An example of an ambiguous RPM instance. The given
answer is option g. For I-RAVEN, the type sequence (“circle”,
“hexagon”, “pentagon”) in the first two rows follows a Progres-
sion rule with consecutively decreasing type indices, so g could be
a correct answer. (Remaining attribute values are determined by
other patterns.) However, our framework assigns equal top scores
to both options d and g, as a result of another inter-invariance pat-
tern for type (the type set {“circle”, “hexagon”, “pentagon”} is
invariant across the rows). Thus, option d could also be correct.

Figure 4. An example of an RPM instance with an unexpected new
pattern. The given answer is option h. In each row, the number of
entities in the first 2 panels sum up to the number of entities in the
3rd panel, so h could be correct. However, our framework assigns
equal top scores to both options b and h, as a result of a new inter-
invariance pattern for number (informally, every panel has either 1
or 2 entities). Thus option b could also be correct.

5.3. Evaluation of answer generation

Every RPM instance is assumed to have a single correct
answer from the given answer set. However, there are mul-
tiple other possible images that are also acceptable as cor-
rect answers. For example, images modified from the given
correct answer, via random perturbations of those attributes
that are not involved in any of the rules (e.g. entity angles
in the I-RAVEN dataset), are also correct. All these distinct
correct answers (images) can be encoded algebraically as
the same concept, based on prior knowledge of which raw
perceptual attributes are relevant for the RPM task. Hence,
to evaluate the answer generation process proposed in Sec-
tion 3.4.2, we will directly evaluate the generated concepts.

Let J = ⟨e1, . . . , ek⟩ and J ′ = ⟨e′1, . . . , e′ℓ⟩ be concepts

representing the ground truth answer and our generated an-
swer, respectively. Here, each ei (or e′i) is a monomial of
the form x

(pos)
i x

(type)
i x

(color)
i x

(size)
i , and represents an entity

described by 4 attributes. Motivated by the well-known idea
of Intersection over Union (IoU), we propose a new similar-
ity measure between J and J ′. In order to define analogous
notions of “intersection” and “union”, we first pair ei with
e′j if x

(pos)
i = x′

j
(pos) (i.e. same “position” values). This

pairing is well-defined, since the “position” values of the
entities in any panel are uniquely determined. Hence we
can group all entities in J and J ′ into 3 sets:

S1 := {(ei, e′j) | ei ∈ J, e′j ∈ J ′, x
(pos)
i = x′

j
(pos)};

S2 := {ei ∈ J | ∄e′j ∈ J ′ such that (ei, e′j) ∈ S1};
S3 := {e′j ∈ J ′ | ∄ei ∈ J such that (ei, e′j) ∈ S1}.

We can interpret S1 and S1 ∪ S2 ∪ S3 as analogous notions
of the “intersection” and “union” of J and J ′, respectively.
Thus, we define our similarity measure as follows:

φ(J, J ′) :=

∑
(ei,e′j)∈S1

ϕ(ei, e
′
j)

|S1|+ |S2|+ |S3|
; (2)

ϕ(ei, e
′
j) :=

1

4

∑
a

1(x
(a)
i = x′

j
(a)); (3)

where in (3), a ranges over the 4 attributes in {pos, type,
color, size}. Here, ϕ(ei, e′j) is the similarity score between
ei and e′j , measured by the proportion of common variables.

The overall average similarity score of the generated an-
swers is 67.7%. Note that within a panel, some attribute
values such as “size”, “color” and “position”, may be totally
random for 2x2Grid, 3x3Grid, Out-InGrid (e.g. as
shown in Fig. 3). Hence, achieving high similarity scores
for such cases would inherently require task-specific opti-
mization and knowledge of how the data is generated. We
assume neither. This could explain why our overall similar-
ity score is lower than our answer selection accuracy.

For examples of generated images, see Appendix B.5.

6. Conclusion
Algebraic machine reasoning is a reasoning framework

that is well-suited for abstract reasoning. In its current form,
we have used primary decompositions as a key algebraic
operation to discover abstract patterns in the RPM task, via
the invariance modules that we have specially designed to
mimic human reasoning. The idea that “discovering com-
mon patterns” can be realized concretely as “computing pri-
mary decompositions” is rather broad, and could potentially
be applied to other inferential reasoning tasks.

More generally, our algebraic approach opens up new
possibilities of tapping into the vast literature of commuta-
tive algebra and computational algebra. There are numerous
algebraic operations on ideals (ideal quotients, radicals, sat-
uration, etc.) and algebraic invariants (depth, height, etc.)
that have not been explored in machine reasoning (or even
in AI). Can we use them to tackle other reasoning tasks?
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