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“A park bench overgrown 
with vines.”

“A wide screen TV 
playing The Avengers.”

“A car is burning.” “A lamp imitating 
sunflower.”

“The Iron Throne in 
Game of Thrones.”

Figure 1. By utilizing 3D shape priors and powerful text-to-image diffusion models, our Dream3D can generate 3D content that exhibits
superior visual quality and shape accuracy in accordance with the text prompt when compared to PureCLIPNeRF [24].

Abstract
Recent CLIP-guided 3D optimization methods, such as

DreamFields [19] and PureCLIPNeRF [24], have achieved
impressive results in zero-shot text-to-3D synthesis. How-
ever, due to scratch training and random initialization with-
out prior knowledge, these methods often fail to generate
accurate and faithful 3D structures that conform to the in-
put text. In this paper, we make the first attempt to introduce
explicit 3D shape priors into the CLIP-guided 3D optimiza-
tion process. Specifically, we first generate a high-quality
3D shape from the input text in the text-to-shape stage as a
3D shape prior. We then use it as the initialization of a neu-
ral radiance field and optimize it with the full prompt. To
address the challenging text-to-shape generation task, we
present a simple yet effective approach that directly bridges
the text and image modalities with a powerful text-to-image
diffusion model. To narrow the style domain gap between
the images synthesized by the text-to-image diffusion model
and shape renderings used to train the image-to-shape
generator, we further propose to jointly optimize a learn-
able text prompt and fine-tune the text-to-image diffusion
model for rendering-style image generation. Our method,

*Work done during an internship at ARC Lab, Tencent PCG.
†Corresponding Author.

Dream3D, is capable of generating imaginative 3D con-
tent with superior visual quality and shape accuracy com-
pared to state-of-the-art methods. Our project page is at
https://bluestyle97.github.io/dream3d/.

1. Introduction
Text-to-3D synthesis endeavors to create 3D content that

is coherent with an input text, which has the potential to
benefit a wide range of applications such as animations,
games, and virtual reality. Recently developed zero-shot
text-to-image models [34,44,45,48,50] have made remark-
able progress and can generate diverse, high-fidelity, and
imaginative images from various text prompts. However,
extending this success to the text-to-3D synthesis task is
challenging because it is not practically feasible to collect
a comprehensive paired text-3D dataset.

Zero-shot text-to-3D synthesis [19,22,24,40,51], which
eliminates the need for paired data, is an attractive approach
that typically relies on powerful vision-language models
such as CLIP [58]. There are two main categories of this
approach. 1) CLIP-based generative models, such as CLIP-
Forge [51]. They utilize images as an intermediate bridge
and train a mapper from the CLIP image embeddings of
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ShapeNet renderings to the shape embeddings of a 3D shape
generator, then switch to the CLIP text embedding as the in-
put at test time. 2) CLIP-guided 3D optimization methods,
such as DreamFields [19] and PureCLIPNeRF [24]. They
continuously optimize the CLIP similarity loss between a
text prompt and rendered images of a 3D scene representa-
tion, such as neural radiance fields [1,26,32,41]. While the
first category heavily relies on 3D shape generators trained
on limited 3D shapes and seldom has the capacity to ad-
just its shape structures, the second category has more cre-
ative freedom with the “dreaming ability” to generate di-
verse shape structures and textures.

We develop our method building upon CLIP-guided 3D
optimization methods. Although these methods can pro-
duce remarkable outcomes, they typically fail to create pre-
cise and accurate 3D structures that conform to the input
text (Fig. 1, 2nd row)). Due to the scratch training and ran-
dom initialization without any prior knowledge, these meth-
ods tend to generate highly-unconstrained “adversarial con-
tents” that have high CLIP scores but low visual quality.
To address this issue and synthesize more faithful 3D con-
tents, we suggest generating a high-quality 3D shape from
the input text first and then using it as an explicit “3D shape
prior” in the CLIP-guided 3D optimization process. In the
text-to-shape* stage, we begin by synthesizing a 3D shape
without textures of the main common object in the text
prompt. We then use it as the initialization of a voxel-based
neural radiance field and optimize it with the full prompt.

The text-to-shape generation itself is a challenging task.
Previous methods [19, 51] are often trained on images and
tested with texts, and use CLIP to bridge the two modali-
ties. However, this approach leads to a mismatching prob-
lem due to the gap between the CLIP text and image embed-
ding spaces. Additionally, existing methods cannot produce
high-quality 3D shapes. In this work, we propose to di-
rectly bridge the text and image modalities with a powerful
text-to-image diffusion model, i.e., Stable Diffusion [48].
We use the text-to-image diffusion model to synthesize an
image from the input text and then feed the image into
an image-to-shape generator to produce high-quality 3D
shapes. Since we use the same procedure in both training
and testing, the mismatching problem is largely reduced.
However, there is still a style domain gap between the im-
ages synthesized by Stable Diffusion and the shape render-
ings used to train the image-to-shape generator. Inspired by
recent work on controllable text-to-image synthesis [11,49],
we propose to jointly optimize a learnable text prompt and
fine-tune the Stable Diffusion to address this domain gap.
The fine-tuned Stable Diffusion can reliably synthesize im-
ages in the style of shape renderings used to train the image-

*Throughout this paper, we use the term “shape” to refer to 3D geomet-
ric models without textures, while some works [7,28] also use this term for
textured 3D models.

to-shape module without suffering from the domain gap.
To summarize, 1) We make the first attempt to introduce

the explicit 3D shape prior into CLIP-guided 3D optimiza-
tion methods. The proposed method can generate more ac-
curate and high-quality 3D shapes conforming to the corre-
sponding text, while still enjoying the “dreaming” ability
of generating diverse shape structures and textures (Fig. 1,
1st row). Therefore, we name our method “Dream3D” as
it has both strengths. 2) Regarding text-to-shape genera-
tion, we present a straightforward yet effective approach
that directly connects the text and image modalities using a
powerful text-to-image diffusion model. To narrow the style
domain gap between the synthesized images and shape ren-
derings, we further propose to jointly optimize a learnable
text prompt and fine-tune the text-to-image diffusion model
for rendering-style image generation. 3) Our Dream3D can
generate imaginative 3D content with better visual quality
and shape accuracy than state-of-the-art methods. Addition-
ally, our text-to-shape pipeline can produce 3D shapes of
higher quality than previous work.

2. Related Work
3D Shape Generation. Generative models for 3D shapes
have been extensively studied in recent years. It is more
challenging than 2D image generation due to the expensive
3D data collection and the complexity of 3D shapes. Var-
ious 3D generators employ different shape representations,
e.g., voxel grids [3, 25, 56], point clouds [2, 61, 63, 65, 68],
meshes [13,14,16,33], and implicit fields [8,29,59,60,67].
These generators are trained to model the distribution of
shape geometry (and optionally, texture) from a collection
of 3D shapes. Some methods [4, 5, 12, 36, 38, 39, 53] at-
tempt to learn a 3D generator using only 2D image su-
pervision. These methods incorporate explicit 3D repre-
sentations, such as meshes [12, 38, 39] and neural radiance
fields [4, 5, 36, 53], along with surface or volume-based dif-
ferentiable rendering techniques [20, 21, 32, 35], to enable
the learning of 3D awareness from images.
Text-to-Image. Previous studies in text-to-image synthe-
sis [42, 46, 62, 66] have focused mainly on domain-specific
datasets and utilized GANs [15]. However, recent advances
in scalable generative architectures and large-scale text-
image datasets [52] have enabled unprecedented perfor-
mance in zero-shot text-to-image synthesis. DALL·E [45]
and GLIDE [34], as pioneering works, employ auto-
regressive model [10] and diffusion model [18, 54] as their
architectures, respectively. DALL·E 2 [44] utilizes a dif-
fusion prior network to translate CLIP text embeddings to
CLIP image embeddings, and an unCLIP module to synthe-
size images from CLIP image embeddings. In Imagen [50]
and Stable Diffusion [48], a large pre-trained text encoder
is employed to guide the sampling process of a diffusion
model in pixel space and latent space, respectively.
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Figure 2. Overview of our text-to-3D synthesis framework. (a) In the first text-to-shape stage, a fine-tuned Stable Diffusion GI is employed
to synthesize a rendering-style image Ir from the input text prompt y. This image is then used to generate a latent shape embedding eS

with the assistance of a shape embedding generation network GM . Finally, the high-quality 3D shape generator GS leverages eS to
produce a 3D shape S, which is used as an explicit 3D shape prior. (b) In the second optimization stage, the 3D shape prior S is utilized to
initialize a neural radiance field, which is further optimized with CLIP guidance to synthesize 3D content that is consistent with the input
text prompt y.

Zero-Shot Text-to-3D. Zero-shot text-to-3D generation
techniques [19,22,24,31,40,51] exploit the joint text-image
modeling capability of pre-trained vision-language models
such as CLIP [43] to obviate the need for paired text-3D
data. CLIP-Forge [51] trains a normalizing flow [9, 47]
model to convert CLIP image embeddings to VAE [23]
shape embeddings, and switches the input to CLIP text em-
beddings at the inference time. ISS [27] trains a mapper
to map the CLIP image embedding into the latent shape
code of a pre-trained single-view reconstruction (SVR) net-
work [35], which is then fine-tuned by taking the CLIP text
embedding as input. DreamFields [19] and CLIP-Mesh [22]
are pioneering works that explore zero-shot 3D content cre-
ation using only CLIP guidance. The former optimizes
a randomly-initialized NeRF, while the latter optimizes a
spherical template mesh as well as random texture and nor-
mal maps. PureCLIPNeRF [24] enhances DreamFields
with grid-based representation [55] and more diverse im-
age augmentations. Recently, DreamFusion [40] has gained
popularity in the research community due to its impressive
results. Powered by a strong text-to-image model, Ima-
gen [50], it can generate high-fidelity 3D objects using the
score distillation loss.

3. Method

Our objective is to generate 3D content that aligns with
the given input text prompt y. As illustrated in Fig. 2,
our framework for text-guided 3D synthesis comprises two
stages. In the first stage (Sec. 3.2), we obtain an explicit 3D
shape prior S using a text-guided 3D shape generation pro-
cess. The text-guided shape generation process involves a
text-to-image phase that employs a fine-tuned Stable Diffu-
sion model [48] GI (Sec. 3.3), and an image-to-shape phase

that employs a shape embedding generation network GM

and a high-quality 3D shape generator GS . In the second
stage (Sec. 3.1), we utilize the 3D prior S to initialize a
neural radiance field [32], and optimize it with CLIP [43]
guidance to generate the 3D content. Our framework only
requires a collection of textureless 3D shapes without any
text labels to train the 3D generator GS , and the fine-tuning
process of GI converges rapidly.

3.1. CLIP-Guided 3D Optimization with explicit 3D
Shape Prior

Background: 3D Optimization with CLIP Guidance.
CLIP [43] is a powerful vision-language model that com-
prises a text encoder ET , and an image encoder EI . By
maximizing the cosine similarity between the text embed-
ding and the image embedding encoded by ET and EI re-
spectively on a large-scale paired text-image dataset, CLIP
aligns the text and image modalities in a shared latent em-
bedding space.

Prior research [19, 22, 24] leverages the capability of
CLIP [43] to generate 3D contents from text. Starting from
a randomly-initialized 3D representation parameterized by
θ, they render images from multiple viewpoints and opti-
mize θ by minimizing the CLIP similarity loss between the
rendered image R(vi; θ) and the text prompt y:

LCLIP = −EI(R(θ;vi))
TET (y), (1)

where R denotes the rendering process, and vi denotes the
rendering viewpoint at the i-th optimization step. Specif-
ically, DreamFields [19] and PureCLIPNeRF [24] employ
neural radiance fields [32] (NeRF) as the 3D representation
θ, while CLIP-Mesh [22] uses a spherical template mesh
with associated texture and normal maps.
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Observations and Motivations. Though these CLIP-
guided optimization methods can generate impressive re-
sults, we observe that they often fall short in producing pre-
cise and detailed 3D structures that accurately match the
text description. As depicted in Fig. 1, we employ these
methods to create 3D content featuring common objects, but
the outcomes exhibited distortion artifacts and appeared un-
usual, adversely affecting their visual quality and hindering
their use in real-world applications.

We attribute the failure of previous works to generate
accurate and realistic objects to two main factors: (i) The
optimization process begins with a randomly-initialized 3D
representation lacking any explicit 3D shape prior, mak-
ing it very challenging for the models to conjure up the
scene from scratch. (ii) The CLIP loss in Eq. (1) prioritizes
global consistency between the rendered image and the text
prompt, rather than offering robust and precise guidance on
the synthesized 3D structure. As a result, the optimization
output is significantly unconstrained.
Optimization with 3D Shape Prior as Initialization. To
address the aforementioned issue and generate more faith-
ful 3D content, we propose to use a text-to-shape generation
process to create a high-quality 3D shape S from the input
text prompt y. Subsequently, we use it as an explicit “3D
shape prior” to initialize the CLIP-guided 3D optimization
process. As illustrated in Fig. 2, for the text prompt “a park
bench overgrown with vines”, we first synthesize “a park
bench” without textures in the text-to-shape stage. We then
use it as the initialization of a neural radiance field and op-
timize it with the full prompt, following previous works.

Our optimization process utilizes DVGO [55], an effi-
cient NeRF variant that represents NeRF using a density
voxel grid V density ∈ RNx×Ny×Nz and a shallow color
MLP frgb. We start by taking a 3D shape S generated
by the text-to-shape process, represented as an SDF grid
Ṽ sdf ∈ RNx×Ny×Nz , and transform it into the density voxel
grid V density using the following equations [37,55,64]:

Σ =
1

β
sigmoid

(
− Ṽ sdf

β

)
, (2a)

V density = max(0, softplus−1(Σ)) (2b)

Here, sigmoid(x) = 1/(1 + e−x) and softplus−1(x) =
log(ex−1). Eq. (2a) converts SDF values to density for vol-
ume rendering, where β > 0 is a hyper-parameter control-
ling the sharpness of the shape boundary (smaller β leads
to sharper shape boundary, β = 0.05 in our experiments).
Eq. (2b) transforms the density into pre-activated density.
To ensure that the distribution of the accumulated transmit-
tance is the same as DVGO, we clamp the minimum value
of the density outside the shape prior as 0.

With the density grid V density initialized by the 3D shape
S and the color MLP frgb initialized randomly, we render

image R(V density, frgb;vi) from viewpoint vi and optimize
θ = (V density, frgb) with the CLIP loss in Eq. (1). Fol-
lowing DreamFields [19] and PureCLIPNeRF [24], we per-
form background augmentations for the rendered images
and leverage the transmittance loss introduced by [19] to
reduce noise and spurious density. Besides, since CLIP
loss cannot provide accurate geometrical supervision, the
3D shape prior may be gradually disturbed and “forgotten”,
thus we also adopt a shape-prior-preserving loss to preserve
the global structure of the 3D shape prior:

Lprior = −
∑

(x,y,z)

1(Ṽ sdf < 0) · alpha(V density), (3)

where 1(·) is the indicator function, and alpha(·) trans-
forms the density into the opacity representing the proba-
bility of termination at each position in volume rendering.

By initializing NeRF with an explicit 3D shape prior, we
give extra knowledge on how the 3D content should look
like and prevent the model from imagining from scratch
and generating “adversarial contents” that have high CLIP
scores but low visual quality. Based on the initialization, the
CLIP-guided optimization further provides flexibility and is
able to synthesize more diverse structures and textures.

3.2. Stable-Diffusion-Assisted Text-to-Shape Gen-
eration as 3D Shape Prior

To obtain the 3D shape prior, a text-guided shape gen-
eration scheme is required, which is a challenging task
due to the lack of paired text-shape datasets. Previous
approaches [27, 51] typically first train an image-to-shape
model using rendered images, and then bridge the text and
image modalities using the CLIP embedding space.

CLIP-Forge [51] trains a normalizing flow network to
map CLIP image embeddings of shape renderings to la-
tent embeddings of a volumetric shape auto-encoder, and
at test time, it switches to CLIP text embeddings as input.
However, the shape auto-encoder has difficulty in generat-
ing high-quality and diverse 3D shapes, and directly feeding
CLIP text embeddings to the flow network trained on CLIP
image embeddings suffers from the gap between the CLIP
text and image embedding spaces. ISS [27] trains a mapper
network to map CLIP image embeddings of shape render-
ings to the latent space of a pre-trained single-view recon-
struction (SVR) model, and fine-tunes the mapper at test
time by maximizing the CLIP similarity between the text
prompt and the images rendered from synthesized shapes.
While the test-time fine-tuning alleviates the gap between
the CLIP text and image embeddings, it is cumbersome to
fine-tune the mapper for each text prompt.

In contrast to the aforementioned methods that connect
the text and image modalities in the CLIP embedding space,
we use a powerful text-to-image diffusion model to directly
bridge the two modalities. Specifically, we first synthesize
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an image from the input text and then feed it into an image-
to-shape module to generate a high-quality 3D shape. This
pipeline is more concise and naturally eliminates the gap be-
tween CLIP text and image embeddings. However, it intro-
duces a new domain gap between the images generated by
the text-to-image diffusion model and the shape renderings
used to train the image-to-shape module. We will introduce
a novel technique to alleviate this gap in Sec. 3.3.
Text-to-Image Diffusion Model. Diffusion models [18,54]
are generative models trained to reverse a diffusion process.
The diffusion process begins with a sample from the data
distribution, x0 ∼ q (x0), which is gradually corrupted
by Gaussian noise over T timesteps: xt =

√
αtxt−1 +√

1− αtϵt−1, t = 1, 2, . . . , T , where αt defines the noise
level and ϵt−1 denotes the noise added at timestep t − 1.
To reverse this process, a denoising network ϵθ is trained
to estimate the added noise at each timestep. During in-
ference, samples can be generated by iteratively denoising
pure Gaussian noise. Text-to-image diffusion models fur-
ther condition the denoising process on texts. Given a text
prompt y and a text encoder cθ, the training objective is:

Ldiffusion = Ex0,t,ϵt,y ∥ϵt − ϵθ (xt, t, cθ(y))∥22 (4)

In this work, we use Stable Diffusion† [48], an open-
source text-to-image diffusion model, which employs a
CLIP ViT-L/14 text encoder as cθ and is trained on the
large-scale LAION-5B dataset [52]. Stable Diffusion is
known for its ability to generate diverse and imaginative im-
ages in various styles from heterogeneous text prompts.
High-quality 3D generator. To provide a more pre-
cise initialization for optimization, high-quality 3D shapes
are highly desirable. In this work, we utilize the SDF-
StyleGAN [67], a state-of-the-art 3D generative model,
to generate high-quality 3D priors. SDF-StyleGAN is a
StyleGAN2-like architecture that maps a random noise z ∼
N (0, I) to a latent shape embedding eS ∈ W and synthe-
sizes a 3D feature volume F V , which is an implicit shape
representation. We can query the SDF value at arbitrary po-
sition x by feeding the interpolated feature from F V at x
into a jointly trained MLP. We improve upon the original
SDF-StyleGAN, which trains one network for each shape
category, by training a single 3D shape generator GS on the
13 categories of ShapeNet [6]. This modification provides
greater flexibility in the text-to-shape process.
Shape Embedding Mapping Network. To bridge the im-
age and shape modalities, we further train a shape embed-
ding mapping network GM . Firstly, we utilize GS to gen-
erate a large set of 3D shapes {Si}Ni=1 and shape embed-
dings {eiS}Ni=1. Then, we render Si from K viewpoints
to obtain shape renderings {Ij

r}NK
j=1 and the correspond-

ing image embeddings {ejI}NK
j=1 with the CLIP image en-

coder EI , forming a paired image-shape embedding dataset
†https://github.com/CompVis/stable-diffusion

Stable Diffusion

“A [car | airplane | chair] 
in the style of *”

“A [car | airplane | chair]”

Fine-tuned 
Stable Diffusion

“A [suv | fighter jet | egg 
chair | motocycle | guitar | 

girl] in the style of *” 

𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟

𝐷𝐷𝑆𝑆

(a) Fine-tuning (b) Inference

Figure 3. Fine-tuning Stable Diffusion into a stylized generator.
(a) We fine-tune the text embedding v∗ of a placeholder token ∗
and the weights of Stable Diffusion using a dataset DS that con-
tains ShapeNet renderings and text descriptions in the format of
“a CLS in the style of ∗”. Additionally, we use another dataset
Dreg , which contains images synthesized by the original Stable
Diffusion with text prompts in the format of “a CLS”, for regular-
ization purposes. (b) With the fine-tuned Stable Diffusion, we can
synthesize images that match the style of ShapeNet renderings by
appending the postfix “in the style of ∗” to the text prompt.

{(ejI , e
j
S)}NK

j=1 . Finally, we use this dataset to train a con-
ditional diffusion model GM which can synthesize shape
embeddings from image embeddings of shape renderings.

To prepare the dataset for training GM , we generate N =
64000 shapes using GS and render K = 24 views for each
shape. The ranges of azimuth and elevation angles of the
rendered views are [−90◦, 90◦] and [20◦, 30◦], respectively.
We employ an SDF renderer [20] since we represent the
synthesized shapes with SDF grids.

3.3. Fine-tuning Stable Diffusion for Rendering-
Style Image Generation

As stated in Sec. 3.2, we use Stable Diffusion to directly
bridge the text and image modalities for text-to-shape gen-
eration. Nonetheless, the image-to-shape module is trained
on shape renderings, which exhibit a significant style do-
main gap from the images produced by Stable Diffusion.
Previous research [27, 51] has attempted to combine a text-
to-image model with an image-to-shape model for text-to-
shape generation. However, this approach is plagued by the
aforementioned style domain gap, leading to flawed geo-
metric structures and diminished performance.

Inspired by recent work on controllable text-to-image
generation such as textual inversion [11] and Dream-
Booth [49], we propose a method for addressing the do-
main gap problem by fine-tuning Stable Diffusion into a
stylized generator. Our core idea is to enable Stable Diffu-
sion to replicate the style of shape renderings used to train
the image-to-shape module outlined in Sec. 3.2. This al-
lows us to seamlessly input the generated stylized images
into the image-to-shape module without being affected by
the domain gap.
Fine-tuning Process. The fine-tuning process is illustrated
in Fig. 3. To fine-tune Stable Diffusion, we need a dataset
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Figure 4. Qualitative comparison on text-guided 3D synthesis. The 3D shape prior used to initialize the CLIP-guided optimization process
for each of our results (the last row) is also visualized below.

that consists of shape renderings and related stylized text
prompts. For each shape S in the ShapeNet dataset, we
generate a set of shape renderings {Ij

S}
NS
j=1. Subsequently,

each rendering Ij
S is linked with a stylized text prompt yjS in

the format of “a CLS in the style of ∗”, where CLS denotes
the shape category name and ∗ represents a placeholder to-
ken that requires optimization for its text embedding. For
instance, if the image is rendered from a chair shape, then
the associated text prompt will be “a chair in the style of
∗”. The paired dataset DS = (Ij

S , y
j
S)

NS

j=1 is then utilized
to fine-tune Stable Diffusion by minimizing Ldiffusion pre-
sented in Eq. (4).

During fine-tuning, we freeze the CLIP text encoder of
Stable Diffusion, and optimize two objectives: (i) the text
embedding of the placeholder token ∗, denoted as v∗, and
(ii) the parameters θ of the diffusion model ϵθ. Optimiz-
ing the text embedding v∗ aims to learn a virtual word
that captures the style of the rendered images best, even
though it is not present in the vocabulary of the text en-
coder. Fine-tuning the parameters θ of the diffusion model
further enhances the ability to capture the style precisely
since it is hard to control the synthesis of Stable Diffusion
solely on the language level. Our experiments demonstrate
stable convergence of the fine-tuning process in approxi-
mately 2000 optimization steps, requiring only 40 minutes
on a single Tesla A100 GPU. We show some synthesized
results using the fine-tuned model in Fig. 3.
Dataset Scale and Background Augmentation. We have
identified two essential techniques empirically that enable
the fine-tuned model to synthesize stylized images in a sta-
ble manner. Firstly, unlike textual inversion [11] or Dream-

Booth [49] which utilize only 3−5 images, fine-tuning with
a larger set of shape renderings containing thousands of
images helps the model capture the style more precisely.
Secondly, fine-tuning Stable Diffusion using shape ren-
derings with a pure-white background results in a chaotic
and uncontrollable background during inference. However,
augmenting the shape renderings with random solid-color
backgrounds allows the fine-tuned model to synthesize im-
ages with solid-color backgrounds stably, making it easy to
remove the background if necessary. Further details can be
found in the supplementary material.

4. Experiments
In this section, we evaluate the efficacy of our proposed

text-to-3D synthesis framework. Initially, we compare our
results with state-of-the-art techniques (Sec. 4.1). Subse-
quently, we demonstrate the effectiveness of our Stable-
Diffusion-assisted approach for text-to-shape generation
(Sec. 4.2). Furthermore, we conduct ablation studies to as-
sess the effectiveness of critical components of our frame-
work (Sec. 4.3).
Dataset. Our framework requires only a set of untextured
3D shapes for training the 3D shape generator GS . Specif-
ically, we employ 13 categories from ShapeNet [6] and uti-
lize the data preprocessing procedure of Zheng et al. [67]
to generate 1283 SDF grids from the original meshes. Dur-
ing the fine-tuning of Stable Diffusion, we employ the SDF
renderer [20] to produce a shape rendering dataset.
Implementation details. The 3D generator GS utilizes the
SDF-StyleGAN architecture. The diffusion-model-based
shape embedding mapping network GM is based on an
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Method CLIP R-Precision ↑
ViT-B/32 ViT-B/16

DreamFields [19] 63.24 92.65
CLIP-Mesh [22] 75.00 91.18
PureCLIPNeRF [24] 73.53 88.24
Ours w/o 3D prior 75.47 94.34
Ours 85.29 98.53

Table 1. Quantitative comparison on Text-guided 3D synthesis.
All methods employ CLIP ViT/16 as the guiding model for opti-
mization, while two distinct CLIP models are utilized to compute
the CLIP retrieval precision.

open-source DALL·E 2 implementation‡. We train GM

by extracting image embeddings from shape renderings us-
ing the CLIP ViT-B/32 image encoder. The stylized text-
to-image generator GI is fine-tuned from Stable Diffusion
v1.4. In the optimization stage, we set the learning rates for
the density grid V density and color MLP frgb to 5×10−1 and
5× 10−3 respectively, and we adopt the CLIP ViT-B/16 en-
coder as the guidance model. For each text prompt, we opti-
mize for 5000 steps, while previous NeRF-based text-to-3D
methods [19, 24] typically require 10000 steps or more.
Evaluation Metrics. Regarding the primary results of our
framework, i.e., text-guided 3D content synthesis, we report
the CLIP retrieval precision on a manually created dataset
of diverse text prompts and objects. For specifics regarding
the dataset, please refer to the supplementary material. This
metric quantifies the percentage of generated images that
the CLIP encoder associates with the correct text prompt
used for generation. We utilize Fréchet Inception Distance
(FID) [17] to evaluate the shape generation quality for the
initial text-to-shape generation stage.

4.1. Text-Guided 3D Synthesis

We compare our method with three state-of-the-art base-
line methods on the task of text-guided 3D synthesis,
i.e., DreamFields [19], CLIP-Mesh [22], and PureCLIPN-
eRF [24]. We conduct tests using the default settings and
official implementations for all baseline methods. In partic-
ular, we utilize the medium-quality configuration of Dream-
Fields and the implicit architecture variant of PureCLIPN-
eRF owing to its superior performance.
Time cost. Thanks to the shape prior initialization, our
CLIP-guided optimization process exhibits significantly im-
proved efficiency compared to previous NeRF-based meth-
ods. Dream3D optimizes for only 5000 steps within 25 min-
utes, while DreamFields and PureCLIPNeRF require more
than 10000 steps, taking over an hour (measured on 1 A100
GPU). Training the 3D shape generator GS takes 7 days on
4 A100 GPUs and training the shape embedding generation
network GM takes 1 day on 1 A100 GPU. It is worth noting
that these models are only trained once and their inference

‡https://github.com/lucidrains/DALLE2-pytorch

“An SUV” “A barber chair” “A boeing”

“A race car” “A cabin cruiser” “A gun”

CLIP-Forge

Ours

CLIP-Forge

Ours

Figure 5. Text-guided 3D shape generation results. All the vi-
sualized meshes are extracted at the resolution of 643. We can
observe that our method can generate significantly more plausible
3D shapes benefitting from the high-quality 3D shape generator.

Method FID ↓
CLIP-Forge [51] 112.38
Ours w/o text-to-image 58.36
Ours w/o fine-tuning SD 61.88
Ours 40.83

Table 2. Quantitative comparison on text-to-shape generation and
ablation studies on the efficacy of fine-tuning Stable Diffusion.

time can be neglected compared to the optimization cost.
Quantitative Results. We report the CLIP retrieval preci-
sion metrics in Tab. 1. It is noteworthy that both the base-
line methods and our approach utilize the CLIP ViT-B/16
encoder for optimization, and both the CLIP ViT-B/16 and
CLIP ViT-B/32 encoders are employed as retrieval mod-
els. As Table Tab. 1 shows, our method achieves the high-
est CLIP R-Precision with both retrieval models. More-
over, our framework exhibits a significantly smaller perfor-
mance gap between the two retrieval models compared to
the baseline methods. By leveraging the 3D shape prior, our
method initiates the optimization from a superior starting
point, thereby mitigating the adversarial generation problem
that prioritizes obtaining high CLIP scores while neglecting
the visual quality. Consequently, our method demonstrates
more robust performance across different CLIP models.
Qualitative Results. The qualitative comparison is pre-
sented in Fig. 4, indicating that the baseline methods [19,
22, 24] encounter challenges in generating precise and real-
istic 3D objects, resulting in distorted and unrealistic visu-
als. DreamFields’ results are frequently blurry and diffuse,
while PureCLIPNeRF tends to synthesize symmetric ob-
jects. CLIP-Mesh experiences difficulties in generating in-
tricate visual effects due to its explicit mesh representation.
In contrast, our method effectively generates higher-quality
3D structures by incorporating explicit 3D shape priors.
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4.2. Text-to-Shape Generation

The research on zero-shot text-to-shape generation
is limited, and we compare our approach with CLIP-
Forge [51] and measure the quality of shape generation us-
ing the Fréchet Inception Distance (FID). Specifically, we
synthesize 3 shapes for each prompt from a dataset of 233
text prompts provided by CLIP-Forge. Then, we render 5
images for each synthesized shape and compare them to
a set of ground truth ShapeNet renderings to compute the
FID. The ground truth images are obtained by randomly
choosing 200 shapes from the test set of each ShapeNet cat-
egory and rendering 5 views for each shape.

As shown in Tab. 2, our approach achieves a lower FID
than CLIP-Forge. CLIP-Forge employs a volumetric shape
auto-encoder to generate 3D shapes. However, the qualita-
tive results in Fig. 5 indicate poor shape generation capa-
bility, making it difficult to generate plausible 3D shapes.
A high-quality 3D shape prior is also advantageous for the
optimization process as an excellent initialization.

4.3. Ablation Studies

Effectiveness of Fine-tuning Stable Diffusion. Our ap-
proach employs a fine-tuned Stable Diffusion to establish
a connection between the text and image modalities. To
evaluate its efficacy, we employ the original Stable Dif-
fusion model to produce images from the text prompts of
CLIP-Forge [51]. Subsequently, we employ these images
to generate 3D shapes using the image-to-shape module.
The results in the 3rd row of Tab. 2 indicate a decline in
FID performance, suggesting that this approach would neg-
atively impact the shape generation process. Furthermore,
we directly test using text embedding to generate shape em-
beddings with GM , which also leads to a decline in perfor-
mance as seen in the 2nd row of Tab. 2.
Effectiveness of 3D Shape Prior. To validate the efficacy
of the 3D shape prior, we eliminate the first stage of our
framework and optimize from scratch using the same text
prompts as presented in Sec. 4.1. Subsequently, we eval-
uate the CLIP retrieval precision. The outcomes presented
in Tab. 1 indicate that optimizing without 3D shape prior
results in a considerable decline in performance, thereby
demonstrating its effectiveness.
Effectiveness of Lprior. The 3D prior preserving loss Lprior
shown in Eq. (3) aims to reinforce the 3D prior during the
optimization process in case that the prior is gradually dis-
turbed and discarded. To demonstrate its effectiveness, we
synthesized “a park bench” as a prior for the prompt “A
park bench overgrown with vines”, and then optimize with
and without Lprior and compared the results, which are visu-
alized in Fig. 6. The results indicate that using Lprior during
optimization helps maintain the structure of the 3D prior
shape, while discarding it causes distortion and discontinu-
ity artifacts, thereby disturbing the initial shape.

with ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

without ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

“A park bench overgrown with vines”

Figure 6. The effect of the 3D prior preserving loss Lprior .

5. Limitations and Future Work
Our framework relies on a fine-tuned Stable Diffusion to

generate rendering-style images. Despite its strong genera-
tion capability, Stable Diffusion may produce shape images
that fall outside the distribution of the training data of the
image-to-shape module. This is due to the fact that Stable
Diffusion is trained on an internet-scale text-image dataset,
whereas the 3D shape generator is trained on ShapeNet.
Furthermore, the quality of text-to-shape synthesis in our
framework is heavily reliant on the generation capability of
the 3D generator. Our future work will explore incorporat-
ing stronger 3D priors into our framework to enable it to
work with a wider range of object categories.

Additionally, our framework is indeed orthogonal to
score distillation-based text-to-3D methods [30, 40, 57], as
we can also utilize the score distillation sampling objective
for optimization. We believe that incorporating 3D shape
priors can enhance the quality and diversity of the genera-
tion results, as DreamFusion [40] acknowledged.

6. Conclusion
This paper introduces Dream3D, a text-to-3D synthesis

framework that can generate diverse and imaginative 3D
content from text prompts. Our approach incorporates ex-
plicit 3D shape priors into the CLIP-guided optimization
process to generate more plausible 3D structures. To ad-
dress the text-to-shape generation, we propose a straightfor-
ward yet effective method that utilizes a fine-tuned text-to-
image diffusion model to bridge the text and image modal-
ities. Our method is shown to generate 3D content with
superior visual quality and shape accuracy compared to pre-
vious work, as demonstrated by extensive experiments.
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