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Abstract

Learning to predict agent motions with relationship rea-
soning is important for many applications. In motion pre-
diction tasks, maintaining motion equivariance under Eu-
clidean geometric transformations and invariance of agent
interaction is a critical and fundamental principle. However,
such equivariance and invariance properties are overlooked
by most existing methods. To fill this gap, we propose Eq-
Motion, an efficient equivariant motion prediction model
with invariant interaction reasoning. To achieve motion
equivariance, we propose an equivariant geometric feature
learning module to learn a Euclidean transformable feature
through dedicated designs of equivariant operations. To
reason agent’s interactions, we propose an invariant interac-
tion reasoning module to achieve a more stable interaction
modeling. To further promote more comprehensive motion
features, we propose an invariant pattern feature learning
module to learn an invariant pattern feature, which coop-
erates with the equivariant geometric feature to enhance
network expressiveness. We conduct experiments for the
proposed model on four distinct scenarios: particle dynam-
ics, molecule dynamics, human skeleton motion prediction
and pedestrian trajectory prediction. Experimental results
show that our method is not only generally applicable, but
also achieves state-of-the-art prediction performances on
all the four tasks, improving by 24.0/30.1/8.6/9.2%. Code
is available at https://github.com/MediaBrain-
SJTU/EqMotion.

1. Introduction
Motion prediction aims to predict future trajectories of

multiple interacting agents given their historical observations.
It is widely studied in many applications like physics [3, 28],
molecule dynamics [7], autonomous driving [35] and human-
robot interaction [38,68]. In the task of motion prediction, an

*Corresponding author.

(a) Particle dynamics (b) Molecule dynamics

(c) Human skeleton motion (d) Pedestrian trajectories

SpringPast motion

Future motion
(equivariant)

Stick Interaction
(invariant)

Single bondPast motion

Future motion 
(equivariant)

Double bond Interaction
(invariant)

Bone connectionPast motion
Future motion
(equivariant)

Interaction
(invariant)

Past motion
Future motion 
(equivariant)

Meeting
Interaction
(invariant)

Euclidean transformation Euclidean transformation

Euclidean transformation Euclidean transformation

Figure 1. Motion equivariance and interaction invariance under
the Euclidean geometric transformation is a fundamental principle
for a prediction model, but this principle is often overlooked by
previous works. In this work, we propose EqMotion to fill this gap.

often-overlooked yet fundamental principle is that a predic-
tion model is required to be equivariant under the Euclidean
geometric transformation (including translation, rotation and
reflection), and at the same time maintain the interaction
relationships invariant. Motion equivariance here means that
if an input motion is transformed under a Euclidean trans-
formation, the output motion must be equally transformed
under the same transformation. Interaction invariance means
that the way agents interact remains unchanged under the
input’s transformation. Figure 1 shows real-world examples
of motion equivariance and interaction invariance.

Employing this principle in a network design brings at
least two benefits. First, the network will be robust to arbi-
trary Euclidean transformations. Second, the network will
have the capability of being generalizable over rotations and
translations of the data. This capability makes the network
more compact, reducing the network’s learning burden and
contributing to a more accurate prediction.

Despite the motion equivariance property being important
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and fundamental, it is often neglected and not guaranteed by
most existing motion prediction methods. The main reason
is that these methods transform the input motion sequence
directly into abstract feature vectors, where the geometric
transformations are not traceable, causing the geometric
relationships between agents to be irretrievable. Random
augmentation will ease the equivariance problem, but it is
still unable to guarantee the equivariance property. [30] uses
non-parametric pre and post coordinate processing to achieve
equivariance, but its parametric network structures do not
satisfy equivariance. Some methods propose equivariant
parametric network structures utilizing the higher-order rep-
resentations of spherical harmonics [14, 61] or proposing
an equivariant message passing [58], but they focus on the
state-to-state prediction. This means that they use only one
historical timestamp to predict one future timestamp. Conse-
quently, these methods have limitations on utilizing motion’s
temporal information and modeling interaction relationships
since a single-state observation is insufficient for both inter-
action modeling and temporal dependency modeling.

In this paper, we propose EqMotion, the first motion pre-
diction model that is theoretically equivariant to the input
motion under Euclidean geometric transformations based
on the parametric network. The proposed EqMotion has
three novel designs: equivariant geometric feature learning,
invariant pattern feature learning and invariant interaction
reasoning. To ensure motion equivariance, we propose an
equivariant geometric feature learning module to learn a Eu-
clidean transformable geometric feature through dedicated
designs of equivariant operations. The geometric feature
preserves motion attributes that are relevant to Euclidean
transformations. To promote more comprehensive repre-
sentation power, we introduce an invariant pattern feature
learning module to complement the network with motion
attributes that are independent of Euclidean transformations.
The pattern features, cooperated into the geometric features,
provide expressive motion representations by exploiting mo-
tions’ spatial-temporal dependencies.

To further infer the interactions during motion prediction,
we propose an invariant interaction reasoning module, which
ensures that the captured interaction relationships are invari-
ant to the input motion under Euclidean transformations.
The module infers an invariant interaction graph by utilizing
invariant factors in motions. The edge weights in the inter-
action graph categorize agents’ interactions into different
types, leading to better interaction representation.

We conduct extensive experiments on four different sce-
narios to evaluate our method’s effectiveness: particle dy-
namics, molecule dynamics, 3D human skeleton motion and
pedestrian trajectories. Comparing to many task-specific
motion prediction methods, our method is generally appli-
cable and achieves state-of-the-art performance in all these
tasks by reducing the prediction error by 24.0/30.1/8.6/9.2%

respectively. We also present that EqMotion is lightweight,
and has a model size less than 30% of many other models’
sizes. We show that EqMotion using only 5 % data can
achieve a comparable performance with other methods that
take full data. As a summary, here are our contributions:
• We propose EqMotion, the first motion prediction

model that theoretically ensures sequence-to-sequence mo-
tion equivariance based on the parametric network. With
equivariance, EqMotion promotes more generalization abil-
ity of motion feature learning, leading to more robust and
accurate prediction.
•We propose a novel invariant interaction reasoning mod-

ule, in which the captured interactions between agents are
invariant to the input motion under Euclidean geometric
transformations. With this, EqMotion achieves more gener-
alization ability and stability in the interaction reasoning.
• We conduct experiments on four types of scenarios

and find that EqMotion is applicable to all these different
tasks, and importantly outperforms existing state-of-the-art
methods on all the tasks.

2. Related Work
Equivariant Networks. Equivariance first draws high

attention on the 2D image domain. Since CNN structure is
sensitive to rotations, researchers start to explore rotation-
equivariant designs like oriented convolutional filters [8, 49],
log-polar transform [11], circular harmonics [67] or steerable
filters [66]. Meanwhile, GNN architectures [73–75] explor-
ing symmetries on both rotation and translation have been
emerged. Specifically, [57, 62] achieves partial symmetries
by promoting translation equivariance. [14, 61] builds filters
using spherical harmonics allowing transformations between
high-order representations, achieving the rotation and trans-
lation equivariance. [12, 24] construct a Lie convolution to
parameterize transformations into Lie algebra form. [10]
proposes a series of equivariant layers for point cloud net-
works. [27] propose geometric vector perceptions for protein
structure learning. Recently, EGNN [58] proposes a simple
equivariant message passing form without using computa-
tionally expensive high-order representations. [23] further
extends it by considering geometrical constraints. However,
most existing methods are only applicable to state prediction,
limiting models from exploiting sequence information. [30]
uses pre and post coordinate processing to achieve motion
equivariance but its network structure does not satisfy equiv-
ariance. In this work, we propose an equivariant model
based on the parametric network which is generally applica-
ble to motion prediction tasks and achieves a more precise
prediction.

Motion Prediction. Motion prediction has wide ap-
plication scenarios. [3, 53, 56] proposes graph neural net-
works for learning to simulate complex physical systems.
[17, 28, 37, 71] both explicitly infer the interactions rela-
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Table 5. Prediction performance on the ETH-UCY dataset. The
bold/underline font denotes the best/second best result.

Performance (ADE/FDE)

Deterministic ETH Hotel Univ Zara1 Zara2 Average

S-LSTM [1] 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
SGAN-ind [20] 1.13/2.21 1.01/2.18 0.60/1.28 0.42/0.91 0.52/1.11 0.74/1.54

Traj++ [55] 1.02/2.00 0.33/0.62 0.53/1.19 0.44/0.99 0.32/0.73 0.53/1.11
TransF [16] 1.03/2.10 0.36/0.71 0.53/1.32 0.44/1.00 0.34/0.76 0.54/1.17

MemoNet [70] 1.00/2.08 0.35/0.67 0.55/1.19 0.46/1.00 0.37/0.82 0.55/1.15
EqMotion(Ours) 0.96/1.92 0.30/0.58 0.50/1.10 0.39/0.86 0.30/0.68 0.49/1.03

Multi-prediction ETH Hotel Univ Zara1 Zara2 Average

SGAN [20] 0.87/1.62 0.67/1.37 0.76/0.52 0.35/0.68 0.42/0.84 0.61/1.21
NMMP [22] 0.61/1.08 0.33/0.63 0.52/1.11 0.32/0.66 0.43/0.85 0.41/0.82
Traj++ [55] 0.61/1.02 0.19/0.28 0.30/0.54 0.24/0.42 0.18/0.31 0.30/0.51

PECNet [45] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
Agentformer [76] 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39

GroupNet [69] 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44
MID [18] 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 0.21/0.38

GP-Graph [2] 0.43/0.63 0.18/0.30 0.24/0.42 0.17/0.31 0.15/0.29 0.23/0.39
EqMotion(Ours) 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13/0.23 0.21/0.35

Table 6. Ablation study on key modules of EqMotion on H3.6M.

EGFL IPFL IRM 80ms 160ms 320ms 400ms Average

12.9 31.9 68.2 82.4 48.9
✓ 10.1 22.6 48.7 60.7 35.5
✓ ✓ 9.2 20.8 45.4 57.0 33.1
✓ ✓ ✓ 9.1 20.1 43.7 55.0 32.0

Table 7. Ablation study on operations in the equivariant geometric
feature learning on H3.6M dataset.

Ablation 80ms 160ms 320ms 400ms Average

w/o Inner att 9.2 20.5 44.3 55.7 32.4
w/o Inter agg 9.7 22.0 47.2 58.9 34.5
w/o Non-linear 9.4 21.3 46.7 58.6 34.0
EqMotion 9.1 20.1 43.7 55.0 32.0

second best ADE/FDE result on most subsets, reflecting its
effectiveness on the pedestrian trajectory prediction.

5.5. Ablation Studies
Effect of network modules We explore the effect of three

proposed key modules in EqMotion on the H3.6M dataset,
including the equivariant geometric feature learning (EGFL),
the invariant pattern feature learning (IPFL) and the invariant
reasoning module (IRM). Table 6 presents the experimental
result. It is observed that i) the proposed three key modules
all contribute to an accurate prediction; and ii) the equiv-
ariant geometric feature learning module is most important
since learning a comprehensive equivariant geometric fea-
ture directly for prediction is the most important.

Effect of equivariant operations We explore the effect of
three proposed operations in the equivariant feature learning
module in EqMotion, including the inner-agent attention
(Inner att), inter-agent aggregation (Inter agg) and non-linear
function (Non-linear). Table 7 presents the results. We
see that the proposed three key operations all contribute to
promoting an accurate prediction.

Different amounts of training data Figure 5 presents the
comparison of model performance under different amounts
of training data on H3.6M. We see that i) our method

Figure 5. Comparison of model performance on different amounts
of data in short-term prediction on H3.6M dataset.

(CVPR’20)

(ECCV’20)
(ECCV’22)

(ICCV’19) (ICCV’21)

Figure 6. Comparison of model size and MPJPE in short-term
prediction on H3.6M dataset. The target means the ideal model.

achieves the best prediction performance under all training
data ratios; and ii) our method even outperforms some full-
data using baselines by only using 5% of training data since
the equivariant design promotes the network generalization
ability under Euclidean transformations.

Model size Figure 6 compares EqMotion to existing meth-
ods in terms of the model size and prediction results in short-
term prediction on H3.6M. We can observe that EqMotion
has the smallest model size (less than 30% of other models’
sizes) with the lowest MPJPE thanks to the equivariant de-
sign that compacts the model free from generalizing over
rotations and translations of the data.

6. Conclusion
In this work, we present EqMotion, a motion prediction

network that is theoretically equivariant under Euclidean
transformations. EqMotion includes three novel designs: the
equivariant geometric feature learning, the invariant pattern
feature learning and the invariant reasoning module. We
evaluate our method on four different scenarios and our
method achieves state-of-the-art prediction performance.
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