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Abstract

Learning models trained on biased datasets tend to ob-
serve correlations between categorical and undesirable fea-
tures, which result in degraded performances. Most exist-
ing debiased learning models are designed for centralized
machine learning, which cannot be directly applied to dis-
tributed settings like federated learning (FL), which col-
lects data at distinct clients with privacy preserved. To
tackle the challenging task of debiased federated learn-
ing, we present a novel FL framework of Bias-Eliminating
Augmentation Learning (FedBEAL), which learns to de-
ploy Bias-Eliminating Augmenters (BEA) for producing
client-specific bias-conflicting samples at each client. Since
the bias types or attributes are not known in advance, a
unique learning strategy is presented to jointly train BEA
with the proposed FL framework. Extensive image clas-
sification experiments on datasets with various bias types
confirm the effectiveness and applicability of our FedBEAL,
which performs favorably against state-of-the-art debiasing
and FL methods for debiased FL.

1. Introduction

Deep neural networks have shown promising progress
across different domains such as computer vision [14]
and natural language processing [8]. Their successes
are typically based on the collection of and training on
data that properly describe the inherent distribution of the
data of interest. However, in real-world scenarios, biased
data [24] are often observed during data collection. Biased
datasets [10, 22, 42] contain features that are highly cor-
related to class labels in the training dataset but not suffi-
ciently describing the inherent semantic meaning. Training
on such biased data thus result in degraded model general-
ization capability. Take Fig. | for example; when address-
ing the cat-dog classification task, training images collected
by users might contain only orange cats and black dogs.
Their color attributes are strongly correlated with the image
labels during training, but such attributes are not necessar-
ily relevant to the classification task during inference. As
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Figure 1. Example of local data bias in FL. When deploying
FL to train a cat-dog classifier with image datasets collected by
multiple pet owners, most of the local images are obtained with
their pets with specific colors. Therefore, the models trained with
each local dataset are likely to establish decision rules on biased

attributes (e.g., fur color), which prevents the aggregated model
from learning proper representation for classification.

pointed out in [10,42], deep neural networks trained with
such biased data are more likely to make decisions based
on bias attributes instead of semantic attributes. As a re-
sult, during inference, performances of the learned models
would dramatically drop when observing bias-conflicting
samples (i.e., data containing semantic and bias attributes
that are rarely correlated in the training set).

To tackle the data bias problem, several works have been
proposed to remove or alleviate data bias when training
deep learning models [6, | 1, 18,24,27,32,36,40]. For ex-
ample, Nam et al. [36] train an intentionally biased auxil-
iary model while enforcing the main model to go against
the prejudice of the biased network. Lee et al. [27] utilize
the aforementioned biased model to synthesize diverse bias-
conflicting hidden features for learning debiased represen-
tations. Nevertheless, the above techniques are designed for
centralized datasets. When performing distributed training
of learning models, such methods might fail to generalize.

For distributed learning, federated learning (FL) [35]
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particularly considers data collection and training con-
ducted at each client, with data privacy needing to be pre-
served. When considering privately distributed datasets,
real-world FL applications are more likely to suffer data
heterogeneity issues [20, 28, 51], ie., data collected by
different clients are not independent and identically dis-
tributed (IID). Recently, several works [19,21,29-31,34,47]
propose to alleviate performance degradation caused by
data heterogeneity. However, existing methods typically
consider data heterogeneity in terms of label distribution
skew [21, 29, 30, 34, 47] or domain discrepancy [19, 31]
among clients. These FL. methods are not designed to tackle
potential data bias across different clients, leaving the debi-
ased FL a challenging task to tackle.

To mitigate the local bias in Federated learning, we pro-
pose a novel FL scheme of Bias-Eliminating Augmentation
Learning (FedBEAL). In FedBEAL, we learn a Bias-
Eliminating Augmenter (BEA) for each client, with the goal
of producing bias-conflicting samples. To identify and in-
troduce the desirable semantic and bias attributes to the aug-
mented samples, our FedBEAL uniquely adopts the global
server model and each client model trained across iterations
without prior knowledge of bias type or annotation. With
the introduced augmenter and the produced bias-conflicting
samples, debiased local updates can be performed at each
client, followed by simple aggregation of such models for
deriving the server model.

We now summarize the contributions of this work below:

¢ To the best of our knowledge, We are among the first
to tackle the problem of debiased federated learning, in
which local yet distinct biases exist at the client level.

* We present FedBEAL for debiased FL, which intro-
duces Bias-Eliminating Augmenters (BEA) at each
client with the goal of generating bias-conflicting sam-
ples to eliminate local data biases.

¢ Learning of BEA can be realized by utilizing the global
server and local client models trained across iterations,
which allows us to identify and embed desirable se-
mantic and bias features for augmentation purposes.

2. Related Work
2.1. Debiasing in Centralized Machine Learning

With the presence of biased datasets, neural networks
are prone to relying on simpler features (e.g., color infor-
mation) and remaining invariant to other predictive com-
plex features [10,42] (e.g., semantic information), which
limit the performances of the learned models. Several
works [6, 11,43, 46] propose debiasing techniques to im-
prove the robustness of the model trained on such biased
datasets. However, they either assume the bias type to be

known (e.g., texture bias) in advanced [ ] or require aux-
iliary annotations of the bias attributes (e.g., color informa-
tion) for each sample [6,43,46]), which might not be prac-
tically available. To alleviate this concern, some research
works [18, 27, 36, 44] focus on mitigating dataset biases
without presuming bias categories or involving additional
annotations. For instance, Nam ef al. [36] train a biased
model by repeatedly amplifying its prejudice. Based on
the assumption that biased models fail on bias-conflicting
samples, they further upweight the bias-conflicting samples
so that a debiased model can be trained accordingly. Lee
et al. [27] follow the above approach to debias the main
model by disentangling the semantic and bias features. On
the other hand, Hong et al. [18] apply contrastive learn-
ing [13, 23] to encourage intra-bias feature dissimilarities.
Although the above methods have shown promising perfor-
mances, they are mainly applicable to centralized learning
schemes. For distributed learning like federated learning,
these methods cannot be directly applied.

2.2. Federated Learning with Data Heterogeneity

Label distribution skew. Under the heterogeneous label
distribution, existing methods [21, 29, 30, 33, 34, 47, 53]
focus on correcting client drift using global information.
For example, FedProx [30] adds a regularization term to
preserve consistency between local updates and the global
model. SCAFFOLD [21] mitigates gradient dissimilarity
using control variates. MOON [29] addresses non-1ID prob-
lems by applying contrastive learning at the model level.

Distribution shift across clients. As for feature distri-
bution drift (also known as domain shift), previous FL
works [19,31] are designed to bridge the domain gap be-
tween different clients. For instance, FedBN [31] choose
to fix the parameters for local Batch Normalization and
do not synchronize them with the global model. As for
FCCL [19], it views domain shift as a catastrophic forget-
ting problem and approaches it by using knowledge distil-
lation techniques.

Debiased federated learning. Recently, a number of FL
works [1-4,9] are proposed to eliminate local biases from
the training data. In [3, 4], such biases are referred to as
label distribution skew. For example, [4] uses the term lo-
cal learning bias to describe decision boundaries discrep-
ancy among networks trained on heterogeneous data. As
for [1, 9], additional efforts are made to take care of un-
derprivileged or sensitive data subsets (e.g., racial, gender
groups). For example, Ezzeldin et al. [9] propose a fairness-
aware FL framework for preventing the trained model from
being biased toward an underlying demographic group,
aiming to produce a fair model across clients while main-
taining high utility. It can be seen that we are among the first
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to address the learning task of debiased federated learning,
in which undesirable correlations of bias attributes and class
labels are observed at each client.

3. Method
3.1. Problem Definition and Method Overview

Problem definition For the sake of completeness, we first
define the problem setting and notations used in this paper.
We assume that training image data are privately distributed
in K clients D = {D1, Ds, ..., Dx }, each containing a set
of image-label pairs D, = {(z,y) | Pv(X = z,Y = y)}.
To formulate local data biases, we follow Hong et al. [18]
and assume that images X can be decomposed into seman-
tic attributes A..,, and hidden bias attributes Ay;,s. Note
that Ag.,, is expected to describe categorical information,
while Ay;,s contains undesirable features highly correlated
with Y. As depicted in Figure 1, we assume each client with
disparate bias-label correlations (i.e., Vip P (Y| Apias) #
Py (Y| Apias)). On the other hand, since this work focuses
on mitigating local client bias instead of the bias of the
global dataset D, we assume the union of all local train-
ing datasets shares the same bias distribution with the test
dataset Dy.q (i.e., P(Y‘Abias) = Ptest(Y‘Abias))- With a
total of 7' communication rounds, the goal of debiased FL.
is to derive a model f that satisfies

| K
] —Li(f), (D

arg min E
!
where Li(f) = B¢ y)~op, [0(f(x),y)] represents the em-
pirical loss of client k.

Method overview Based on FedAvg [35], our proposed
Bias-Eliminating Augmentation Learning (FedBEAL)
trains a network robust to data bias observed at each client.
Similar to standard FL, training of FedBEAL requires alter-
native optimization between the two stages. More specifi-
cally, debiased local update is performed at the client side,
and global aggregation is conducted at the server side. To
address local bias problems, we uniquely propose to learn
a Bias-Eliminating Augmenter (BEA) gy, for each client &.
As depicted in Figure 2, BEA is deployed to generate bias-
conflicting samples and allows updates of each f;. As for
the global aggregation stage, each f; will be uploaded to
the server for producing a debiased global model f. We
now detail our proposed learning scheme below.

3.2. Bias-Eliminating Augmenter

To eliminate the local bias in FL, we propose to deploy
Bias-Eliminating Augmenters at each client. Since the bias
information is unknown, how to design BEA for creating
bias-conflicting samples within each local client would be

Server

©
ft+1
Client
ft Client1 | Client k ft
1 local update , , , local update k
(a) FedAvg
Server
©
| ft+1 |
Client
Bias-Eliminating Bias-Eliminating
Augmenter g; Augmenter g,
ft Client1 | _ Clientk ft
1 local update  local update k

(b) FedBEAL

Figure 2. Comparisons between (a) FedAvg and (b) FedBEAL.
Our FedBEAL learns Bias-Eliminating Augmenters (BEA) to pro-
duce bias-conflicting samples at each client, allowing the learned
model to produce improved debiased representations.

challenging. With local image data and their class labels
observed, we now explain how our BEA can be learned in
an FL scheme.

3.2.1 Design and architecture

As depicted in Figure 3, for each client k£, we randomly
sample two samples 2 and 27 with distinct labels from the
local dataset Dy,. Inspired by recent mixed sample data aug-
mentation (MSDA) techniques [7, 12, 16, 17,38,49, ] we
produce the mixed bias-conflicting sample z by utilizin

Net as the backbone, with a modulator M € [0,1] Hx
deployed. With the concatenation of x* and 27 as the input
to BEA, the output ¥ can be expressed as:

F=Moz'+(1-M)oa, (2)

where © indicates the element-wise multiplication, and we
have y = y* for the manipulated output (i.e., the class label
of Z is identical to that of z").

20444



- {ai“em? a?)ias}

~ At
Qsem < a

Global model

sem

Bias-Eliminating Augmenter (BEA) g

o

- U-Net

Dy,

Random
Sample

Y
M
HDDH
modulator 1—-M
v

{

®© sems &bias}

Local model

0]

zl = {agem? agms}

5 J
Qbias *7" Qpjqg

backprop.

Figure 3. Design and learning of Bias-Eliminating Augmenter. Given two randomly selected images z* and = at client k, the Bias-
Eliminating Augmenter (BEA) learns to produce a bias-conflicting sample . That is, the semantic attribute asen, of T is expected to be
close to that of z*, while the bias attribute ayiqs of & would be extracted from 7. Note that f* and f,i_l denote the server and client

models learned at ¢-th and (¢ — 1)-th iterations, respectively.

For = being a bias-conflicting example, it would be de-
sirable for Z to share the same semantic attribute with 2
(i.e., Asem Of T to be closed to a’,,, of x%), while sharing
the same bias attribute with xd (i.e., Gpiqs of T to be closed
to aj,,, of 27). Once such bias-conflicting samples are ob-
tained, one can train the associated client model and update
the global model accordingly, which is expected to produce

debiased representations.

3.2.2 Learning of BEA

Without prior knowledge of bias types, providing guidance
to train the BEA would not be straightforward. In order to
have BEA identify desirable intrinsic semantic and inherent
bias attributes for manipulating bias-conflicting samples,
we propose a unique learning scheme utilizing the global
server model f! and local client model f]i_l.

Extracting semantic attributes via unbiased global pre-
diction. For a bias-conflicting sample z, its semantic at-
tribute asep, 18 €xpected to be similar to aiem of z*. In FL,
since the global server model f* is derived by global ag-
gregation, f! can be considered relatively unbiased when
compared to the local model f,i_l produced at the previous
iteration. Thus, it would be desirable for ag¢y, and al,,,, to
exhibit large similarity, which can be derived from the dif-
ference between the predictions of & and z* derived from
the global model f¢. To be precise, the loss function for en-
couraging such semantic attribute consistency is defined as:

L =drr(f (), f'(z")),

where dg 1, calculates the KL divergence between the pre-
dictions using f*.

3)

Producing bias attributes via biased local prediction.
On the other hand, for a bias-conflicting sample Z, its bias
attribute ap;45 1S expected to be similar to aims of 7, which
is sampled from an instance from a different category (as
described in Sec. 3.2.1).

To identify and relate such bias attributes, we take the lo-
cal client model f]?l as the guidance. Note that, compared
to the aggregated server model, client models produced at
prior iterations are considered to be affected more by lo-
cal biased data, which is more likely to predict the output

+~!(z) based on its hidden bias attributes. Therefore, we
define the similarity between the bias attributes ap;qs and
aj;,s» Which is now calculated and guided by the difference
between the predictions of Z and z° using flifl. Specifi-
cally, we minimize:
Ly = drr(fi (@), [ (@), 4)
where (¢ — 1) denotes the training round.

From the above design and derivation, we have the ob-
jective for training BEA as:

Liotat = L+ L. )
As depicted in Figure 3, via minimization of £, BEA will
be optimized so that the semantic attribute Gse,,, of T will
be updated and be close to a’,,, of 2. On the other hand,
minimizing £ encourages the bias attribute Gy;qs of T to
be updated as aj,,, of 27, In other words, optimization
of BEA would encourage the generated samples whose se-
mantic and bias attributes are extracted from training data
of distinct classes.

While our BEA can be viewed as performing mixed-
sample data augmentation, existing MSDA methods [7, 12,

, 17,38,49,52] are only designed to produce handcrafted
augmentation outputs, which may not necessarily to be
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Algorithm 1: Training of FedBEAL

Input: 7, T,,, K, D = {D1, Do, ..., Dy}, p,

91592, - 9rc» fO, local epochs E, and Ey,
learning rate 7y and 7
fort=0,1,...., T —1do
for k =1,2,..., K in parallel do

if t > T,, then
| TrainBEA(f*, ;")
fi + LocalUpdate(f*)

t+1 K |Di| gt
= ey e

Output: return 7

TrainBEA(f*, fi~1)
fore=1,2,...,E, do
for (z%, 27) of Dy do
T« gk(xivxj)
L dien(f(@) (@)
Ly, « dgr(fi ' (@), fi (@)
Liotar < L + Lk
Ik < Gk — ngVLtotal

LocalUpdate( /%)

fe e f*
fore=1,2,...,FE;do

for (2, 27, ¥, ) of Dy, do

ift > T and Uniform(0,1) < p then
T, § + gr(z',27), y'
L < CrossEntropy(f}(z),7)

else o
L L5 < CrossEntropy(ff(z'),y")
L f}i — fli - anLCls
return f}

bias-conflicting. For example, spatial location-based aug-
mentations (e.g., CutMix [49], FMix [12]) only fuse two
images by replacing a region of one image with that from
another, alleviating only high-level bias (e.g., background
bias [36]). Style-based augmentations [16, 17,52] are only
capable of alleviating low-level biases by mixing style and
content from distinct images. As verified in Section 4,
learning of BEA would be desirable for debiased FL.

3.3. Training of FedBEAL

Debiased local update. After BEA is learned and de-
ployed at each client k, we perform debias local updates by
training each local model f{ using additionally produced
bias-conflicting data pairs (i.e.,  and y). To further im-
prove the robustness of our framework, we follow [49] to
consider several techniques at this local update stage. That
is, we define p € [0, 1] as the probability of augmenting

each data batch to control the degree of debiasing. More-
over, we define the warm-up round T, (i.e., BEA is ac-
tivated after round 7,) to avoid undesirable augmentation
outputs harmful to local training happening in the begin-
ning stage. With bias-conflicting data and the introduced
learning techniques, we are able to enforce the local model
to be better guided by the semantic information while sup-
pressing the bias.

Global aggregation. For each training iteration, once
the debiased local updates are performed, we then col-
lect and aggregate the learned weights of each local
model (weighted by the size of the corresponding local
dataset [35]). To be more specific, the global model for the
next round f*+! can be calculated as follows:

D

With the convergence of the overall training process, the
final global model can be applied to perform classification
on unbiased test data. The pseudo-code of our complete
FedBEAL framework is summarized in Algorithm 1.

4. Experiments
4.1. Datasets and Implementation Details

Datasets. To evaluate the effectiveness and applicabil-
ity of our learning scheme in different types of bias, we
consider three commonly used biased datasets, including
Colored MNIST [5] (with color bias), Corrupted CIFAR-
10 [15] (with corruption bias), and Collage CIFAR-10 [44]
(with collaged images as bias). Colored MNIST con-
tains images of hand-written digits colorized with differ-
ent colors. Corrupted CIFAR-10 includes images applied
with random corruptions (e.g., noises, blurring, bright-
ness/contrast adjustment). In Collage CIFAR-10, a sample
is combined with four images originating from four differ-
ent datasets, including MNIST [26], Fashion MNIST [48]
and SVHN [37] that jointly serve as bias attributes, and
CIFAR-10 [25] as the semantic information. As noted in
Section 3.1, we distribute the training set to K clients,
where K is set to 10 across all our experiments. To quantify
the severity of local bias in training data, we further define
the ratio for the amount of biased local data 3.

Implementation details. For Colored MNIST, Corrupted
CIFAR-10, and Collage CIFAR-10, input images are re-
sized to 28 x 28, 32 x 32, and 64 x 64 pixels. For simplicity,
we use LeNet [26] as the classifier f for Colored MNIST
and ResNet-18 [14] for Corrupted CIFAR-10 and Collage
CIFAR-10. A U-Net [39] with the encoder of ResNet-18 is
adopted as the augmenter g. The communication round 7’
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Dataset Colored MNIST  Corrupted CIFAR-10  Collage CIFAR-10 Dataset Colored MNIST  Corrupted CIFAR-10  Collage CIFAR-10 Ave

Bias ratio 3 099 0999 099 0.999 0.99 0.999 Biasratio 5 099 0999  0.99 0.999 099  0.999

Baselines FedAvg [35]  93.90 72.67 49.03 40.28 5293 3691  57.62

SOLO 46.90 1446  16.80 13.19 12.28 10.58 Mixup [S0] 9138 7476  53.98 40.85 50.13  37.65  58.13

FedAvg [35] 93.90 72.67 49.03 40.28 52.93 3691 CutMix [49] 8273  59.55  41.39 31.69 7126  63.98 5843

Centralized Debiasing Methods MixStyle [52] 9913 99.20  58.99 46.27 4975 3409 6457

LfF [36] 87.64 5527 5347 4225 46.53 26.96 Ours 98.58 91.99  59.18 49.09 69.53 6453 7215

SoftCon [18] 96.75 8639  55.38 47.61 54.19 42.98

Lee et al. [27] 9028 6135  54.86 45.90 41.02 22.58 . .

Do B PP — Table 2. Comparisons to MSDA methods for debiased FL. Bold
ata Heterogeneous Federated Learning . .

FedProx [20] 0451 7307 4406 3401 41.87 2504 denotes the best result, while underline denotes the second best.

SCAFFOLD [21] 9501 6841 41.73 34.35 38.37 33.85

MOON [29] 9333 6937  36.79 26.06 34.71 19.97

FedBN [31] NA  NA 4846 36.52 46.51 32.53 19.32% on Colored MNIST with g of 0.999). These quan-

Ours 98.58 9199 5918  49.09 69.53 6453 titative comparisons verify that our proposed FL approach

Table 1. Comparisons to SOTA federated learning and debi-
asing algorithms. Bold denotes the best result, while underline
denotes the second best. Note that in Colored MNIST, FedBN is
not applicable due to disregard of Batch Normalization layers.

is set to 100. For each round, each client train their g and
f sequentially for 5 epochs using the SGD optimizer, with
the batch size of 64, the learning rate of 0.01, the momen-
tum of 0.9, and the weight decay of 0.00001. We implement
our model using PyTorch, and conduct training on a single
NVIDIA 3090 GPU with 24GB memory.

4.2. Quantitative Evaluation

4.2.1 Comparisons to debiasing and FL methods

We first compare proposed learning scheme with existing
centralized debiasing [18,27,36] and heterogeneous feder-
ated learning [21,29-31,35] methods. In our experiments,
SOLO and FedAvg [35] are viewed as baselines. The for-
mer only performs local training without global averaging
of client models, while the latter is the fundamental frame-
work for all the other methods reported in this section. Note
that we report the mean accuracy of each local model in
SOLO. As shown in Table 1, we evaluate state-of-the-art
methods with the three datasets with 3 set from 0.99 to
0.999. From the upper half of Table 1, we applied existing
debiasing methods designed for centralized machine learn-
ing [18,27,36] to debias local update at each client. For
example, SoftCon [ 18] enabled each client to preserve intra-
bias features dissimilarities to debias the model, which im-
proved the results of Colored MNIST with 3 of 0.999 by
13.72%. On the other hand, from the bottom half of Ta-
ble 1, existing FL approaches tackled data heterogeneity
by preserving the consistency between the local and global
models. It can be observed that such constraints were not
sufficient to mitigate severe local bias and only slightly im-
proved the performance (e.g., FedProx [30] improved the
accuracy by 0.4% on Colored MNIST with 5 of 0.999). In-
stead, our FedBEAL performed favorably against the above
methods on all datasets (e.g., accuracy improvements of

removes local biases across different clients for improved
classification performances.

4.2.2 Comparisons to MSDA methods

To further verify the effectiveness of our augmentation
scheme, we further compare our method with state-of-the-
art mixed sample data augmentation algorithms [49,50,52].
Existing handcrafted MSDA methods are generally de-
signed to handle particular types of bias and cannot eas-
ily generalize to bias types not defined in advance. As
shown in Table 2, MixStyle [52] benefited low-level biases
(e.g., color or corruption bias) by transferring style informa-
tion of the images and improved the accuracies from 5.99%
to 26.53% on Colored MNIST and Corrupted CIFAR-10.
However, such augmentations was not able to mitigate high-
level biases (e.g., background bias [36]), as the perfor-
mance of MixStyle dropped from 2.82% to 3.18% on Col-
lage CIFAR-10. On the other hand, CutMix significantly
improved the accuracy by 27.07% on Collage CIFAR-10
with /3 of 0.999 since the cut-and-paste operation efficiently
removed high-level regional bias. However, it failed to
handle low-level color and corruption biases in Colored
MNIST and Corrupted CIFAR-10 and degraded the perfor-
mance from 7.64% to 13.12%. Compared to such MSDA
methods, our approach learns to find the optimal BEA and
thus exhibits more robust debiasing effects on various bias
types. As shown in the last column of Table 2, our method
performed favorably compared to MSDA approaches and
achieved improved accuracy by 14.53%, indicating the ro-
bustness and generalization capability of our augmentation
scheme to different bias types.

4.2.3 Debiasing server and client models

As indicated in Section 3.2.2, the design and learning ob-
jectives for our BEA are based on the assumption that local
models are relatively biased compared to the global aggre-
gated one at each iteration. To verify this assumption, we
quantitatively compare the bias level of the global and local
models in FedAvg and FedBEAL on the Colored MNIST
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Figure 4. Learning curve comparisons of global/local models
from FedAvg and FedBEAL on Colored MNIST. (a) and (b)
show accuracies for biased and unbiased datasets, and (c¢) com-
pares the bias level S (see Equation (7)). Note that the local model
with FedBEAL shows improved debiased performance, and its
global model also exhibits improved unbias ability over FedAvg.

dataset. Given a biased dataset Dy, from client k£ and an un-
biased testing dataset Dy, we first define the bias level S
of the local model f} and the global model f* as follows:

_ Accunbias

S=1 @)

Accbias
where Accpiqs and Accynpias are the accuracies evaluated
on Dy, and Dy, respectively. In other words, the model is
biased (i.e., S is higher) if the model achieves high accuracy
on the biased dataset while performing relatively unfavor-
able on the unbiased dataset.

Based on the above setting, we train our model on Col-
ored MNIST with the bias ratio 5 of 0.999. As illustrated
in Figure 4c, while the local model of FedBEAL was rel-
atively biased compared to the global model (see orange
curves), we were able to gradually debias such models for
improved performances when comparing to FedAvg. The
above results support the design and learning scheme for
the proposed BEA.

4.3. Qualitative Evaluation

Representation visualization. We now qualitatively as-
sess the ability of FedBEAL to derive semantic-aware and
debiased feature representations. As shown in Figure 5, we
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Figure 5. t-SNE comparisons between FedAvg and FedBEAL
on Colored MNIST. Data points in the left column are colorized
based on the bias attributes (i.e., color), while those in the right
column are colorized based on the class labels.

apply t-SNE [45] to compare the hidden representation de-
rived by the global model of FedAvg and our approach on
Colored MNIST. In Figure 5a, we see that features extracted
by FedAvg were grouped according to bias attributes and
were not properly separated with respect to the class labels.
In contrast, features derived by our model remained rela-
tively uncorrelated in terms of the bias attributes, and the
separation between different class clusters was more signif-
icant. The above observation indicates that our proposed
bias-eliminating augmentation learning allows the deriva-
tion of discriminative and debiased features.

Visualization of augmented bias-conflicting samples.
We now show example augmented images & produced by
our method, which is expected to preserve the categorical
information of 2 and impose the bias from 7. In Figure 6,
we first see example images for Colored MNIST, and we
observe  obtained the digit color from 27 while preserving
the original digit shape as of z. From the second image
set of Corrupted CIFAR-10, z inherited the high chromatic
impluse noise from 7 while still maintaining semantically
recognizable foreground objects. As for Collage CIFAR-
10, our modulators M successfully captured the unbiased
bottom-left image region for augmentation. From the exam-
ples, we confirm that our proposed BEA is capable of cap-
turing inherent dataset bias while preserving desirable se-
mantic attributes for augmenting bias-conflicting samples.
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Colored MNIST
(bias: color)

Corrupted CIFAR-10
(bias: corruption)

Collage CIFAR-10
(bias: region not in red box)

Figure 6. Visualization of images produced by BEA. Based on the mask learned by the BEA modulator M, the augmented bias-
conflicting Z can be seen as the mixture of the content from z* and the bias from x”.

(b) FedBEAL

Figure 7. Grad-CAM comparisons between FedAvg and Fed-
BEAL on Collage CIFAR-10. Compared to FedAvg results in
(a), the attention map for FedBEAL in (b) better identify the ob-
ject region of interest for classification (in red rectangles).

Grad-CAM visualization. Grad-CAM [41]is commonly
used to visually explain how deep learning models make
classification decisions. To verify the effectiveness of
the proposed learning scheme, we consider FedAvg and
our proposed method on the Collage CIFAR-10 dataset
with g of 0.99, and we apply Grad-CAM to interpret the
trained global models during classification (see Figure 7).
From Figure 7a, we see that the global model trained with
FedAvg attended to ambiguous or irrelevant image regions,
implying the lack of ability to indicate regions with proper
semantic features for classification. In Figure 7a), we see

that the global model trained by our proposed FedBEAL
attended image regions on the augmented samples, which
are correlated to the categorical information of interest.
This also explains the reason why our FedBEAL is able to
achieve satisfactory performances on debaised FL tasks.

5. Conclusion

In this paper, we addressed the challenging problem of
debiased FL and proposed FedBEAL for mitigating local
biases. By introducing and learning Bias-Eliminating Aug-
menters at each client, bias-conflicting samples can be auto-
matically learned. The learning of BEA can be simply uti-
lized by the global server and local client models obtained
during the training progress, and thus no prior knowledge of
bias type or annotation would be required. We conducted
extensive experiments, including comparisons to state-of-
the-art debiasing, FL, and MSDA methods, and visualiza-
tion of augmented images, which quantitatively and qualita-
tively confirmed the effectiveness and robustness of our pro-
posed approach in discovering and solving unknown dataset
bias in federated learning schemes.
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