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Abstract

3D single object tracking plays an essential role in many
applications, such as autonomous driving. It remains a
challenging problem due to the large appearance varia-
tion and the sparsity of points caused by occlusion and lim-
ited sensor capabilities. Therefore, contextual information
across two consecutive frames is crucial for effective ob-
ject tracking. However, points containing such useful in-
formation are often overlooked and cropped out in existing
methods, leading to insufficient use of important contextual
knowledge. To address this issue, we propose CXTrack, a
novel transformer-based network for 3D object tracking,
which exploits ConteXtual information to improve the track-
ing results. Specifically, we design a target-centric trans-
former network that directly takes point features from two
consecutive frames and the previous bounding box as in-
put to explore contextual information and implicitly propa-
gate target cues. To achieve accurate localization for ob-
jects of all sizes, we propose a transformer-based local-
ization head with a novel center embedding module to dis-
tinguish the target from distractors. Extensive experiments
on three large-scale datasets, KITTI, nuScenes and Waymo
Open Dataset, show that CXTrack achieves state-of-the-art
tracking performance while running at 34 FPS.

1. Introduction

Single Object Tracking (SOT) has been a fundamental
task in computer vision for decades, aiming to keep track
of a specific target across a video sequence, given only its
initial status. In recent years, with the development of 3D
data acquisition devices, it has drawn increasing attention
for using point clouds to solve various vision tasks such as
object detection [7, 12, 14, 15, 18] and object tracking [20,
29, 31–33]. In particular, much progress has been made on
point cloud-based object tracking for its huge potential in
applications such as autonomous driving [11,30]. However,
it remains challenging due to the large appearance variation
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Figure 1. Comparison of various 3D SOT paradigms. Previous
methods crop the target from the frames to specify the region of
interest, which largely overlook contextual information around the
target. On the contrary, our proposed CXTrack fully exploits con-
textual information to improve the tracking results.

of the target and the sparsity of 3D point clouds caused by
occlusion and limited sensor resolution.

Existing 3D point cloud-based SOT methods can be cat-
egorized into three main paradigms, namely SC3D, P2B
and motion-centric, as shown in Fig. 1. As a pioneering
work, SC3D [6] crops the target from the previous frame,
and compares the target template with a potentially large
number of candidate patches generated from the current
frame, which consumes much time. To address the effi-
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ciency problem, P2B [20] takes the cropped target tem-
plate from the previous frame as well as the complete
search area in the current frame as input, propagates tar-
get cues into the search area and then adopts a 3D re-
gion proposal network [18] to predict the current bound-
ing box. P2B reaches a balance between performance and
speed. Therefore many follow-up works adopt the same
paradigm [3, 8, 9, 22, 29, 31, 33]. However, both SC3D and
P2D paradigms overlook the contextual information across
two consecutive frames and rely entirely on the appear-
ance of the target. As mentioned in previous work [32],
these methods are sensitive to appearance variation caused
by occlusions and tend to drift towards intra-class distrac-
tors. To this end, M2-Track [32] introduces a novel motion-
centric paradigm, which directly takes point clouds from
two frames without cropping as input, and then segments
the target points from their surroundings. After that, these
points are cropped and the current bounding box is es-
timated by explicitly modeling motion between the two
frames. Hence, the motion-centric paradigm still works on
cropped patches that lack contextual information in later lo-
calization. In short, none of these methods could fully uti-
lize the contextual information around the target to predict
the current bounding box, which may degrade tracking per-
formance due to the existence of large appearance variation
and widespread distractors.

To address the above concerns, we propose a novel
transformer-based tracker named CXTrack for 3D SOT,
which exploits contextual information across two consecu-
tive frames to improve the tracking performance. As shown
in Fig. 1, different from paradigms commonly adopted
by previous methods, CXTrack directly takes point clouds
from the two consecutive frames as input, specifies the tar-
get of interest with the previous bounding box and predicts
the current bounding box without any cropping, largely pre-
serving contextual information. We first embed local geo-
metric information of the two point clouds into point fea-
tures using a shared backbone network. Then we integrate
the targetness information into the point features accord-
ing to the previous bounding box and adopt a target-centric
transformer to propagate the target cues into the current
frame while exploring contextual information in the sur-
roundings of the target. After that, the enhanced point fea-
tures are fed into a novel localization head named X-RPN
to obtain the final target proposals. Specifically, X-RPN
adopts a local transformer [25] to model point feature in-
teractions within the target, which achieves a better balance
between handling small and large objects compared with
other localization heads. To distinguish the target from dis-
tractors, we incorporate a novel center embedding module
into X-RPN, which embeds the relative target motion be-
tween two frames for explicit motion modeling. Extensive
experiments on three popular tracking datasets demonstrate

that CXTrack significantly outperforms the current state-of-
the-art methods by a large margin while running at real-time
(34 FPS) on a single NVIDIA RTX3090 GPU.

In short, our contributions can be summarized as: (1)
a new paradigm for the real-time 3D SOT task, which
fully exploits contextual information across consecutive
frames to improve the tracking accuracy; (2) CXTrack:
a transformer-based tracker that employs a target-centric
transformer architecture to propagate targetness informa-
tion and exploit contextual information; and (3) X-RPN: a
localization head that is robust to intra-class distractors and
achieves a good balance between small and large targets.

2. Related Work
Early methods [13, 17, 23] for the 3D SOT task mainly

focus on RGB-D information and tend to adopt 2D Siamese
networks used in 2D object tracking with additional depth
maps. However, the changes in illumination and appearance
may degrade the performance of these RGB-D methods. As
a pioneering work in this area, SC3D [6] crops the target
from the previous frame with the previous bounding box,
and then computes the cosine similarity between the target
template and a series of 3D target proposals sampled from
the current frame using a Siamese backbone. The pipeline
relies on heuristic sampling, which is very time-consuming.

To address these issues, P2B [20] develops an end-to-
end framework, which first employs a shared backbone to
embed local geometry into point features, and then propa-
gates target cues from the target template to the search area
in the current frame. Finally, it adopts VoteNet [18] to gen-
erate 3D proposals and selects the proposal with the highest
score as the target. P2B [20] reaches a balance between per-
formance and efficiency, and many works follow the same
paradigm. MLVSNet [29] aggregates information at multi-
ple levels for more effective target localization. BAT [31]
introduces a box-aware feature fusion module to enhance
the correlation learning between the target template and the
search area. V2B [8] proposes a voxel-to-BEV (Bird’s Eye
View) target localization network, which projects the point
features into a dense BEV feature map to tackle the spar-
sity of point clouds. Inspired by the success of transform-
ers [25], LTTR [3] adopts a transformer-based architecture
to fuse features from two branches and propagate target
cues. PTT [22] integrates a transformer module into the
P2B architecture to refine point features. PTTR [33] intro-
duces Point Relation Transformer for feature fusion and a
light-weight Prediction Refinement Module for coarse-to-
fine localization. ST-Net [9] develops an iterative coarse-
to-fine correlation network for robust correlation learning.

Although achieving promising results, the aforemen-
tioned methods crop the target from the previous frame us-
ing the given bounding box. This overlook of contextual in-
formation across two frames makes these methods sensitive
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to appearance variations caused by commonly occurred oc-
clusions and thus the results tend to drift towards intra-class
distractors, as mentioned in M2-Track [32]. To this end,
M2-Track introduces a motion-centric paradigm to handle
the 3D SOT problem, which directly takes the point clouds
from two consecutive frames as input without cropping. It
first localizes the target in the two frames by target segmen-
tation, and then adopts PointNet [19] to predict the relative
target motion from the cropped target area that lacks con-
textual information. M2-Track could not fully utilize local
geometric and contextual information for prediction, which
may hinder precise bounding box regression.

3. Method
3.1. Problem Definition

Given the initial state of the target, single object track-
ing aims to localize the target in a dynamic scene frame by
frame. The initial state in the first frame is given as the 3D
bounding box of the target, which can be parameterized by
its center coordinates (x, y, z), orientation angle θ (around
the up-axis, which is sufficient for most tracked objects
staying on the ground) and sizes along each axis (w, l, h).
Since the tracking target has little change in size across
frames even for non-rigid objects, we assume constant tar-
get size and only regress the translation offset (∆x,∆y,∆z)
and the rotation angle (∆θ) between two consecutive frames
to simplify the tracking task. By applying the translation
and rotation to the 3D bounding box Bt−1 ∈ R7 in the pre-
vious frame, we can compute the 3D bounding box Bt ∈ R7

to localize the target in the current frame.
Suppose the point clouds in two consecutive frames are

denoted as Pt−1 ∈ RṄt−1×3 and Pt ∈ RṄt×3, respec-
tively, where Ṅt−1 and Ṅt are the numbers of points in
the point clouds. We follow M2-Track [32] and encode
the 3D bounding box Bt−1 as a targetness mask Ṁt−1 =

(m1
t−1,m

2
t−1, · · · ,m

Ṅt−1

t−1 ) ∈ RṄt−1 to indicate the target
position, where the mask mi

t−1 for the i-th point pit−1 is
defined as

mi
t−1 =

{
0 pit−1 not in Bt−1

1 pit−1 in Bt−1
(1)

Thus, the 3D SOT task can be formalized as learning the
following mapping

F(Pt−1,Ṁt−1,Pt) 7→ (∆x,∆y,∆z,∆θ) (2)

3.2. Overview of CXTrack

Following Eq. (2), we propose a network named CX-
Track to improve tracking accuracy by fully exploiting con-
textual information across frames, and the overall design
is illustrated in Fig. 2. We first apply a hierarchical fea-
ture learning architecture as the shared backbone to em-
bed local geometric features of the point clouds into point

features. We use Nt−1 and Nt to denote the numbers
of point features extracted by the backbone. For conve-
nience of calculation, we create a targetness mask Ṁt and
fill it with 0.5 as it is unknown. We then concatenate the
point features and targetness masks of the two frames to get
X = Xt−1⊕Xt ∈ RN×C and M = Mt−1⊕Mt ∈ RN×1,
where N = Nt−1 + Nt, Mt−1 and Mt are masks corre-
sponding to point features, and extracted from Ṁt−1 and
Ṁt, and C is the number of channels for point features.
We employ the target-centric transformer (Sec. 3.3) to in-
tegrate the targetness mask information into point features
while exploring the contextual information across frames.
Finally, we propose a novel localization network, named X-
RPN (Sec. 3.4), to obtain the target proposals. The proposal
with the highest targetness score is verified as the result.

3.3. Target-Centric Transformer

Target-Centric Transformer aims to enhance the point
features using the contextual information around the target
while propagating the target cues from the previous frame to
the current frame. It is composed of NL = 4 identical layers
stacked in series. Given the point features X (k−1) ∈ RN×C

and the targetness mask M(k−1) from the (k − 1)-th layer
as input (M(0) = M and X (0) = X ), the k-th layer first
models the interactions between any two points while inte-
grating the targetness mask into point features using a mod-
ified self-attention operation, and then adopts Multi-Layer-
Perceptrons (MLPs) to compute the new point features X (k)

as well as the refined targetness mask M(k). Thus, the pre-
dicted targetness mask will be consistently refined layer by
layer. Moreover, we found it beneficial to add an auxiliary
loss by predicting a potential target center for each point via
Hough voting, so each layer also applies a shared MLP to
generate the potential target center C(k) ∈ RN×3.

Formally, we first employ layer normalization [1] LN(·)
before the self-attention mechanism [25] following the de-
sign of 3DETR [15], which can be written as

X = LN(X (k−1)) (3)

Then, we add positional encodings (PE) of the coordinates
to the normalized point features before feeding them into
the self-attention operation

XQ = XK = X + PE (4)

XV = X (5)

It is worth noting that we only adopt PE for the query and
key branches, therefore each refined point feature is con-
strained to focus more on local geometry instead of its as-
sociated absolute position. Subsequently, the transformer
layer employs a global self-attention operation to model the
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Figure 2. The overall architecture of CXTrack. Given two consecutive point clouds and the 3D bounding box in the previous frame,
CXTrack first embeds the local geometry into point features using the backbone. Then, CXTrack employs the target-centric transformer to
explore contextual information across two frames and propagate the target cues to the current frame. Finally, the enhanced features are fed
into a novel localization network named X-RPN to obtain high-quality proposals for verification.
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Figure 3. Comparison of various transformer layers to fuse the targetness mask and point features. We introduce three types of
target-centric transformer layers, namely Vanilla, Semi-Dropout and Gated layer to integrate the targetness mask information into the point
features while modeling intra-frame and inter-frame feature relationships.

relationships between point features, formulated as

MHA(XQ, XK , XV ) = Concat(head1, ...headh)W
O (6)

where headi = Attn(XQW
Q
i , XKWK

i , XWV
i ),
(7)

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (8)

Here, MHA indicates a multi-head attention, where the
attention is applied in h subspaces before concatenation.
The projections are implemented by parameter matrices
WQ

i ∈ RC×dk , WK
i ∈ RC×dk , WV

i ∈ RC×dv and
WO

i ∈ Rhdv×C , where i indicates the i-th subspace. The
self-attention sublayer can be written as

X̂ = X (k−1) + Dropout(MHA(XQ, XK , XV )) (9)

In addition to the self-attention sublayer, each trans-
former layer also contains a fully connected feed-forward
network to refine the point features. The final output of the
k-th transformer layer is given by

X (k) = X̂ + Dropout(FFN(LN(X̂))), (10)
where FFN(x) = max(0, xW1 + b1)W2 + b2. (11)

To integrate the targetness mask information into point
features, we need to modify the classic transformer layer.
We introduce three types of modified transformer layers in
Fig. 3, namely Vanilla, Semi-Dropout and Gated layer.
Vanilla. We project the input M(k−1) to mask embedding
ME ∈ RN×C using a linear transformation. Following the
design of positional encoding, we simply add ME to the
input token embedding XV , which re-formulates Eq. (5) as

XV = X + ME (12)

Semi-Dropout. Notably, the targetness mask information
can only flow across layers along the attention path. For
small objects which only have a few points to track, ap-
plying dropout to the mask embedding may discard the tar-
getness information and lead to performance degradation.
To this end, we separate the self-attention mechanism into
a feature branch and a mask branch with shared attention
weights, while only applying dropout to the refined point
features. As shown in Fig. 3b, the self-attention sublayer in
Eq. (9) is re-formulated as

X̂ = X (k−1) + Dropout(MHA(XQ, XK , X))

+ MHA(XQ, XK ,ME) (13)
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Figure 4. The overall architecture of X-RPN. X-RPN adopts a
local transformer to model point feature interaction within the tar-
get and aggregate local clues. It also incorporates a center embed-
ding mechanism which embeds the relative target motion between
two frames to distinguish the target from distractors.

Gated. Inspired by the design of TrDimp [26], we intro-
duce a gated mechanism into the self-attention sublayer
to integrate the mask information. It has two parallel
branches, namely mask transformation and feature transfor-
mation. For mask transformation, we first obtain the feature
mask M ∈ RN×C by repeating the input point-wise mask
M(k−1) ∈ RN×1 for C times. Then we can propagate
the targetness cues to the current frame via adopting self-
attention on the mask feature. The transformed mask serves
as the gate matrix for the point features

X̂m = LN(MHA(XQ, XK ,M)⊗X). (14)

For feature transformation, we first mask the point features
to suppress feature activation in background areas, and then
employ self-attention with a residual connection to model
the relationships between features

X̂f = LN(MHA(XQ, XK ,M ⊗X) +X). (15)

As illustrated in Fig. 3c, we sum and normalize the output
features X̂m and X̂f from the two branches. Eq. (9) can be
re-formulated as

X̂ = LN(X̂f + X̂m). (16)

Among the above three layers, we observe significant
performance gain from using Semi-Dropout target-centric
transformer layers (Sec. 4.3). Thus CXTrack employs
Semi-Dropout layers to integrate targetness information
while exploring contextual information across frames.

3.4. X-RPN

Previous works [20] indicate that individual point fea-
tures can only capture limited local information, which may
not be sufficient for precise bounding box regression. Thus

we develop a simple yet effective localization network,
named X-RPN, which extends RPN [18] using local trans-
former and center embedding, as shown in Fig. 4. Different
from previous works [8, 20], X-RPN aggregates local clues
from point features without downsampling or voxelization,
thus avoiding information loss and reaching a good balance
between handling large and small objects. Our intuition is
that each point should only interact with points belonging
to the same object to suppress irrelevant information. Given
the point features X (NL), targetness mask M(NL) and tar-
get center C(NL) output by the target centric transformer,
we first split them along the spatial dimension and only feed
those belonging to the current frame into X-RPN, which is
denoted as X̃ ∈ RNt×C , C̃ ∈ RNt×3 and M̃ ∈ RNt×1, re-
spectively. X-RPN first computes the neighborhood N (pi)
for each point pi using its potential target center ci

N (pi) =
{
pj

∣∣∣ ||ci − cj ||2 < r
}

(17)

Here r is a hyperparameter indicating the size of the neigh-
borhood. Then X-RPN adopts the transformer architecture
mentioned in Sec. 3.3 to aggregate local information, where
each point only interacts with its neighborhood points to
suppress noise. We remove the feed-forward network in the
transformer layer because we observe that one layer is suf-
ficient to generate high quality target proposals.

To deal with intra-class distractors which are widespread
in the scenes [32] especially for pedestrian tracking, we
propose to combine the potential center information with
the targetness mask. Our intuition lies in two folds. First,
the tracking target keeps similar local geometry across two
frames. Second, if the duration between two consecutive
frames is sufficiently short, the displacement of the target
is small. Therefore, we construct a Gaussian proposal-wise
mask Mc to indicate the magnitude of the displacement of
each proposal. Formally, for each point pi with the pre-
dicted target center ci, the mask value mc

i ∈ Mc is

mc
i = exp(−||ci − c||22

2σ2
) (18)

where c ∈ R3 is the target center in the previous frame and
σ is a learnable or fixed scaling factor. We embed the target
center mask Mc into the center embedding matrix CE ∈
RN×C using a linear transformation, and equally combine
the mask embedding and the center embedding.

3.5. Loss Functions

For the prediction M(k) given by the k-th transformer
layer, we adopt a standard cross entropy loss L(i)

cm . As for
the potential target centers, we observe that it is difficult to
regress precise centers for non-rigid objects such as pedes-
trians. Hence the predicted centers C(k) are supervised by
L2 loss for non-rigid objects, and by Huber loss [21] for
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rigid objects. For the target center regression loss L(i)
cc , only

points in the ground truth bounding box are supervised.
Following previous works [20], proposals with predicted

centers near the target center (< 0.3m) are considered as
positives and those far away (> 0.6m) are considered as
negatives. Others are left unsupervised. The predicted tar-
getness mask is supervised via standard cross-entropy loss
Lrm and only the bounding box parameters of positive pre-
dictions are supervised by Huber (Smooth-L1) loss Lbox.

The overall loss is the weighted combination of the
above loss terms

L = γ1

NL∑
i=1

L(i)
cm + γ2

NL∑
i=1

L(i)
cc + γ3Lrm + Lbox (19)

where γ1, γ2 and γ3 are hyper-parameters. We empirically
set γ1 = 0.2, γ2 = 1.0, γ3 = 1.5 for rigid objects and
γ1 = 0.2, γ2 = 10.0, γ3 = 1.0 for non-rigid objects.

4. Experiments
4.1. Settings

Datasets. We compare CXTrack with previous state of the
arts on three large-scale datasets: KITTI [5], nuScenes [2]
and Waymo Open Dataset (WOD) [24]. KITTI contains 21
training video sequences and 29 test sequences. We follow
previous work [6] and split the training sequences into three
parts, 0-16 for training, 17-18 for validation and 19-20 for
testing. For nuScenes, we use its validation split to evalu-
ate our model, which contains 150 scenes. For WOD, we
follow LiDAR-SOT [16] to evaluate our method, dividing it
into three splits according to the sparsity of point clouds.
Implementation Details. We adopt DGCNN [28] as the
backbone network to extract local geometric information.
In the X-RPN, we initialize the scaling parameter σ2 = 10.
Notably, we empirically fix σ as a hyper-parameter for
pedestrians and cyclists, and set it as a learnable parame-
ter for cars and vans, since they may have larger motions.
More details are provided in the supplementary material.
Evaluation Metrics. We use Success and Precision defined
in one pass evaluation [10] as evaluation metrics. Success
denotes the Area Under Curve (AUC) for the plot showing
the ratio of frames where the Intersection Over Union (IOU)
between the predicted and ground-truth bounding boxes is
larger than a threshold, ranging from 0 to 1. Precision is
defined as the AUC of the plot showing the ratio of frames
where the distance between their centers is within a thresh-
old, from 0 to 2 meters.

4.2. Comparison with State of the Arts

We make comprehensive comparisons on the KITTI
dataset with previous state-of-the-art methods, including
SC3D [6], P2B [20], 3DSiamRPN [4], LTTR [3], MLVS-
Net [29], BAT [31], PTT [22], V2B [8], PTTR [33],

Table 1. Comparisons with the state-of-the-art methods on
KITTI dataset. “Mean” is the average result weighted by frame
numbers. “Blue” and “Bold” denote previous and current best per-
formance, respectively. Success/Precision are used for evaluation.

Method Car Pedestrian Van Cyclist Mean
(6424) (6088) (1248) (308) (14068)

SC3D 41.3/57.9 18.2/37.8 40.4/47.0 41.5/70.4 31.2/48.5
P2B 56.2/72.8 28.7/49.6 40.8/48.4 32.1/44.7 42.4/60.0

3DSiamRPN 58.2/76.2 35.2/56.2 45.7/52.9 36.2/49.0 46.7/64.9
LTTR 65.0/77.1 33.2/56.8 35.8/45.6 66.2/89.9 48.7/65.8

MLVSNet 56.0/74.0 34.1/61.1 52.0/61.4 34.3/44.5 45.7/66.7
BAT 60.5/77.7 42.1/70.1 52.4/67.0 33.7/45.4 51.2/72.8
PTT 67.8/81.8 44.9/72.0 43.6/52.5 37.2/47.3 55.1/74.2
V2B 70.5/81.3 48.3/73.5 50.1/58.0 40.8/49.7 58.4/75.2

PTTR 65.2/77.4 50.9/81.6 52.5/61.8 65.1/90.5 57.9/78.1
STNet 72.1/84.0 49.9/77.2 58.0/70.6 73.5/93.7 61.3/80.1

M2-Track 65.5/80.8 61.5/88.2 53.8/70.7 73.2/93.5 62.9/83.4
CXTrack 69.1/81.6 67.0/91.5 60.0/71.8 74.2/94.3 67.5/85.3

Improvement ↓3.0/↓2.4 ↑5.5/↑3.3 ↑2.0/↑1.1 ↑0.7/↑0.6 ↑4.6/↑1.9

Table 2. Robustness under scenes that contain intra-class dis-
tractors on KITTI Pedestrian category.

Method All(6088) Distractor-Only(3917) Improvement
PTTR 50.9/81.6 44.3/70.0 ↓6.6/↓11.6
STNet 49.9/77.2 35.1/58.5 ↓14.8/↓18.7

M2-Track 61.5/88.2 58.0/88.4 ↓3.5/↑0.2
CXTrack 67.0/91.5 66.1/91.3 ↓0.9/↓0.3

STNet [9] and M2-Track [32]. As illustrated in Tab. 1,
CXTrack surpasses previous state-of-the-art methods, with
a significant improvement of average Success and Preci-
sion. Notably, our method achieves the best performance
under all categories, except for the Car, where voxel-based
STNet [9] surpasses us by a minor margin (72.1/84.0 v.s.
69.1/81.6). Most vehicles have simple shapes and limited
rotation angles, which fit well in voxels. We argue that vox-
elization provides a strong shape prior, thereby leading to
performance gain for large objects with simple shapes. The
lack of distractors for cars also makes our improvement over
previous methods insignificant. However, our method has a
significant improvement (67.0/91.5 v.s. 49.9/77.2) on the
Pedestrian category. We claim that this stems from our spe-
cial design to handle distractors and our better preservation
for contextual information. Besides, compared with M2-
Track [32], CXTrack obtains consistent performance gains
on all categories especially on the Success metric, which
demonstrates the importance of local geometry and contex-
tual information. For further analysis on the impact of intra-
class distractors, we manually pick out scenes that contain
Pedestrian distractors from the KITTI test split and then
evaluate different methods on these scenes. As shown in
Tab. 2, both M2-Track and CXTrack are robust to distrac-
tors, while CXTrack can make more accurate predictions.

To verify the genaralization ability of our method, we
follow previous methods [8, 9] and test the KITTI pre-
trained model on nuScenes and WOD. The comparison re-
sults on WOD are shown in Tab. 3. It can be seen that our
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Table 3. Comparison with state of the arts on Waymo Open Dataset.

Method Vehicle(185731) Pedestrian(241752) Mean(427483)Easy Medium Hard Mean Easy Medium Hard Mean
P2B 57.1/65.4 52.0/60.7 47.9/58.5 52.6/61.7 18.1/30.8 17.8/30.0 17.7/29.3 17.9/30.1 33.0/43.8
BAT 61.0/68.3 53.3/60.9 48.9/57.8 54.7/62.7 19.3/32.6 17.8/29.8 17.2/28.3 18.2/30.3 34.1/44.4
V2B 64.5/71.5 55.1/63.2 52.0/62.0 57.6/65.9 27.9/43.9 22.5/36.2 20.1/33.1 23.7/37.9 38.4/50.1

STNet 65.9/72.7 57.5/66.0 54.6/64.7 59.7/68.0 29.2/45.3 24.7/38.2 22.2/35.8 25.5/39.9 40.4/52.1
CXTrack 63.9/71.1 54.2/62.7 52.1/63.7 57.1/66.1 35.4/55.3 29.7/47.9 26.3/44.4 30.7/49.4 42.2/56.7

Improvement ↓2.0/↓1.6 ↓3.3/↓3.3 ↓3.5/↓1.0 ↓2.6/↓1.9 ↑6.2/↑10.0 ↑5.0/↑9.7 ↑4.1/↑8.6 ↑5.2/↑9.5 ↑1.8/↑4.6

Table 4. Comparison with state of the arts on nuScenes.

Method Car Pedestrian Van Cyclist Mean
(15578) (8019) (3710) (501) (27808)

SC3D 25.0/27.1 14.2/16.2 25.7/21.9 17.0/18.2 21.8/23.1
P2B 27.0/29.2 15.9/22.0 21.5/16.2 20.0/26.4 22.9/25.3
BAT 22.5/24.1 17.3/24.5 19.3/15.8 17.0/18.8 20.5/23.0
V2B 31.3/35.1 17.3/23.4 21.7/16.7 22.2/19.1 25.8/29.0

STNet 32.2/36.1 19.1/27.2 22.3/16.8 21.2/29.2 26.9/30.8
CXTrack 29.6/33.4 20.4/32.9 27.6/20.8 18.5/26.8 26.5/31.5

Improvement ↓2.6/↓2.7 ↑1.3/↑5.7 ↑1.9/↓1.1 ↓3.7/↓2.4 ↓0.4/↑0.7

Table 5. Effeciency analysis of different components.
Component FLOPs #Params Infer Speed
backbone 3.18G 1.3M 8.5ms

transformer 1.28G 14.7M 10.9ms
X-RPN 0.17G 2.3M 3.0ms

pre/postprocess - - 6.8ms
CXTrack 4.63G 18.3M 29.2ms(34FPS)

method outperforms others in terms of average Success and
Precision with a clear margin. Notably, KITTI and WOD
data are captured by 64-beam LiDARs, while nuScenes data
are captured by 32-beam LiDARs. Thus it is more chal-
lenging to generalize the pretrained model on the nuScenes
dataset. As shown in Tab. 4, our method achieves compara-
ble performance on the nuScenes dataset. In short, CXTrack
not only achieves a good balance between small objects and
large objects, but also generalizes well to unseen scenes.

We also visualize the tracking results for qualitative com-
parisons. As shown in Fig. 5, CXTrack achieves good ac-
curacy in scenes with both sparse and dense point clouds on
both categories. In the sparse cases (left), previous meth-
ods drift towards intra-class distractors due to large ap-
pearance variations caused by occlusions, while only our
method keeps track of the target, thanks to the sufficient use
of contextual information. In the dense cases (right), our
method can track the target more accurately than M2-Track
by leveraging local geometric information.

We report the efficiency of different components in
Tab. 5. It can be observed that the target-centric transformer
is the bottleneck of CXTrack during inference. We can re-
place the vanilla self-attention in CXTrack with linear at-
tention such as linformer [27] for further speedup.

4.3. Ablation Studies

To validate the effectiveness of several design choices in
CXTrack, we conduct ablation studies on the KITTI dataset.

Table 6. Ablation studies of different components of the target-
centric transformer. “Cx” refers to contextual information, “M”
refers to the cascaded targetness mask prediction and “C” refers to
the auxiliary target center regression branches.

Cx M C Car Pedestrian Van Cyclist Mean
✓ 62.5/74.2 60.6/87.0 58.3/71.4 72.0/93.3 61.5/79.9
✓ ✓ 67.4/80.2 63.9/89.0 57.8/70.8 72.7/93.8 65.1/83.5

✓ ✓ 59.7/73.6† 51.8/81.6 59.9/71.5 71.7/93.2 56.6/77.3
✓ ✓ ✓ 69.1/81.6 67.0/91.5 60.0/71.8 74.2/94.3 67.5/85.3

†: unstable training process

Table 7. Ablation studies of different transformer layers on
KITTI. “V” refers to the vanilla transformer layer and “G” refers
to the gated transformer layer. “S” represents the semi-dropout
transformer layer which is adopted in our proposed CXTrack.

Car Pedestrian Van Cyclist Mean
V 68.8/80.4 62.9/87.8 57.2/69.6 72.7/94.2 65.3/82.9
G 64.8/76.9 64.7/91.1 56.2/70.5 70.6/93.4 64.1/82.8
S 69.1/81.6 67.0/91.5 60.0/71.8 74.2/94.3 67.5/85.3

Components of Target-Centric Transformer. Tab. 6
presents ablation studies of different components of trans-
former to gain a better understanding of its designs. We
crop the input point cloud Pt−1 using Bt−1 to ablate contex-
tual information in the previous frame. We can observe sig-
nificant performance drop when not using contextual infor-
mation, especially on Car and Pedestrian. For Car, it suffers
from heavy occlusions (Fig. 5), while pedestrian distractors
are widespread in the scene. We also find that removing
context leads to unstable training on Car. We presume that
the lack of supervised signals to tell the model what not to
attend may confuse the model and introduce noise in train-
ing. For the cascaded targetness mask prediction and auxil-
iary target center regression, removing either of them leads
to a obvious decline on terms of average metrics. We argue
that the auxiliary regression loss can increase the feature
similarities of points belonging to the same object.
Target-Centric Transformer Layer. Tab. 7 shows the im-
pact of different target-centric transformer layers. Semi-
Dropout achieves better performance than Vanilla, espe-
cially on Pedestrian. Small objects often consist of fewer
points, hence applying dropout directly on the targetness in-
formation in training may confuse the network and lead to
sub-optimal results. Gated relies entirely on the predicted
targetness mask to modulate the amount of exposure for in-
put features, which may suffer from information loss when
the targetness mask is not accurate enough.
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Figure 5. Visualization results. Left: Sparse cases in KITTI. Right: Dense cases in KITTI.

Table 8. Ablation studies of various localization heads on
KITTI. “X-RPN\C” indicates our proposed localization head X-
RPN without center embedding.

Head Car Pedestrian Van Cyclist Mean
PRM [33] 66.5/77.4 62.2/86.8 52.9/64.9 72.5/93.8 63.6/80.7
RPN [18] 64.1/76.9 59.8/88.3 55.0/65.6 68.2/92.4 61.5/81.2
V2B [8] 70.5/82.6 60.1/86.7 58.0/69.8 70.5/93.3 64.9/83.5

X-RPN\C 67.8/80.3 65.5/89.5 59.9/72.1 72.6/94.1 66.2/83.9
X-RPN 69.1/81.6 67.0/91.5 60.0/71.8 74.2/94.3 67.5/85.3

𝑃𝑃𝑡𝑡−1 𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡−1 𝑃𝑃𝑡𝑡
low

high

Intra-class Distractor Inter-class Distractor
Figure 6. Representative examples of attention maps in the
transformer. Target-centric transformer attends to objects that
have similar geometry.

T=40 T=55 T=70 T=85
w/o center embedding w/ center embedding Ground Truth

Figure 7. Visualization of ablation study. Center embedding can
benefit object tracking in challenging scenes with distractors.

X-RPN. We replace X-RPN with other alternatives [8, 20,
33] and report the comparison results in Tab. 8. Although
the V2B head achieves better performance than X-RPN on
the Car category, it fails to track small objects such as pedes-
trians effectively due to intra-class distractors and inevitable
information loss brought in by voxelization. It is also worth
noting that we observe a performance drop without center
embedding, especially on the Pedestrian category, for which
distractors are more commonly seen. To explore the effec-
tiveness of the center embedding, we visualize the attention
map of the last transformer layer in Fig. 6. We observe that
the transformer alone can attend to regions with similar ge-

ometry to the target, but fails to distinguish the target from
distractors. As shown in Fig. 7, with the help of the center
embedding, the network precisely keeps track of the target.
In short, X-RPN achieves a good balance between large and
small objects, and effectively alleviates the distractor prob-
lem.

4.4. Failure Cases

Although CXTrack is robust to intra-class distractors, it
fails to predict accurate orientation of the target when the
point clouds are too sparse to capture informative local ge-
ometry or when large appearance variations occur, as shown
in Fig. 7. Besides, the center embedding directly encodes
the displacement of target center into features, so our model
may suffer from performance degradation if trained with
2Hz data and tested with 10Hz data because the scale of
the displacement differs significantly.

5. Conclusion
We revisit existing paradigms for the 3D SOT task and

propose a new paradigm to fully exploit contextual infor-
mation across frames, which is largely overlooked by pre-
vious methods. Following this paradigm, we design a novel
tranformer-based network named CXTrack, which employs
a target-centric transformer to explore contextual informa-
tion and model intra-frame and inter-frame feature relation-
ships. We also introduce a localization head named X-RPN
to obtain high-quality proposals for objects of all sizes, as
well as a center embedding module to distinguish the tar-
get from distractors. Extensive experiments show that CX-
Track significantly outperforms previous state-of-the-arts,
and is robust to distractors. We hope our work can promote
further exploitations in this task by showing the necessity to
explore contextual information for more robust predictions.
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