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Abstract

Spherical image object detection emerges in many appli-
cations from virtual reality to robotics and automatic driv-
ing, while many existing detectors use ln-norms loss for re-
gression of spherical bounding boxes. There are two intrin-
sic flaws for ln-norms loss, i.e., independent optimization of
parameters and inconsistency between metric (dominated
by IoU) and loss. These problems are common in planar
image detection but more significant in spherical image de-
tection. Solution for these problems has been extensively
discussed in planar image detection by using IoU loss and
related variants. However, these solutions cannot be mi-
grated to spherical image object detection due to the undif-
ferentiable of the Spherical IoU (SphIoU). In this paper, we
design a simple but effective regression loss based on Gaus-
sian Label Distribution Learning (GLDL) for spherical im-
age object detection. Besides, we observe that the scale of
the object in a spherical image varies greatly. The huge
differences among objects from different categories make
the sample selection strategy based on SphIoU challeng-
ing. Therefore, we propose GLDL-ATSS as a better training
sample selection strategy for objects of the spherical image,
which can alleviate the drawback of IoU threshold-based
strategy of scale-sample imbalance. Extensive results on
various two datasets with different baseline detectors show
the effectiveness of our approach.

1. Introduction

In the past few years, with the numerous development
of panoramic cameras with omnidirectional vision, the ap-
plications of spherical images and videos are also becom-
ing more extensive, such as virtual & augmented real-
ity [9,17,24], robotics [7,8,18], automatic driving [1,28,31],
etc. As these spherical data increase, the demand for spher-
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(b) Spherical image

Figure 1. Comparison between planar image and spherical image.
(a) Moving centers of two bounding boxes in the planar image
along the y-axis does not change the distance between the two
centers, so IoU and L1 are unchanged. (b) Moving centers of two
bounding boxes to the equator along the longitude changes the
distance between two centers, which causes IoU decrease sharply
whereas the L1 value is unchanged.

ical vision analysis tasks increases, especially the object
detection task of spherical image. However, compared
with the large literature on planar image object detection
[2, 12, 16, 34, 39], research in spherical image object detec-
tion is relatively in its earlier stage, with many open prob-
lems to solve.

In spherical image object detection, a bounding box is
represented by a Bounding Field of View (BFoV) [25].
Many existing detection benchmarks [4, 5, 26, 27, 29] use
ln-norms loss for the regression of BFoVs. However, the
ln-norms loss has some intrinsic flaws. First, parameters
of the bounding box are optimized independently in the ln-
norms loss, leading to the detection accuracy sensitive to
the fitting of any of the parameters. Second, Intersection
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Figure 2. Overview of our main contributions. Gaussian distributions of spherical bounding boxes are constructed, and the sample selection
strategy (GLDL-ATSS) and regression loss (GLDL loss) are designed in an alignment manner on the basis of K-L divergence. Note that
the GLDL-ATSS and GLDL loss are not involved in the inference phase. Therefore, the inference time remains unchanged.

over Union (IoU) has been the standard metric for object
detection, so ln-norms as regression loss cause the negative
impact of the inconsistency between metric and loss. These
problems are common in planar image detection but more
significant in spherical image detection. Fig. 1(b) shows the
inconsistency between IoU and L1 Loss in the spherical im-
age. Specifically, moving centers of bounding boxes to the
equator along the longitude changes the distance between
two centers, which causes IoU decrease sharply while the
L1 value is unchanged. In contrast, as shown in Fig. 1(a),
moving centers of bounding boxes in the planar image along
the y-axis does not change the distance between the two
centers, so IoU and L1 are unchanged. Solutions for these
problems of ln-norms loss have become recently popular in
planar image detection by using IoU-induced loss, such as
IoU loss [32], GIoU loss [23] and DIoU loss [37]. How-
ever, when calculating the intersection area of two spher-
ical boxes, the number of intersection points needs to be
obtained. When two spherical boxes are completely coin-
cident or one edge is coincident, the number of intersection
points will not be fixed and duplicate points will appear.
The current SphIoU uses the DFS algorithm to remove these
duplicate intersection points. To the best of our knowledge,
the DFS algorithm is undifferentiable. Therefore, Spherical
IoU (SphIoU) [5,27] is undifferentiable and these solutions
based on IoU loss cannot be migrated to spherical image ob-
ject detection. The more recent work [30] finds the key to
maintaining the consistency between metric and regression
loss lies in the trend-level consistency between regression
loss and IoU loss rather than value-level consistency, which
greatly decreases the difficulty of designing alternatives.

In this paper, we design a simple but effective regres-
sion loss based on Gaussian Label Distribution Learning
(GLDL) for spherical image object detection. Specifically,
in the training phase, we first convert tangent planes of the
predicted spherical bounding box and ground truth box into

the Gaussian distribution. Then, we devise a dynamic sam-
ple selection strategy (GLDL-ATSS) to select positive sam-
ples, which can alleviate the drawback of IoU threshold-
based strategy of scale-sample imbalance. Finally, we de-
sign a regression loss function based on GLDL for spherical
object detection task. We observe that GLDL loss achieves
a trend-level alignment with SphIoU loss. In the inference
phase, we directly obtain the output for the spherical bound-
ing box from the trained model of the parameter weights, so
the inference time of the network remains unchanged. The
entire framework of the method in this paper is shown in
Fig. 2. The highlights of this paper are as follows:

• We explore a new regression loss function based on
Gaussian Label Distribution Learning (GLDL) for
spherical object detection task. It achieves a trend-
level alignment with SphIoU loss and thus naturally
improves the model.

• We align the measurement between sample selection
and loss regression based on the GLDL, and then
construct new dynamic sample selection strategies
(GLDL-ATSS) accordingly. GLDL-ATSS can allevi-
ate the drawback of IoU threshold-based strategy (i.e.,
scale-sample imbalance).

• Extensive experimental results on two datasets and
popular spherical image detectors show the effective-
ness of our approach.

2. Related Work
2.1. Spherical Objection Detection

Spherical image object detection is an emerging direc-
tion, which attempts to extend classical planar detectors
to the spherical case by adopting the spherical bound-
ing boxes. Campared to planar images, objects are often
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arbitrary-oriented in spherical images. To this end, Multi-
kernel [26] and Reprojection R-CNN [36] are two-stage
mainstreamed approach whose pipeline is inherited from
Faster RCNN [22], while Multi-projection YOLO [29],
SphereNet [4], SpherePHD [11], Sphere-CenterNet [5] and
R-CenterNet [27] are based on single-stage methods for
faster detection speed. The regression loss of the above al-
gorithms use ln-norms loss due to the undifferentiable of
implementing SphIoU [5, 27].

2.2. Variants of IoU-based Loss

The inconsistency between metric and regression loss is
a common issue for the object detection task. The use of
IoU-related loss in planar image detection has been exten-
sively considered as a solution to this contradiction. For in-
stance, Unitbox [33] proposes an IoU loss which regresses
the four bounds of a predicted box as a whole unit. More
works extend the idea of Unitbox by introducing GIoU [23],
DIoU [37] and CIoU [38] for bounding box regression.
However, their applications to the spherical image object
detection are difficult due to the undifferentiable of imple-
menting SphIoU [5, 27].

2.3. Sample Selection Strategies

Sample selection plays an important role in object detec-
tion task [10], and many sample selection strategies have
been proposed in object detection. Many object detection
methods, for instance, Faster RCNN [22], SSD [15], and
RetinaNet [13], adopt a fixed max IoU strategy, requiring
predefined positive and negative thresholds in advance. To
overcome the difficulty in setting fixed thresholds, ATSS
[34] uses statistical characteristics to calculate dynamic IoU
thresholds and achieves good results. Additionally, other
excellent dynamic sample selection strategies exist, for ex-
ample, DAL [19] dynamically assigns samples according to
a defined matching degree, and FreeAnchor [35] dynami-
cally selects labels under the maximum likelihood princi-
ple. These methods depend on the IoU as the main metric
for evaluating the quality of the sample.

3. The Proposed Method
3.1. Overview

In this section, we present our main approach. Fig. 2
shows an overview of the proposed method. In the training
phase, we convert tangent planes of the predicted spherical
bounding box and ground truth box into the Gaussian distri-
bution. Then, we devise the dynamic sample selection strat-
egy (GLDL-ATSS) to select positive samples. Finally, we
design a regression loss based on Gaussian Label Distribu-
tion Learning (GLDL) for spherical object detection task. In
the inference phase, we directly obtain the output for spher-
ical bounding box from the trained model of the parameter
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Figure 3. A diagram of the rectangular tangent plane of the spher-
ical bounding box. P (θ, ϕ) is the tangent point of the sphere and
rectangular tangent plane. Points A, B, C, and D are the center
points of tangent plane edges. α and β are the horizontal and ver-
tical fields of view of the spherical bounding box, respectively.

weights. Compared with the baseline, we only modify the
sample selection strategy and loss function in the training
phase, which does not change parameters of the network,
so the inference time remains unchanged. We elaborate our
method in the following sections.

3.2. Representation of Spherical Bounding Box

As shown in Fig. 3(a), in spherical vision, when looking
at a point P (θ, ϕ) from the sphere center O with the hori-
zontal and vertical field of view α and β, respectively, we
can see a Field of View (FoV) of the sphere surface, and the
P is the center of view. Bounding Field of View (BFoV)
is defined as a spherical bounding box (θ, ϕ, α, β) in the
spherical object detection task [3, 5, 36]. Currently, Ro-
tated Bounding Field of View (RBFoV) [27] (θ, ϕ, α, β, γ)
is proposed to better accurately or compactly outline ori-
ented instances in spherical images. The γ represents the
angle of the rotation of the BFoV around the axis

−−→
OP .

The range of values of γ is [−90◦, 90◦). The points on
a RBFoV can be projected to a rectangular tangent plane
Π by gnomonic projection [21]. The tangent plane Π
is defined by (θ, ϕ, w, h, γ), where w = 2 tan(0.5α) and
h = 2 tan(0.5β) are the width and height of tangent plane,
respectively, as illustrated in Fig. 3(b,c).

3.3. Gaussian Label Distribution Learning

Next, we introduce our the Gaussian Label Distribution
Learning (GLDL) approach. Firstly, when the object is in
the polar region and its tangent plane is Π0(θ0, ϕ0, w, h, γ),
it can be converted into a Gaussian distribution N (µ0,Σ0)
(see Fig. 4(a)) by the following formula:

µ0 = [sin(ϕ0) cos(θ0), sin(ϕ0) sin(θ0), cos(ϕ0)]

Σ0 = RΛR⊤,

R =

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 , Λ =

w2

4
0 0

0 h2

4
0

0 0 0

 (1)

where R represents the rotation matrix, and Λ represents
the covariance matrix.
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Figure 4. A schematic diagram of modeling a spherical bounding
box by a Gaussian distribution.

Secondly, when the object is in a region other than the
polar region, we establish a new coordinate system based on
the object’s tangent plane Πi(θi, ϕi, w, h, 0), as illustrated
in Fig. 4(b). The new coordinate system derivation is given
in the supplementary material.

Xi = [sin(θi),− cos(θi), 0]
⊤

Yi = [cos(ϕi) cos(θi), cos(ϕi) sin(θi),− sin(ϕi)]
⊤

Zi = [sin(ϕi) cos(θi), sin(ϕi) sin(θi), cos(ϕi)]
⊤

(2)
At this time, the Gaussian distribution N (µi,Σi) (see
Fig. 4(c)) of the tangent plane Πi(θi, ϕi, w, h, γ) of the ob-
ject can be obtained from the following formula:

µi = (sin(ϕi) cos(θi), sin(ϕi) sin(θi), cos(ϕi))

Σi = R(TΛT⊤)R⊤, T = [Xi,Yi,Zi]
(3)

where T represents the rotation matrix from the original
coordinate system to the new coordinate system, and Λ is
given by Eq. 1.

Finally, the Kullback-Leibler (K-L) divergence is
adopted to measure the similarity between the ground-
truth distribution Ng (µg,Σg) and predicted distribution
Np (µp,Σp).

Dkl(Np,Ng) =
1

2
(µp − µg)

⊤Σ−1
g (µp − µg)

+
1

2
tr(Σ−1

g Σp) +
1

2
ln

|Σg|
|Σp|

− 1
(4)

Eq. 4 shows that each item of K-L Divergence contains size
parameters Σ(α, β) and center parameters µ(θ, ϕ). All pa-
rameters of the bounding box form a chain coupling rela-
tionship and influence each other. In other words, opti-
mizing one parameter will also promote the optimization
of other parameters, which is similar with SphIoU loss and
very conducive to optimization of the detector.

To further compare the behavior of SphIoU loss and
GLDL loss, we conduct several cases. Fig. 6(a) shows
the curves of three loss forms for two spherical bounding
boxes when moving two spherical bounding boxes along
the longitude line. Only the L1 loss curve is constant,

Figure 5. Compared to GLDL, the sensitivity of SphIoU to objects
with different scales is of large variance.

while GLDL and SphIoU value will change as the longi-
tude varies. Fig. 6(b) shows the changes of the three losses
under different aspect ratio conditions. It can be seen that
the L1 value of the two spherical bounding boxes is con-
stant, but GLDL and SphIoU will change as the aspect ratio
varies. Fig. 6(c) is the scatter plot between SphIoU loss and
GLDL loss, L1 loss when 1000 sample pairs are randomly
generated. It can be seen that regardless of the case, GLDL
loss can maintain a more consistent trend with SphIoU loss
than L1 loss.

3.4. Regression Loss

The range of actual value obtained by the Kullback-
Leibler divergence between Gaussian distributions is too
large to be the regression loss, which leads to difficult con-
vergence. Therefore, normalization is necessary so that the
GLDL can be used as regression loss. The normalized re-
gression loss functions for GLDL is defined as

Lreg = 1− 1

τ + f(Dkl)
(5)

where f(·) denotes a normalized function to transform the
distance Dkl to make the loss more smooth and expressive.
In the ablation study, we devise a series of small-scale ex-
periments, in which some empirical functions are tested,
and the best functions for different metrics are chosen ac-
cording to the results, details will be shown in Tab. 3. The
τ is a hyperparameter, we experimentally observe that its
choice is robust in a certain range, details will be shown in
Tab. 1.

The regression process of the bounding box is divided
into five steps, namely, 1) predict offset (t∗θ, t

∗
ϕ, t

∗
α, t

∗
β , t

∗
γ),

2) decode the prediction box by the offset value, 3) convert
tangent planes of prediction box and target ground-truth box
into Gaussian distribution, 4) calculate K-L divergence be-
tween two Gaussian distributions, 5) convert the K-L diver-
gence into the final regression loss.

The regression equation of the spherical bounding box is
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Figure 6. Behavior comparison of three losses (SphIoU, GLDL and L1) in different cases. (a) Moving center points of two bounding boxes
along the longitude changes the distance between two center points, which causes SphIoU and GLDL will decrease sharply while the L1 is
unchanged. (b) When center points of two bounding boxes are fixed, SphIoU and GLDL will decrease as the aspect ratio increases, while
the L1 is unchanged. (c) When 1,000 examples are randomly generated, GLDL can miantain a more consistent trend to SphIoU than L1.

as follows:

tθ = (θ − θa)/αa, tϕ = (ϕ− ϕa)/βa

tα = log(α/αa), tβ = log(β/βa)

tγ = γ − γa

t∗θ = (θ∗ − θa)/αa, t
∗
ϕ = (ϕ∗ − ϕa)/βa

t∗α = log(α∗/αa), t
∗
β = log(β∗/βa),

t∗γ = γ∗ − γa

(6)

where θ, ϕ, α, β, γ denote the spherical bounding box’s cen-
ter coordinates, width, height and angle, respectively. Vari-
ables θ, θa, θ∗ are for the ground-truth box, anchor box, and
predicted box, respectively (likewise for ϕ, α, β, γ).

3.5. Sample Selection Based on GLDL-ATSS

When training an object detector, we first need to define
positive and negative samples for classification, and then
use positive samples for regression. Therefore, the sample
selection strategy is another key task for object detection.
The most popular sample selection strategy is the IoU-based
strategy, which selects a sample by comparing IoU values
between proposals and ground truth with threshold.

However, some significant problems exist with the sam-
ple selection strategy based on SphIoU in spherical image
object detection. Firstly, there are many objects of different
sizes and categories in a spherical image since the spherical
image has a 360◦ view. Therefore, the scale of the object
in a spherical image varies greatly. The huge differences
among objects from different categories make the sample
selection strategy based on SphIoU challenging. As shown
in Fig. 5, we observe that the sensitivity of SphIoU to ob-
jects with different scales is of significant variance. Specifi-
cally, a minor location deviation for the tiny object will lead
to a notable SphIoU drop (from 0.3 to 0.01), resulting in
inaccurate positive and negative sample selection. For the
larger object, the SphIoU changes slightly (from 0.7 to 0.6)

with the same location deviation. Secondly , SphIoU fails
to reflect the positional relationship of two spherical rect-
angles when they have no overlap or are mutually inclusive
(i.e., the value of IoU keeps constant), which is often the
case for tiny spherical bounding boxes. Finally, the metrics
in sample selection and the regression loss have a misalign-
ment when the regression loss is based on the GLDL.

In this paper, we propose a new sample selection strategy
based on GLDL. Specifically, GLDL being a distance met-
ric with a value range [0,+∞) cannot be directly used as
a similarity metric for selecting samples. To obtain a value
range similar to SphIoU (i.e., between 0 and 1), we select
to normalize its value range to (0, 1].

f(Dkl) =
1

c+Dkl (Ng,Np)
, (7)

where c is a hyperparameter, we experimentally observe
that its choice is robust in a certain range, details will be
shown in Tab. 2.

However, the sample selection strategy based on GLDL
is not as intuitive as SphIoU in determining the threshold.
To avoid the difficulty of selecting the optimal threshold, in-
spired by ATSS [34], the threshold for selecting samples is
calculated dynamically according to the statistical charac-
teristics of all the normalized distance. For the i-th ground
truth, the dynamic threshold tg is calculated as

mi
g =

1

N

N∑
j=1

f i,j(Dkl)

vig =

√√√√ 1

N

N∑
j=1

(f i,j(Dkl)−mi
g)

2

tig = mi
g + vig

(8)

where N is the number of candidate samples, and f i,j(Dkl)
is the normalized GLDL between the i-th ground truth and
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Dataset τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 baseline
360-Indoor 20.3 20.5 20.4 20.0 19.4 17.6
PANDORA 20.1 20.3 20.1 19.9 19.7 17.2

Table 1. The AP of different τ on different datasets. The τ is used
for adjusting the GLDL loss.

Dataset c = 1 c = 2 c = 3 c = 4 c = 5 baseline
360-Indoor 21.5 21.8 21.7 21.4 21.2 20.1
PANDORA 20.9 21.3 21.2 21.1 22.8 19.6

Table 2. The AP performance under different c on different
datasets. The c is used for adjusting the number of positive sam-
ples in GLDL-ATSS.

the j-th proposal. Finally, positive samples are selected us-
ing the general assignment strategy, that is, candidates are
selected whose similar values are greater than or equal to
the threshold tig .

4. Experiments
4.1. Datasets and Implementation Details

Datasets. 360-Indoor [3] is the first released real-world
spherical object detection dataset up to now. It consists of
3,335 indoor spherical images and 89,148 Bounding FoVs
(BFoVs) annotations among 37 categories. Before 360-
Indoor was presented, evaluations were made with synthetic
data alone, which did not reflect the complex scenes of the
real world. PANDORA [27] is the first real-world dataset
to use the Rotated Bounding FoVs (RBFoVs) annotations
in spherical object detection. It consists of 3,000 indoor
spherical images and 94,353 instances RBFoVs annotations
among 47 categories. All images of two dataset are with
960 × 1920 resolution. The proportion of the training set,
validation set, and testing set is 1/2, 1/6, and 1/3, respec-
tively. For training and testing, the images’ resolution is all
resized to 512 × 1024.

Metric. The widely used mAP [14] is adopted to eval-
uate the performance of detectors in all our experiments.
Furthermore, AP values are calculated based on SphIoU to
adapt to the spherical bounding box and produce an accu-
rate result.

Training details. All approaches are implemented in
PyTorch [20], and training is done on 8 GeForce RTX
2080Ti GPUs with a batch size of 32 and input resolution
is 512×1024. We train detectors by updating their regres-
sion loss and sample selection strtegy using the proposed
our method. Since the detector is optimized by classifica-
tion and regression losses, we can easily replace the regres-
sion one with GLDL loss while keeping the original classi-
fication loss. SGD is adopted to optimize the models with
momentum set to 0.9 and weight decay set to 0.0005. All

Dataset Function of Sss Function of Lreg AP50

360-Indoor

1
2+Dkl

1− 1
2+

√
Dkl

25.0
1

2+Dkl
1− e−

√
Dkl 23.1

1
2+Dkl

1− e−Dkl 18.36
1

2+
√
Dkl

1− 1
2+

√
Dkl

13.6

PANDORA

1
2+Dkl

1− 1
2+

√
Dkl

25.2
1

2+Dkl
1− e−

√
Dkl 23.9

1
2+Dkl

1− e−Dkl 20.7
1

2+
√
Dkl

1− 1
2+

√
Dkl

15.3

Table 3. Experiment results of different normalized function of Sss

and Lreg on 360-Indoor and PANDORA dataset.

Loss Normalized Function
360-Indoor PANDORA

AP50 AP50

Smooth L1
w/ 13.7 12.9

w/o 17.6 17.2

Table 4. Analysis of normalized function. The based detector is
RetinaNet.

Dataset Backbone Sss Lreg AP50

360-Indoor

R-101 SIoU (Fixed) LL1 17.6
R-101 SIoU (Fixed) LGLDL 20.7 (+3.1)
R-101 SGLDL (Fixed) LGLDL 22.8 (+5.2)
R-101 SIoU (ATSS) LL1 20.1
R-101 SIoU (ATSS) LGLDL 22.3 (+2.2)
R-101 SGLDL (ATSS) LGLDL 25.0 (+4.9)

PANDORA

R-101 SIoU (Fixed) LL1 17.2
R-101 SIoU (Fixed) LGLDL 21.4 (+4.2)
R-101 SGLDL (Fixed) LGLDL 22.7 (+5.5)
R-101 SIoU (ATSS) LL1 19.6
R-101 SIoU (ATSS) LGLDL 23.4 (+3.8)
R-101 SGLDL (ATSS) LGLDL 25.2 (+5.6)

Table 5. Ablation study of each component. Sss and Lreg repre-
sent the sample selection strategy and the regression loss function,
respectively.

evaluated models are trained for 120 epochs with an initial
learning rate of 0.001 which is then divided by 10 at 60
epochs and again at 90 epochs. To make it fair, we keep all
the approaches’ settings and hyper parameters the same as
depicted in corresponding papers.

4.2. Ablation Study

To verify the effectiveness of the proposed modules
individually and to exclude the randomness of hyper-
parameters, we design the following ablation study. We use
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Method Backbone
Sss Lreg 360-Indoor PANDORA

SIoU SGLDL LL1 LGLDL AP AP50 AP75 AP AP50 AP75

Multi-Kernel [26]

R-101 ✓ ✓ 4.7 11.1 2.8 4.2 10.8 2.2
R-101 ✓ ✓ 7.2(+2.5) 14.2(+4.1) 5.4(+2.4) 7.8(+3.6) 15.6(+4.8) 4.3(+2.1)
R-101 ✓ ✓ 6.8(+2.1) 13.9(+2.8) 4.7(+1.9) 6.2(+2.0) 14.5(+3.7) 3.9(+1.7)
R-101 ✓ ✓ 9.3(+4.6) 17.2(+6.1) 6.6(+3.8) 10.2(+6.0) 17.6(+6.8) 6.9(+4.4)

Sphere-SSD [4]

R-101 ✓ ✓ 2.9 7.8 1.4 2.3 7.7 1.5
R-101 ✓ ✓ 5.6(+2.7) 10.8(+3.0) 4.2(+2.8) 5.9(+3.6) 12.3(+4.6) 4.9(+3.4)
R-101 ✓ ✓ 4.9(+2.0) 10.2(+2.4) 3.7(+2.3) 4.1(+1.8) 9.8(+2.1) 3.2(+1.7)
R-101 ✓ ✓ 7.8(+4.9) 12.6(+4.8) 5.4(+4.0) 8.0(+5.7) 13.8(+6.1) 6.8(+5.3)

Reprojection R-CNN [36]

R-101 ✓ ✓ 5.0 15.3 1.9 4.2 14.7 1.8
R-101 ✓ ✓ 7.5(+2.5) 18.2(+2.9) 3.8(+1.9) 7.9(+3.7) 18.7(+4.0) 4.5(+2.7)
R-101 ✓ ✓ 7.1(+2.1) 17.8(+2.5) 3.2(+1.3) 6.8(+2.6) 17.4(+2.7) 3.0(+1.2)
R-101 ✓ ✓ 10.8(+5.8) 22.5(+7.2) 5.3(+3.4) 11.1(+6.9) 22.8(+8.1) 5.8(+4.0)

Sphere-CenterNet [5]
R-101 ✓ 10.0 24.8 6.0 - - -
R-101 ✓ 11.2(+1.1) 26.1(+1.3) 7.4(+1.4) - - -

R-CenterNet [27]
R-101 ✓ - - - 7.3 22.7 2.6
R-101 ✓ - - - 8.7(+1.4) 24.3(+1.6) 4.5(+1.9)

Table 6. Comparison of the performance of different methods of the Gaussian distances as metrics for sample selection and regression loss
on 360-Indoor and PANDORA dataset. Compared with Sphere-CenterNet, R-CenterNet only adds an Angle regression branch to regress
the RBFoV. Therefore, we did not do experiments for Sphere-CenterNet on PANDORA and R-CenterNet on 360-Indoor.

the one-stage detector RetinaNet [13] as the baseline in ab-
lation study. Different from the original RetinaNet, anchor
boxes now use spherical bounding boxes, and IoU of sam-
ple selection uses SphIoU.

Different Hyper-parameter Value. There are two
hyper-parameters in our design. First, when designing
GLDL loss, we use a constant τ (Eq. 5) to modulate the
regression loss. Note that the sample selection uses the
SphIoU-based strategy in this experiment. The results are
shown in Tab. 1. We observe that when changing τ in a cer-
tain range (from 1 to 5), the value of AP waves marginally
and is much higher than baseline. It indicates that the choice
of τ is robust in this range. From Tab. 1, the overall perfor-
mance of using τ = 2, the model achieves the best per-
formance. Second, there is a hyper-parameter c (Eq. 7) in
GLDL-ATSS, which is used to adjust the number of positive
samples assigned to each instance. Note that the regression
loss uses the L1 loss in this experiment. We set c to 1, 2, 3,
4 and 5 to test its performance. From the results in Tab. 2,
we can see that when setting c to 2, the best performance
can be attained, so c = 2 is chosen as the default setting.

Different Normalized Function. GLDL being a dis-
tance metric with a value range [0,+∞) cannot be directly
used as a similarity metric for the regression loss and se-
lecting samples. Therefore, normalization is necessary for
GLDL. As shown in Tab. 3, some empirical functions, such
as

√
(·) and e(·), are tested as the normalized function in

the experiments. Finally, the normalized function of sample
selection and loss is 1

2+Dkl
and 1 − 1

2+
√
Dkl

according to
the best results of the experiments.

Analysis of Normalized Function. As mentioned
above, the purpose of using the normalized function is to
normalize and smooth the quick increase trend of GLDL.
If the normalization operation is not used, the range of loss
value of GLDL is too large, resulting in NAN in training. To
verify that the effectiveness of our method does not come
from the normalized function, we perform a normalization
operation on the Smooth L1 loss to get rid of the inter-
ference brought by the normalized function. As shown in
Tab. 4, the performance of Smooth L1 suffers significantly
when the normalized function is used. Tab. 4 proves that the
effectiveness of GLDL loss does not come from the normal-
ized function.

Analysis of Each Component. Tab. 5 compares the
performances when different evolution metrics, SphIoU,
GLDL and L1, are used in fixed and dynamic sample selec-
tion strategies and regression loss. The predefined positive
and negative thresholds in the fixed strategy for SphIoU is
both 0.5 and 0.4. Even if only the L1 loss is replaced by
LGLDL, the performance of our method is better than that of
baseline (20.7 vs. 17.6, 21.4 vs. 17.2). The performances
based on fixed sample selection strategies varied greatly as
a result of the hand-crafted hyperparameters. Therefore,
experiments based on dynamic sample selection strategies
are constructed to objectively compare the performances of
the metrics. Additionally, the superiority of our method is
clearly demonstrated when the sample selection strategies
(SGLDL-ATSS) are used (25.0 vs. 22.3, 25.2 vs. 23.4). The
experimental results demonstrated that the overall perfor-
mances of the proposed methods surpassed that of the base-
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Figure 7. Visual comparisons on the 360-Indoor and PANDORA dataset. The detector is RetinaNet.

line. (25.0 vs. 17.6, 25.2 vs. 17.2).
We visualize some of the predicted results shown in

Fig. 7, which includes 360-Indoor dataset and PANDORA
dataset. From the results, we can observe that our methods
can get more precise predicted results for both 360-Indoor
and PANDORA dataset. The visualization results are con-
sistent with the data results in Tab. 5.

4.3. Evaluations

Baseline Methods. To verify that our method can be ap-
plied into any spherical image detector and boost the de-
tector performance, we select five state-of-the-art spheri-
cal image detectors for testing, including one-stage anchor-
based detectors: Sphere-SSD [4], two-stage anchor-based
detectors: Multi-Kernel [26] and Reprojection R-CNN [36],
one-stage anchor-free detectors: Sphere-CenterNet [5] and
R-CenterNet [27]. To make it fair, we keep all the exper-
iments settings and hyper parameters the same as depicted
in corresponding papers. The backbone networks in all the
methods are all the same ResNet-101 [6] architecture.

Quantitative Results. Tab. 6 compares the detection
results of using GLDL-ATSS and GLDL loss on differ-
ent datasets and detectors. We verify the effectiveness of
GLDL-ATSS and GLDL loss by respectively replacing the
SphIoU-based sample selection and Smooth L1-based re-
gression loss in the original network of baseline methods.
For each dataset, we provide the AP , AP 50 and AP 75 per-
formance. Tab. 6 shows that detectors based on GLDL-
ATSS and GLDL loss improve the AP metric of Multi-
Kernel, Sphere-SSD, and Reprojection R-CNN on 360-
Indoor and PANDORA datasets. Since Sphere-CenterNet
and R-CenterNet are anchor-free methods, we only use the
GLDL loss instead of Smooth L1 loss. It can be seen

that the performance of Sphere-CenterNet and R-CenterNet
based on GLDL loss is better than that of baseline on 360-
Indoor and PANDORA dataset.

5. Conclusion
This paper first elaborates on the flaws of regression loss

of current spherical detectors, i.e., independent optimiza-
tion of parameters and inconsistency between metric and
loss. Then, to address these issues, we design a simple
but effective regression loss, named GLDL loss. Besides,
we observe that the scale of the object in a spherical im-
age varies greatly. The huge differences among objects
from different categories make the sample selection strat-
egy based on SphIoU challenging. Therefore, we propose
GLDL-ATSS as a better training sample selection strategy,
which can alleviate the drawback of IoU threshold-based
strategy of scale-sample imbalance. Finally, extensive ex-
periments on two spherical dataset show that the our method
brings significant and consistent improvements with a num-
ber of state-of-the-art models.
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