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Figure 1. We perform large urban scene rendering with a novel grid-guided neural radiance fields. An example of our target large urban
scene is shown on the left, which spans over 2.7km2 ground areas captured by over 5k drone images. We show that the rendering results
from NeRF-based methods [34, 62] are blurry and overly smoothed with limited model capacity, while feature grid-based methods [9, 36]
tend to display noisy artifacts when adapting to large-scale scenes with high-resolution feature grids. Our proposed two-branch model com-
bines the merits from both approaches and achieves photorealistic novel view renderings with remarkable improvements over existing meth-
ods. Both two branches gain significant enhancements over their individual baselines. (Project page: https://city-super.github.io/gridnerf)

Abstract

Purely MLP-based neural radiance fields (NeRF-based
methods) often suffer from underfitting with blurred ren-
derings on large-scale scenes due to limited model capac-
ity. Recent approaches propose to geographically divide the
scene and adopt multiple sub-NeRFs to model each region
individually, leading to linear scale-up in training costs and
the number of sub-NeRFs as the scene expands. An alterna-
tive solution is to use a feature grid representation, which is
computationally efficient and can naturally scale to a large
scene with increased grid resolutions. However, the feature
grid tends to be less constrained and often reaches subop-
timal solutions, producing noisy artifacts in renderings, es-
pecially in regions with complex geometry and texture. In
this work, we present a new framework that realizes high-
fidelity rendering on large urban scenes while being com-
putationally efficient. We propose to use a compact multi-
resolution ground feature plane representation to coarsely
capture the scene, and complement it with positional encod-
ing inputs through another NeRF branch for rendering in a
joint learning fashion. We show that such an integration

can utilize the advantages of two alternative solutions: a
light-weighted NeRF is sufficient, under the guidance of the
feature grid representation, to render photorealistic novel
views with fine details; and the jointly optimized ground fea-
ture planes, can meanwhile gain further refinements, form-
ing a more accurate and compact feature space and output
much more natural rendering results.

1. Introduction

Large urban scene modeling has been drawing lots of
research attention with the recent emergence of neural radi-
ance fields (NeRF) due to its photorealistic rendering and
model compactness [3, 34, 56, 59, 62, 64]. Such model-
ing can enable a variety of practical applications, including
autonomous vehicle simulation [23, 39, 67], aerial survey-
ing [6,15], and embodied AI [35,61]. NeRF-based methods
have shown impressive results on object-level scenes with
their continuity prior benefited from the MLP architecture
and high-frequency details with the globally shared posi-
tional encodings. However, they often fail to model large
and complex scenes. These methods suffer from underfit-
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ting due to limited model capacity and only produce blurred
renderings without fine details [56,62,64]. BlockNeRF [58]
and MegaNeRF [62] propose to geographically divide ur-
ban scenes and assign each region a different sub-NeRF to
learn in parallel. Subsequently, when the scale and com-
plexity of the target scene increases, they inevitably suffer
from a trade-off between the number of sub-NeRFs and the
capacity required by each sub-NeRF to fully capture all the
fine details in each region. Another stream of grid-based
representations represents the target scene using a grid of
features [27, 27, 30, 36, 55, 68, 69]. These methods are gen-
erally much faster during rendering and more efficient when
the scene scales up. However, as each cell of the feature grid
is individually optimized in a locally encoded manner, the
resulting feature grids tend to be less continuous across the
scene compared to NeRF-based methods. Although more
flexibility is intuitively beneficial for capturing fine details,
the lack of inherent continuity makes this representation
vulnerable to suboptimal solutions with noisy artifacts, as
demonstrated in Fig. 1.

To effectively reconstruct large urban scenes with im-
plicit neural representations, in this work, we propose a two-
branch model architecture that takes a unified scene repre-
sentation that integrates both grid-based and NeRF-based
approaches under a joint learning scheme. Our key insight
is that these two types of representations can be used com-
plementary to each other: while feature grids can easily fit
local scene content with explicit and independently learned
features, NeRF introduces an inherent global continuity on
the learned scene content with its shareable MLP weights
across all 3D coordinate inputs. NeRF can also encourage
capturing high-frequency scene details by matching the po-
sitional encodings as Fourier features with the bandwidth of
details. However, unlike feature grid representation, NeRF
is less effective in compacting large scene contents into its
globally shared latent coordinate space.

Concretely, we firstly model the target scene with a fea-
ture grid in a pre-train stage, which coarsely captures scene
geometry and appearance. The coarse feature grid is then
used to 1) guide NeRF’s point sampling to let it concentrate
around the scene surface; and 2) supply NeRF’s positional
encodings with extra features about the scene geometry and
appearance at sampled positions. Under such guidance,
NeRF can effectively and efficiently pick up finer details
in a drastically compressed sampling space. Moreover, as
coarse-level geometry and appearance information are ex-
plicitly provided to NeRF, a light-weight MLP is sufficient
to learn a mapping from global coordinates to volume den-
sities and color values. The coarse feature grids get further
optimized with gradients from the NeRF branch in the sec-
ond joint-learning stage, which regularizes them to produce
more accurate and natural rendering results when applied
in isolation. To further reduce memory footprint and learn a

reliable feature grid for large urban scenes, we adopt a com-
pact factorization of the 3D feature grid to approximate it
without losing representation capacity. Based on the obser-
vation that essential semantics such as the urban layouts are
mainly distributed on the ground (i.e., xy-plane), we pro-
pose to factorize the 3D feature grid into 2D ground feature
planes spanning the scene and a vertically shared feature
vector along the z-axis. The benefits are manifold: 1) The
memory is reduced from O(N3) to O(N2). 2) The learned
feature grid is enforced to be disentangled into highly com-
pact ground feature plans, offering explicit and informative
scene layouts. Extensive experiments show the effective-
ness of our unified model and scene representation. When
rendering novel views in practice, users are allowed to use
either the grid branch at a faster rendering speed, or the
NeRF branch, with more high-frequency details and spatial
smoothness, yet at the cost of a relatively slower rendering.

2. Related Works and Background
Large-scale Scene Reconstruction and Rendering. This
is a long-standing problem in computer vision and graph-
ics, and many early works [1, 17, 24, 43, 48, 52, 72] have
attempted to solve it. Most of these methods adopt a three-
stage pipeline. They firstly detect salient points [19, 29] in
2D images and construct the point descriptors [4, 47]. The
point descriptors are then matched across images to obtain
2D correspondences that are used for camera pose estima-
tion and 3D point triangulation. Finally, the camera poses
and 3D points are jointly optimized to minimize the dif-
ference between the projected and image points using bun-
dle adjustment [18, 60]. These methods have shown im-
pressive reconstruction performance on large-scale scenes.
[28, 50] utilize the reconstruction results to accomplish the
free-viewpoint navigation of scenes. However, there are
often artifacts or holes in the reconstructed scenes, which
limit the rendering quality. Recent methods [26, 31, 33]
exploit deep learning techniques to improve the results of
image synthesis. [33] rasterizes the recovered point clouds
into deep buffers, which are then interpreted into 2D im-
ages using the 2D convolutional neural networks. More
recently, [31] leverages the technique of generative latent
optimization to reconstruct radiance fields from photo col-
lections, enabling it to achieve photorealistic rendering re-
sults. [14, 51] adopted a similar ground plane representa-
tion as us for scene generation and static-dynamic disentan-
glement tasks respectively, yet the scale of their applicable
scenes and the rendering qualities remain limited.
Volumetric Scene Representations. Coordinate-based
multi-layer perceptrons have become a popular representa-
tion for 3D shape modeling [7, 10, 32, 40] and novel view
synthesis [2, 3, 34, 38]. To represent high-resolution 3D
shapes, some methods adopt MLP networks that take con-
tinuous 3D coordinates as input and predict the target val-
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ues [13, 32, 40]. [11, 12, 42] introduces convolutional neu-
ral networks to learn powerful scene priors, enabling the
coordinate-based representations to handle larger scenes. In
the field of novel view synthesis, NeRF [34] represents 3D
scenes as density and color fields and optimizes this rep-
resentation from images through volume rendering tech-
niques. [20,27,46,69] extend NeRF with efficient data struc-
tures to accelerate the rendering process. [8,37,49,66] com-
bine NeRF with generative models and achieve 3D-aware
image generation. [25, 41, 44] augment NeRF with motion
fields, enabling them to handle dynamic scenes.
NeRF Scale-up. While the aforementioned NeRF ap-
proaches mainly consider scenes of a limited scale, scal-
ing up NeRF to handle large-scale scenes such as cities
would enable broader applications. [27, 62, 65] have tried
to improve the rendering quality of NeRF on large-scale
scenes. Feature grid methods [22,27] map input coordinates
to a high dimensional space with a lookup from the pre-
defined table of learnable feature vectors, which augments
the approximation ability of neural networks. PointNeRF
[65] regresses the radiance field from the point cloud and
accomplishes the high-quality rendering of indoor scenes.
BungeeNeRF [64] designs a multi-scale representation that
efficiently models the scene content and improves the ren-
dering quality. [56, 62] decompose the scene into several
spatial regions that are separately represented by NeRF
networks. When processing large scenes, another critical
problem is how to reduce the training time. Several tech-
niques such as image encoder [63,71], auto-decoder [16,45]
and meta-learning [5, 57] are used to pretrain networks on
a dataset to learn the scene prior for improving the opti-
mization process. [36, 53, 54, 68] further explore the grid
representations to accelerate the training speed. TensoRF
[9] investigate the factorization of 3D scenes, enabling it
to compactly represent scenes and achieve the fast train-
ing. Instant-NGP [36] adopts a multi-resolution hash table
of feature vectors that enables extremely fast renderings.
However, we notice both these methods suffer from noisy
feature gridss when applied to large scenes.

3. Grid-guided Neural Radiance Fields
Recall that NeRF-based representations obtain the point

density and color by passing the positional encoding (PE) of
point coordinates into an 8-layer MLP [34]. Such a model
is highly compact as the entire scene contents are encoded
in the MLP weights taking PE embedding as inputs, yet
they face difficulty in scaling up limited by model capac-
ities. In contrast, grid-based representations encode a scene
into a feature grid, which can be intuitively thought of as a
3D voxel grid with grid resolution matched with the actual
3D space. Each voxel stores a feature vector at the vertices
and can then be interpolated to extract a feature value at the
query point coordinate and converted to the point density

and color via a small network. As feature grids are often
implemented as high-dimensional tensors, various factor-
ization methods can also be applied to obtain more compact
feature grid representations [9].

To effectively represent large urban scenes, we propose
the grid-guided neural radiance fields, which combines the
expertise of NeRF-based and grid-based methods. The grid
features are enforced to reliably capture as much local in-
formation as possible with a multi-resolution ground fea-
ture plane. We then let the positional encoded coordinates
information pick up the missing high-frequency details and
produce high-quality renderings. With a rough construction
of feature grid that captrue the scene at multiple resolution,
the density field is also used to guide NeRF’s sampling pro-
cedure. When training the NeRF branch, the grid features
are jointly optimized and supervised with the reconstruction
loss from both two branches.

Fig. 2 illustrates the overall pipeline of our system. In
Sec. 3.1, we describe the pre-train of our multi-resolution
ground feature plane representation; Sec. 3.2 introduces the
grid-guided learning of neural radiance fields, correspond-
ing to the NeRF branch in Fig. 2; Finally, we elaborate how
the NeRF branch helps refine the pre-trained grid feature of
the grid branch in Sec. 3.3.

3.1. Multi-resolution Feature Grid Pre-train

Fig. 1 illustrates a representative scenario of large urban
scenes. Inspired by the fact that large urban scenes mainly
ground on the xy-plane, we propose to represent the target
large urban scene with a major ground feature plane by con-
structing a multi-resolution plane-vector feature space. En-
forcing the ground plane compression gives more informa-
tive feature planes compared to the ones obtained from full
3D grids. This compact representation is especially suit-
able in urban scene scenarios and behaves robustly to sparse
view training data. Various operations (e.g., concatenation,
outer product) can then be considered here to recover the 3D
information from the 2D ground feature planes. The outer
product operation was adopted in [9] from the perspective
of tensor factorization with low-rank approximation, which
achieves a more compressed memory footprint while main-
taining high quality. The volume density σ ∈ R+ and
view-dependent color c ∈ R3 grid-planes are separately
learned to capture more environmental effects that only
influences appearence. Formally, our grid-based radiance
field is written as: σ, c = Fσ(Gσ(X)), Fc(Gc(X),PE(d))
where Gσ(X) ∈ RRσ , Gc(X) ∈ RRc are the extracted
interpolated feature values from the two grid-planes at lo-
cation X ∈ R3. Fσ, Fc are two fusing functions, imple-
mented with two small MLP, that translate the concate-
nated density/appearance features to σ, c, and d ∈ S2 is
the viewing direction. PE here represents the positional
encoding (sin(·), cos(·), . . . , sin

(
2L−1(·)

)
, cos

(
2L−1(·)

)
)
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Figure 2. Overview of our framework. The core of our model is a novel two-branch structure, namely the grid branch and NeRF branch.
1) We start by capturing the scene with a pyramid of feature planes at the pre-train stage, and performing a coarse sampling of ray points
and predicting their radiance values through a shallow MLP renderer (grid branch), supervised by the MSE loss on the volumetrically
integrated pixel colors. This step yields a set of informative multi-resolution density/appearance feature planes. 2) Next, we proceed to the
joint learning stage and perform a finer sampling. We use the learned feature grid to guide NeRF branch sampling to concentrate on the
scene surface. The sampled points’ grid feature is inferred by bilinear interpolation on the feature planes. The features are then concatenated
with the positional encoding and fed to NeRF branch to predict volume density and color. Note that, the grid branch outputs maintain being
supervised with the ground truth images along with the fine-rendering results from the NeRF branch during the joint training.

as in [34]. The grid branch is then trained with N query
samples along the ray and predicts the pixel color following
the volume rendering process as in [34], where the loss is
the total squared error between the rendered and true pixel
colors for this coarse sampling stage, as shown in Fig. 2 (a).

We approximate the full density and appearance grid fea-
tures with the channel-wise outer product of the ground fea-
ture planes Rσ and Rc, as well as the globally encoded
z-axis feature vectors, following the practice of [9]. For
each channel r ∈ Rσ and Rc, the corresponding tensor grid
of features are: Tr = vz

r ◦ Mxy
r , where vz represents the

vector along z-axis, Mxy denotes the matrix spanning xy-
plane, and ◦ represents the outer product. With the con-
straints of learning a shared z-axis feature vector, the opti-
mized ground feature plane is encouraged to encode suffi-
cient local scene contents, that can be translated by a glob-
ally shared MLP renderer. For a specific grid resolution n,
the density and the appearance tensors Gn

σ ,Gn
c are then ob-

tained as the concatenation of Rσ , Rc feature components:

Gn
σ = ⊕[(vz

σ,r ◦Mxy
σ,r)]Rσ

, Gn
c = ⊕[(vz

c,r ◦Mxy
c,r)]Rc

,
(1)

where ⊕ denotes the concatenation operation over the Rσ

and Rc dimension. To capture different degrees of scene lo-
cal complexity, we learn a multi-resolution feature grid with
Gσ = {Gn

σ} and Gc = {Gn
c }. The yielding multi-resolution

feature grid contains features at different granularity to de-
scribe the scene, which is particularly suitable for urban en-

vironments with objects appearing in different scales.

3.2. Grid-guided Neural Radiance Field

A NeRF trained from scratch is required to reason about
the whole scene from purely positional inputs, which only
provides a band of Fourier frequencies in PE. For large ur-
ban scenes that naturally bear a wide range of granularity
for geometry and texture details, NeRF constantly biases
towards learning low-frequency functions, as pointed out
in [58, 64]. This problem gets amplified in large scenes
where a large amount of information needs to be encoded.
To remedy this, we propose to compress the sampling space
of NeRF with the pre-trained feature grid density and en-
rich NeRF’s pure coordinates inputs with the coarse grid
features initialized in the pre-train stage.

Despite being of limited accuracy and granularity, the
pre-trained grid feature can already offer an approximation
of the scene which can be used to 1) guide NeRF’s point
sampling and 2) provide intermediate features as a comple-
ment to the coordinate inputs. As demonstrated in Fig. 2,
instead of mapping coordinates spanning the entire sam-
ple space, NeRF can now concentrate on the approximated
scene surface for more efficient and denser point sampling,
and evoke high-frequency Fourier features in positional en-
coding to recover finer details. Meanwhile, points along
the sampled ray are projected onto the multi-resolution fea-
ture planes to retrieve density and appearance features via
bilinear interpolation. The inferred grid features are then
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concatenated to the positional encoding as input to NeRF
branch. The per-point density and color σ′, c′ are predicted
via the NeRF branch network F ′ as:

(σ′, c′) = F ′(Gσ(X),Gc(X),PE(X),PE(d)). (2)

The multi-resolution feature plane plays a critical role as
it provides information about the scene at multiple granu-
larities, relieving the fitting burden of NeRF’s PE so that
it can concentrate on refining the fine details of the scene.
Particularly, while a high grid resolution can guarantee that
each voxel in space to captures its local contents, the qual-
ity grows at the cost of storage regardless of the possible
heterogeneity of detail level across the scene. It is therefore
more efficient to provide such high-frequency details with
Fourier features that only cost several dimensions in PE and
can be adapted to scene throughout the learning process.

Note that the two-branch supervision and the two-stage
training are necessary as: (1) a randomly initialized fea-
ture grid can hardly provide informative scene contents and
may entangle the role of two types of network inputs. (2)
The pre-train stage is much faster than the one with NeRF
branch included, making it more efficient to reliably con-
struct a coarse geometry with grid branch only. (3) Un-
like [53] which freezes the voxel grids when supplying PE
inputs, we will later show that the feature grids can gain
further refinement with its jointing learning with the NeRF
branch. Moreover, as the grid branch is also supervised with
reconstruction loss, it enforces the grid branch to continue
enriching its captured scene information where the PE input
can focus on the missing high-frequency details.

3.3. Refined Grid Feature Planes from NeRF

Recall that the feature grid relies on bilinear interpola-
tion on the ground feature plane to obtain a feature vector of
points within a voxel. The mechanism can yield detailed re-
construction results given sufficiently high grid resolution,
such that the finest variation in the scene can be recovered.
However, learning a grid with matching resolution can be
highly memory-consuming for large urban scenes, as indi-
cated in [36]. Moreover, the grid feature lacks the incentive
to capture accurate variations within a voxel with merely re-
construction loss on ground truth RGB. We therefore jointly
optimize the feature plane and vector with NeRF to en-
hance the supervision signal for grid features with point-
wise guidance from the supplied NeRF inputs. Another
benefit NeRF brings is the global regularization on the in-
dependently optimized grid features. Fig. 1 and Fig. 3 show
that grid-based methods suffer from noisy artifacts because
of the lack of constraints on space continuity and semantic
similarity. NeRF, on the contrary, uses a shared MLP for
the entire scene space. We will later show that the rendered
novel views interpreted from the grid branch can get largely
improved after its joint training with the NeRF branch.

4. Experiments

4.1. Experimental Setup

Dataset. Our main experiments are conducted on the real-
world urban scenes. The three scenes cover different ur-
ban environments including rural rubble site [62] (Rub-
ble), university campus (Campus), and residential com-
plexes (Residential). The camera poses are obtained from
the photogrammetry software ContextCapture. Additional
experiements and results on general scene datasets, alter-
ative camera poses, and techniques for further improve-
ments can be found in the supplementary and our webpage.

Baselines and Implementations. We compare the perfor-
mance of our approach with 1) NeRF [34] applied on the
whole scene; 2) Mega-NeRF [62] with 4 partitions; 3) Ten-
soRF [9], which reduces the memory footprint of feature
grid via low-rank tensor factorization and considered suit-
able for large-scene scenarios. For NeRF and Mega-NeRF,
we accordingly adopted larger model with 12 layers and 256
hidden units. The highest frequency of position encoding
is set to 215, inserted to NeRF model via skip connection
at the 4, 6, 8, 10 layers. We use hierarchical sampling dur-
ing training with 64 coarse and 128 fine samples per ray.
All NeRF models are optimized using Adam optimizer [21]
with a learning rate that decayed exponentially from 5e−4

and a batch size of 2048 rays, trained for 150k iterations.
For TensoRF, in accordance with our observation on large
urban scenes discussed previously in Sec. 3.1, we evaluated
the simplified version that factorizes a feature grid into an
xy-plane matrix and z-axis vector components. 16/48 com-
ponents are used for density and appearance feature grid re-
spectively. Starting from an initial low-resolution grid with
1283 voxels, the grid gets upsampled to 10243 linearly in
logarithmic space during training. The grid resolution along
each dimension is scaled by the x, y, z dimensions. A small
MLP with 2 fully connected layers of 128 hidden layers and
ReLU activation is used as the color output head. Adam op-
timizer is adopted with initial leaning rate of 0.02 for tensor
factors and 0.01 for the MLP decoder. The batch size is
4096. The model is trained for 100k iterations.

Our method takes the matching grid resolution as the
highest resolution feature plane and 8/16 components for
density/appearance grid respectively, with another two at
the downsampled ×4 and ×16 resolution. The MLP head
for the grid branch is same as TensoRF. The NeRF branch
use a 4 MLP layer without skip layer. The highest frequency
of position encoding is also set to 215. Adam optimizer is
adopted with initial learning rate of 0.02 for tensor factors
and 0.01 for the MLP layers with batch size 4096. We pre-
train the grid branch for the first 10k iterations and joint
optimization for another 100k iterations, and the time frac-
tion between two stages is roughly 1:4. We use weighted
loss 1:1 for two branches in joint training.
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Figure 3. Qualitative comparison between baselines and ours. On large urban scenes, MLP-based methods (NeRF) and (Mega-NeRF)
suffer from severe blurry artifacts. Grid-based method (TensoRF) shows better results, but tend to produce noisy appearance with inaccurate
shapes. The pre-trained multi-resolution grid feature (Ours, Grid Pretrain) improves over the single high-resolution methods, yet the results
is still suboptimal. Our final model achieves photo-realistic quality compared with ground-truth images on novel views. While grid branch
(Ours, Grid branch) and NeRF branch (Ours, NeRF branch) receive similar metric scores, it is preferred to render from the NeRF branch
which has sharper details and smoother spatial continuity, especially when rendering long videos in practice.

4.2. Results Analysis

We report the performance of baselines and our method
in Fig. 3 and Tab. 1 both qualitatively and quantitatively.
A significant improvement can be observed in visual qual-
ity and across all metrics. Our method reveals sharper ge-
ometry and more delicate details than purely MLP-based
approaches (NeRF and Mega-NeRF). Especially, due to the
limited capacity and spectral bias of NeRF, it always fails to
model rapid changes in geometry and color, such as vegeta-
tion and stripes on the playground. Even though geographi-
cally partitioning scenes into small regions slightly helps as
shown in the Mega-NeRF baseline, the rendered results still

appear to be overly smoothed. On the contrary, with the
guidance from the learned feature grid, NeRF’s sampling
space is effectively and drastically compressed to near scene
surface. The density and appearance features sampled from
the ground feature planes explicitly indicate the scene con-
tents, as depicted in Fig. 3. Despite being less accurate, it
already offers informative local geometry and texture, and
encourages NeRF’s PE to pick up the missing scene details.

Refined Ground Feature Planes. Grid-based methods of-
ten require explicitly imposed regularization, such as the
total variation loss or L1 loss [9], to avoid noises in regions
with fewer observations, otherwise the independently op-
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Table 1. Quantitative comparison on three large urban scene
datasets. We report PSNR(↑), LPIPS(↑) [70], SSIM(↓) metric on
the test views. The best and second best results are highlighted.

Scene Rubble Campus Residential

Metric PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

NeRF 21.659 0.541 0.547 22.283 0.560 0.509 18.548 0.622 0.401
Mega-NeRF 23.505 0.516 0.565 22.365 0.496 0.544 19.350 0.561 0.452
TensoRF 23.800 0.478 0.670 20.915 0.471 0.571 18.332 0.575 0.428
Ours (pretrain) 22.617 0.451 0.622 24.542 0.385 0.698 21.032 0.428 0.620

Ours (grid branch) 25.467 0.213 0.780 25.505 0.174 0.767 24.372 0.142 0.807
Ours (nerf branch) 24.130 0.207 0.767 24.903 0.162 0.757 23.765 0.137 0.802

(a) Density feature plane (pre-trained -> refined) (b) Appearance feature plane (pre-trained -> refined)

Figure 4. Visualization of one feature component in (a) density
and (b) appearance feature plane (Residential scene). Compared
to the pre-trained feature planes, the refined ones are less noisy;
sharper edges and regular shapes of grouped objects can also be
clearly identified. Since density and appearance features are in-
dependently learned, they encode different information that de-
scribes the scene. The appearance feature can capture environ-
mental effects like shadows, as shown in (b).

timized grid features can easily result in fuzzy and wavy
appearances, as illustrated in Fig. 3. By jointly optimizing
with the NeRF branch, the xy-plane and z-axis encoding are
constantly improved to encode more local details while be-
coming less noisy. A drastic improvement in fidelity can be
observed in Fig. 6. Similar refinement can also be observed
in feature space. Take one dimensional density plane on
the Residential scene (Fig. 4) as an example, while a coarse
floor layout of the targeting urban area can already be iden-
tified on the pre-trained xy-plane feature (Fig. 4(a)), it still
missed details like sharp edges and varied shapes and colors
widespread in the scene, which are hard to be represented
with grids unless finer grid resolution is adopted. NeRF,
on the other hand, searches for scene surfaces with points,
which provides a more accurate and meaningful signal for
grid feature optimization, and boosts it out of local minima.
Another noticeable artifact on the pre-trained feature plane
is the noise on continuous regions (e.g., land, facade) due
to grid variation, which is largely eased after jointly opti-
mized with NeRF. This can be ascribed to NeRF’s continu-
ous representation of the scene, which imposes an implicit
regularization on the feature grid by constructing a stronger
correlation among coordinates. The resulting refined fea-
ture planes (Fig. 4(b)) exhibit smooth grid features with a
cleaner silhouette where content-similar grids can be clus-
tered together (e.g., buildings, duplexes, and roads).

Compact Representations. While it is instinctive to
design a heavy framework for modeling large scenes, our
principle is to keep it compact and efficient without signif-

(a) XY-plane learned from TensoRF (VM decomposition) (b) XY-plane learned from our plane-vector representation

Figure 5. Visualization of a slice of xy feature plane from (a) Ten-
soRF’s factorization; and (b) our ground plane representation. Our
joint learning results in more accurate plane features with sharp
region boundaries that is better aligned with the scene’s physical
ground plan, which is naturally more suitable for large urban scene
modeling and downstream analysis. A cleaner feature grid also re-
veals that the learned latent space is more compact, which is criti-
cal for large-scale modeling even with limited model capacity.
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Figure 6. Qualitative comparison showing the rendering results
using features learned (a) at a moderate grid resolution (20482),
(b) at a high grid resolution (40962) and (c) from the re grid branch
at resolution (40962). Despite higher grid resolution leads to better
visual quality, adding NeRF supervision pushes the quality toward
photorealistic one step further.

icantly reduced quality. Bearing that in mind, we modeled
the full 3D feature grid with a succinct plane-vector rep-
resentation. We demonstrate in Fig. 5 that, with similar
performance on reconstructing large urban scenes (PSNR:
(TensoRF) 21.075 vs. (Ours) 20.915), the 2D ground plane
learned from TensoRF’s VM decomposition [9] appears to
be fuzzier and less informative than ours; and our repre-
sentation uses less parameters (3e8) compared to TensoRF
(4e8). Moreover, recall that grid resolution is critical for
purely voxel-based representation to obtain high quality
renderings, our method realizes photorealistic rendering of
large scenes without further upsampling. Although supply-
ing finer-grained feature planes to our framework is bene-
ficial, the integration with NeRF largely alleviates the de-
pendence on grid resolution to capture scene details. From
NeRF’s perspective, we show that a relative small MLP
is sufficient to handle large scenes by taking the learned
grid features with PE, and achieves superior result than the
scaled-up NeRF and Mega-NeRF [62], as shown in Fig. 3.
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Figure 7. Using a single resolution grid feature results in inferior
results. Low-resolution feature grid suffers from blurry artifacts
and high-resolution grid gives noisy results. NeRF branch greatly
helps remedy these issues with its point-wise supervision signal to
pick up more details and global prior to regularize grid features.

4.3. Ablations

Ablations are conducted to verify the impact of 1) dif-
ferent model configurations: for the grid branch, we switch
to single resolution feature grid at different resolutions; for
NeRF branch, we inspect model capacity and the frequency
bandwidth of PE in helping NeRF recover the scene details;
Apart from the model architecture, we also look into 2) the
efficacy of enriching NeRF’s pure coordinated input with
grid features; and 3) the efficacy of NeRF as a supervision
signal to enhance feature grid.

Model configuration. For the grid branch, we show in
Fig. 7 that adopting a single resolution feature grid leads
to inferior performance. Concretely, results from a low res-
olution (5122) grid branch already suffers from blurry arti-
facts during pre-training. Adding NeRF branch at the lat-
ter stage can help produce more details to the facade and
rooftop but still lack sharp detail in general. On the other
hand, results from a high resolution (20482) grid branch is
fuzzy and noisy at the pre-training stage, which is eased by
NeRF to a large extent, but still unstable at continuous re-
gions, such as roads and walls. Existing works [9, 36, 53]
usually adopt a small MLP as a renderer to translate grid
features. In Fig. 8 We show that for our scenario, NeRF
with a small model capacity (D=3, W=32) is insufficient to
translate grid features of such complex scenes, giving inac-
curate geometry and missing a large amount of scene de-
tails. Naively increasing frequency bandwidth in PE does
little help under this circumstance. By enlarging the MLP
(D=3, W=256), significant improvements can be observed,
from which imposing higher frequency inputs via PE can
help recover more scene details.

Efficacy of grid features to NeRF. We start by simply sup-
plying NeRF with grid features without tuning grid features
and supervision from the grid branch. NeRF can already
benefit from the local features encoded in the grid features,

M
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2)
M

LP
(D

=3
, W

=2
56

)

PE=20…22 PE=20…216

Figure 8. A small renderer is insufficient to translate the grid fea-
tures, producing inaccurate geometry and scene contents. How-
ever, given enough modeling capacity, NeRF picks up more details
with the help of increasingly higher PE frequency channels.

with ∼ 1db improvement in PSNR. Tuning the feature grid
can further achieve ∼ 2.5db gain in PSNR.

Efficacy of NeRF supervision to feature grid. As depicted
in Fig. 7, NeRF helps feature grids in recovering more de-
tails when grid resolution is inadequate, and smooth unreg-
ularized features with global prior to produce more consis-
tent rendering results. On high-resolution grid, combining
NeRF can raise PSNR by ∼ 2db on the Campus scene.

5. Discussion and Conclusion

In this work, we target on large urban scene rendering,
and propose a novel framework that integrates the MLP-
based NeRF with an explicitly constructed a feature grid to
effectively encode both local and global scene informations.
Our method overcomes various drawbacks of state-of-the-
art methods when when applied to large-scale scenes. Our
model achieves high visual fidelity rendering even for ex-
tremely large-scale urban scenes, which is crucial for real-
world application scenarios.

While we mainly investigate the ground feature plane
representation tailored for large urban scene scenario, our
two-branch design can also be considered for other grid-
based representation, serving as an additional regularization
on the learned feature values by bringing more continuity.
Still, our model inherits some limitations of NeRF-based
methods, such as the slow training for our joint-learning
stage. Another critical issue is dealing with a large amount
of high-resolution images. The current batch sampling of
shuffled rays is highly ineffective without distributed train-
ing. More discussions can be found in the supplementary.
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