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Abstract

Real-time 3D hand mesh reconstruction is challenging,
especially when the hand is holding some object. Beyond
the previous methods, we design H2ONet to fully exploit
non-occluded information from multiple frames to boost the
reconstruction quality. First, we decouple hand mesh recon-
struction into two branches, one to exploit finger-level non-
occluded information and the other to exploit global hand
orientation, with lightweight structures to promote real-
time inference. Second, we propose finger-level occlusion-
aware feature fusion, leveraging predicted finger-level oc-
clusion information as guidance to fuse finger-level infor-
mation across time frames. Further, we design hand-level
occlusion-aware feature fusion to fetch non-occluded infor-
mation from nearby time frames. We conduct experiments
on the Dex-YCB and HO3D-v2 datasets with challenging
hand-object occlusion cases, manifesting that H2ONet is
able to run in real-time and achieves state-of-the-art per-
formance on both the hand mesh and pose precision. The
code will be released on GitHub.

1. Introduction

Estimating 3D hand meshes from RGB images is a fun-
damental task useful for many applications, e.g., augmented
reality [17, 52], behavior understanding [26, 44], etc. To
support these applications, user experience is very impor-
tant, so the reconstruction should be accurate and robust, as
well as fast, i.e., real-time. Despite the promising results
achieved by the recent works, it is still very challenging to
simultaneously meet all the requirements, particularly when
the hand is severely occluded, e.g., holding some object.

Several recent methods are proposed for 3D hand mesh
reconstruction from a single RGB image [13, 15, 31, 38–
42, 45]. To alleviate the negative effect of occlusion, some
try to extract occlusion-robust features by adopting the spa-

Figure 1. Structural comparison between our H2ONet and previ-
ous methods. We decouple 3D hand mesh reconstruction into two
branches, one to reconstruct the hand mesh at canonical pose M
and the other to regress the global hand orientation R, such that
we can fuse finger- and hand-level occlusion-aware features from
multiple frames to better exploit the non-occluded information.

tial attention mechanism applied in 3D hand pose estima-
tion [14, 65, 68]. When the amount of occlusion is small,
focusing more on non-occluded regions can help improve
the network performance. However, the performance would
largely drop when the occluded regions dominate, implying
that relying solely on the prior information of hand shape
and pose is insufficient. Besides, the attention mechanism
brings extra computation and memory overhead. Though
recent methods [8, 52] adopt lightweight frameworks for
real-time inference, the influence of occlusion is ignored.

On the other hand, some recent works [18,57] start to ex-
plore multi-frame RGB images as input for 3D hand mesh
reconstruction. SeqHAND [57] integrates LSTM as a fea-
ture extractor to memorize the hand motion over consecu-
tive frames. Liu et al. [35] constrain the smoothness of hand
shape and pose by designing inter-frame losses. Yet, they
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do not have specific designs to explicitly deal with the oc-
clusion. Hasson et al. [18] leverages an optical-flow-guided
strategy to promote photometric consistency. Nevertheless,
the extra information is limited, as they use only two adja-
cent frames. Also, though multi-frame inputs provide more
information, it is non-trivial to effectively extract and fuse
multi-frame features to improve the reconstruction quality.

In this paper, we present H2ONet, a Hand-Occlusion-
and-Orientation-aware Network, aiming at exploiting non-
occluding information from multi-frame images to recon-
struct the 3D hand mesh. Our goal is to meet the require-
ments of (i) effectively utilizing the inter-frame information
and (ii) explicitly alleviating the interference of occlusion.

First, as the hand orientation information and hand shape
information are mixed in feature space, it is hard to directly
fuse features from multiple frames. To better exploit use-
ful information, we decouple hand mesh reconstruction into
two tasks: one for hand mesh reconstruction at the canon-
ical pose and the other for hand orientation regression, as
shown in Fig. 1. The key advantages are that we can better
fuse multi-frame features without considering hand orien-
tation differences, and it enables us to apply strategies to
alleviate the ill-posed issue in estimating hand orientation.

Second, to handle self and object occlusions on the hand,
we propose to exploit non-occluding information spatially
across fingers and temporally across frames. For the for-
mer, we design finger-level occlusion-aware feature fusion
that leverages predicted finger-level occlusion probabilities
to guide the adaptive fusion of per-finger features from mul-
tiple frames. For the latter, we design hand-level occlusion-
aware feature fusion that catches auxiliary global informa-
tion over frames guided by the hand-level occlusions.

In summary, our main contributions are:

• We design the hand-occlusion-and-orientation-aware
network named H2ONet with a two-branch architec-
ture to efficiently and effectively exploit non-occluding
information from multiple frames.

• We formulate finger-level occlusion-aware feature fu-
sion and hand-level occlusion-aware feature fusion
modules. The former aggregates non-occluded finger-
level information from multiple frames to promote
hand shape reconstruction, whereas the latter alleviates
the ill-posed issue when estimating the global hand ori-
entation in case the hand is temporarily occluded.

• Through qualitative and quantitative comparisons on
two datasets with severe hand occlusions, we show that
H2ONet achieves state-of-the-art performance.

2. Related Work
Single-frame 3D hand mesh reconstruction. According
to the type of input, single-frame methods can be divided
into two categories: depth-based and RGB-based.

Early depth-based methods [29, 51, 53] fit a deformable
hand mesh to the depth image via an iterative optimiza-
tion. Recent deep-learning-based methods [36, 43, 56] uti-
lize CNN, as a powerful feature extractor or parameter re-
gressor, to improve performance.

For the RGB-based methods, most works [1–4, 10, 20,
25, 35, 59, 61–64, 67, 69] directly estimate the MANO pa-
rameters [46]. Other representations include voxel grid [24,
39, 42, 58], implicit function [37], UV map [7], and ver-
tices [9, 15, 31, 33, 34]. Nevertheless, most existing works
do not explicitly take occlusion into consideration and yield
unsatisfactory results when the hand is occluded by itself or
by other objects. Overall, the most related and recent work
is HandOccNet [45]. It handles the occlusion in hand-object
datasets by formulating self- and cross-attention modules.
Yet, when the occlusions dominate the image space, esti-
mating hand pose and shape can become severely ill-posed.

In this work, we propose to fully exploit non-occluding
information, first by explicitly estimating finger-level oc-
clusions and further by fusing hand-level information over
multiple frames, to address the occlusion issue.

Multi-frame 3D hand mesh reconstruction. Some re-
cent works start to exploit multi-frame inputs for 3D hand
mesh reconstruction. SeqHAND [57] adopts convolution-
LSTM [49]. Chen et al. [6] design a self-supervised method
that utilizes bi-directional hand consistency over sequential
frames. Overall, existing works focus mainly on improving
temporal consistency and ignore the occlusion issue when
fusing information from multiple frames. Besides, they can
hardly maintain a fast inference, as they either use lots of
frames as input or are based on optimization. In this work,
we predict finger-level occlusion probabilities to guide the
information fusion adaptively over multiple time frames.

3D hand-object mesh reconstruction. Joint reconstruc-
tion of hands and objects has been receiving increasing at-
tention [4, 18, 19, 60]. Hasson et al. [18] assume known
object models and leverages photometric consistency be-
tween adjacent frames to improve hand-object reconstruc-
tions. Later, they design an optimization method [19] to in-
corporate contact losses to encourage contact surfaces and
penalize penetrations between hand and object from videos.
Karunratanakul et al. [27] propose an implicit representa-
tion for hand in the form of sign distance fields. Recent
work [54] also adopts a collaborative learning framework
to implicitly model mutual occlusions via associative loss.

Occlusion-aware 3D human pose estimation. There are
three common approaches to handling occlusions in human
pose estimation. First, we can simulate the occlusions in the
data augmentation, e.g., by covering parts of the image with
black regions [48], by copying patches of the background
to paste on non-occluded human regions [28], and by ran-
domly setting some values of the estimated 2D heatmaps
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Figure 2. The H2ONet architecture: (i) the dual-branch encoder extracts general and task-specific features; (ii) the hand mesh reconstruction
module focuses on constructing hand meshes at canonical poses by predicting finger-level occlusions and taking these information as
guidance to fuse the multi-frame information; and (iii) the hand orientation regression module predicts the global hand orientation using
the predicted hand-level visibility (equivalently, the occlusion) across multiple frames for support the estimation of the hand orientation.

to zero [11]. Though these techniques can bring some im-
provement, it is still hard to resolve real occlusions due to
their domain gap from the synthetic occlusions.

Another approach is to more effectively utilize the spa-
tial information, e.g., [14, 65, 68] use the attention mecha-
nism [55] to enhance the features of the non-occluded hu-
man regions and spread the information to the missing parts.
Yet, the attention mechanism increases the computational
overhead, making it hard to give real-time performance.

Last, some works compensate for the occluded in-
formation by utilizing temporal information from videos.
Cheng et al. [12] lift the estimated occlusion-labeled 2D
pose sequence to 3D through a temporal CNN. Yet, they
mainly consider the bare human situation, without severe
occlusions, as in the hand-object datasets.

3. Method

3.1. Overview

Fig. 2 shows the pipeline of H2ONet for reconstructing
3D hand meshes, particularly when the hand is holding and
manipulating some object. Three RGB frames are first fed
into the dual-branch encoder to extract task-specific infor-
mation for the two subsequent modules to process.

• The hand mesh reconstruction module first predicts 2D
joint coordinates and finger-level occlusions, then uti-
lizes them to fetch and fuse features and reconstruct
hand meshes by a decoder (Sec. 3.2).

• Concurrently, the hand orientation regression mod-
ule aggregates global features with the hand-level oc-
clusion predictions as the guidance and regresses the
global hand orientation (Sec. 3.3). Details of the loss
functions are presented in Sec. 3.4.

Dual-branch Encoder. We design the dual-branch en-
coder to extract features with two encoder heads that share
general features extracted from the former network. Specif-
ically, given input frames I = {It−ik : i ∈ {0, 1, 2}},
where It denotes the current frame and It−k, It−2k de-
note two previous frames (k is frame gap), an hourglass
block is first adopted to extract multi-scale refined feature
FI. To save the computation, we replace the commonly-
used ResNet [21] blocks with the computationally-efficient
blocks proposed by SENet [23] and MobileNet [22], fol-
lowing [8]. After that, we feed FI into (i) the hand mesh
encoder to produce feature FM for reconstructing the 3D
hand mesh; and (ii) the hand orientation encoder to produce
feature FO for regressing the global hand orientation.

3.2. Hand Mesh Reconstruction

When the hand is manipulating an object, different fin-
gers may switch between occluding and non-occluding
states as the hand moves and rotates. Reconstructing the
occluded fingers is ill-posed, so the predictions on them are
less reliable than those of the non-occluded ones. Based
on the assumption that the transformation among nearby
frames is mostly rigid, we propose to exploit the finger-level
occlusion probabilities as a guide to help fuse and utilize the
finger-level knowledge adaptively from the non-occluded
fingers across the input frames.
Preparing finger-level occlusion labels. Our method ex-
plicitly predicts finger-level occlusions, but the hand-object
datasets provide ground truths only on hand segmentation.
So, we design a method to automatically prepare occlusion
labels using the provided ground truths for model training.

Fig. 3(a) illustrates the procedure. Given a ground-truth
hand mesh, we first locate vertices associated with differ-
ent hand parts, i.e., the five fingers and the palm, which are
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distinguished by different colors. Then, we render the hand
mesh in colors (Fig. 3(a-ii)) and the 2D vertices in colors
(Fig. 3(a-v)) in the image view. By masking the rendered
hand mesh image using the hand segmentation ground truth
(Fig. 3(a-iii)), we can remove the hand regions that are oc-
cluded by the objects (Fig. 3(a-iv)). Next, for each finger,
we can check each of its vertices (Fig. 3(a-v)) against the
masked image (Fig. 3(a-iv)) to see if the vertex is occluded
in the image view either caused by hand itself or object. If
the number of occluded vertices is above a threshold (set as
50), the associated finger is regarded as “occluded.” For the
global hand occlusion, the hand is regarded as “occluded”
if the proportion of occluded hand pixels is above 50%.

Finger-level occlusions prediction. To predict the oc-
clusion of each finger, we should examine the features of
the pixels associated with each finger and filter out irrel-
evant background features. However, hand segmentation
requires per-pixel prediction, which reduces computational
efficiency. So, we directly utilize the predicted 2D joint
coordinates and fetch the joint features as the input to the
finger-level occlusion classifier, as shown in Fig. 3(b).

Another concern is that some 2D joints may lie too close
to each other, so using a shared network to predict occlu-
sions only from the feature of individual fingers may lead
to confusion. Therefore, we formulate a base MLP to ex-
tract the global feature from all the finger features and adopt
five lightweight head MLPs to further predict the occlusion
probability of each finger independently.

Occlusion-aware mesh reconstruction. Given feature
FM from the dual-branch encoder, we adopt the 2D joint
coordinates regression and 2D-to-3D feature lifting of [8].
As Fig. 2 shows, FM is first expanded by several convolu-
tional layers and fed into an MLP to regress the normalized
2D joint positions J2D. Then, we fetch 2D joints feature
FJ from FM indexed by J2D, and project it to the low-
resolution 3D vertices feature FV by the learnable projec-
tion matrix P, i.e.,

FV = P · FJ, (1)

where FV ∈Rn×c, P ∈Rn×m, FJ ∈Rm×c; m = 21 is the
number of joints; c is the feature channel size; and n is the
number of vertices in the down-sampled hand mesh.

Furthermore, the lifted vertices feature FV is fed into a
four-layer SpiralConv-based [32] decoder to upsample hier-
archically by a factor of 2 for each layer and finally regress
the original-resolution mesh vertices. Since the feature be-
fore the last decoder layer should contain the least orienta-
tion information and already has the same number of ver-
tices as the output hand mesh, we adopt it as the input to
fuse the information from all frames. For clarity, we use
FVt−ik

, i ∈ {0, 1, 2} to denote the decoded features of the
(t− ik)-th frame. Specifically, we split a branch before

(a) Finger-level occlusion label preparation

(b) Finger-level occlusion classifier
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Figure 3. (a) The procedure of preparing finger-level occlusion
labels. (b) The architecture of the finger-level occlusion classifier.

the last layer of the decoder and assign FVt−ik
to differ-

ent fingers based on the predefined vertex indices. Since
non-occluded fingers are more informative, vertex features
belonging to each finger f in the (t− ik)-th frame is first
weighted by Wf

t−ik, which is computed by operating soft-
max on the corresponding predicted finger-level occlusion
possibilities Ωf

t−ik along the frame dimension, i.e.,

Wf
t−ik =

eω
f
t−ik∑N−1

j=0 e
ω
f
t−jk

, Ωf
t−ik = {ωd

t−ik : d ∈ {0, ..., D−1}},

(2)
where N = 3 is the number of input frames; D = 5 is the
number of fingers; and ωd

t−ik means the d-th finger occlusion
probability of the (t−ik)-th frame. Then, for all fingers, the
hybrid feature F′ is obtained by

F′ =

N−1∑
i=0

Wt−ik · FVt−ik . (3)

Last, we further fuse F′ adaptively via MLP q(·) and gen-
erate per-vertex offset ∆M of the current frame, i.e.,

Mc
t−ik = p

(
FVt−ik

)
, i ∈ {0, 1, 2}.

∆M = q
(
F′) , Mc

t = ∆M+Mc
t ,

(4)

where p(·) denotes the SpiralConv-based decoder and
Mc

t−ik denotes the predicted mesh vertices at the canonical
pose from the input frame I(t−ik).

3.3. Hand Orientation Regression

Considering that the current hand can be severely oc-
cluded at times, although the object pose can provide cer-
tain cues, it is not always reliable. Therefore, we propose to
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utilize the information from the previous frames to comple-
ment the information from the current frame. The key idea
is to exploit the nearest non-occluded frame to help correct
the estimated orientation of the current hand, if it is mostly
occluded in the view. To this end, for all frames, we first
encode and flatten the extracted feature FO to obtain global
features G for all frames. Then, we adopt the hand-level
occlusions to exploit information from other frames.

Hand-level occlusion prediction. We tried to predict
hand-level occlusion Ωh in two different ways. First, we
added another branch to the finger-level occlusion classi-
fier, whose input already provides the global information of
the entire hand. Though the classification accuracy of this
approach can reach over 90% on all datasets, we found in
the experiments that the orientation regression precision of
the misclassified cases will be heavily affected.

The other approach is to directly utilize the predicted
finger-level occlusion probabilities and regard the hand as
occluded only if all the fingers are occluded. Formally, for
all frames, we have their global hand-level occlusions

Ωh
t−ik =

D−1∏
d=0

argmax[ωd
t−ik], i ∈ {0, 1, 2}, (5)

where Ωh
t−ik is the predicted hand-level occlusion of the

(t− ik)-th frame and ωd
t−ik is the predicted d-th finger oc-

clusion probability; see Sec. 3.2. This implies a more strict
condition that can alleviate the effect of misclassification.

Occlusion-aware orientation regression. The hand-
level occlusion-aware feature fusion mainly helps to alle-
viate the ill-posed issue when the hand is highly (or fully)
occluded. We design a frame-by-frame enquiry strategy
to fuse the multi-frame features guided by their associated
hand-level occlusion predictions Ωh.

In detail, we check Ωh frame by frame in a reverse
chronological order (from It to It−2k), and fetch the fea-
ture Gt−ik as the output feature G′ if the (t−ik)-th frame
is non-occluded. Formally, we split the computation of G′

into two steps. First, for the (t−ik)-th frame, we compute

G′
t−ik=

 Ωh
t ·Gt +

(∏N−1
j=0

(
1−Ωh

t−jk
))

·Gt, if i = 0(∏i−1
j=0

(
1−Ωh

t−jk
))

·Ωh
t−ik ·Gt−ik, otherwise.

(6)
Here, Ωh

t−ik = 0 indicates that the (t−ik)-th frame is pre-
dicted as “occluded.” Then, we obtain G′ by

∑N−1
i=0 G′

t−ik.
Note that we set G′ = Gt if all frames are occluded.

To further obtain the hand orientation, we feed the orig-
inal features G to an MLP f (·) to regress the rotation
6D [66] parameters for all frames, which are further trans-
ferred to form the 3D rotation matrix R. Meanwhile, since
refining the current hand orientation not only needs the in-
formation from the auxiliary frames but also the state of the

current hand itself, we feed both the complement feature G′

and the feature of the current frame Gt into another MLP
g (·) to regress the rotation offset ∆R and then update Rt:

Rt−ik = f (Gt−ik) , i = 0, ..., N−1.

∆R = g
(
cat

[
G′,Gt

])
, Rt = ∆RRt,

(7)

where cat [. , . ] denotes the concatenate operation.
Finally, we apply Rt−ik on Mc

t−ik to obtain the rotated
hand mesh Mr

t−ik in the camera coordinate system. Also,
we calculate the 3D joint coordinates J3D

ct−ik
at the canonical

pose and J3D
rt−ik

in the camera coordinate system by multi-
plying Mc

t−ik and Mr
t−ik, respectively, with a vertex-to-joint

regression matrix, which is predefined by MANO and set to
be learnable to better fit the hands to the specific dataset.
Note that the 3D joint coordinates and vertices of the pre-
vious frames are only used to compute losses. We cut off
their network structures at test time for efficiency.

3.4. Loss Functions

For 3D hand mesh reconstruction, we adopt several com-
mon 2D and 3D loss functions. First, the L1 loss is applied
to constrain the distance between the predicted hand mesh
and the ground truth at the canonical pose. The same super-
vision is also applied to the 3D joint coordinates. Concur-
rently, the 2D joint coordinates are supervised by the nor-
malized ground truths. Formally, we have the 3D mesh loss
Lc
M, 3D joint loss Lc

3D, and 2D joint loss L2D as

Lc
M=

N−1∑
i=0

||Mc
t−ik− M̂c

t−ik||1, Lc
J3D

=

N−1∑
i=0

||J3D
ct−ik

− Ĵ3D
ct−ik

||1,

and LJ2D =

N−1∑
i=0

||J2D
t−ik − Ĵ2D

t−ik||1,

(8)
where c denotes the canonical pose, meaning that the global
rotation is not involved, and the hat superscript indicates
the ground truth. Also, the same losses are applied to the
3D mesh and joints after rotating by the predicted orienta-
tion, so we have Lr

M and Lr
J3D

. For clarity, we directly use
LM = Lc

M + Lr
M and LJ3D

= Lc
J3D

+ Lr
J3D

to represent
the losses of 3D mesh and joint before and after applying
the rotation, respectively.

Besides, the normal and edge-length constraints are
adopted to penalize the outlier vertices:

Lc
N =

N−1∑
i=0

∑
f∈Mct−i

∑
e∈f

||⟨e, n̂⟩||1,

and Lc
E =

N−1∑
i=0

∑
f∈Mct−i

∑
e∈f

|||e| − |ê|||1,

(9)

where f denotes the triangle faces from the predicted hand
mesh, e, and n denote the edges and normal vector of the
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Methods PA-J-PE ↓ PA-J-AUC ↑ PA-V-PE ↓ PA-V-AUC ↑ PA-F@5 ↑ PA-F@15 ↑ J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑
METRO [33] 7.0 - - - - - 15.2 - - - - -
Spurr et al. [50] 6.8 86.4 - - - - 17.3 69.8 - - - -
Liu et al. [35] 6.6 - - - - - 15.3 - - - - -
HandOccNet [45] 5.8 88.4 5.5 89.0 78.0 99.0 14.0 74.8 13.1 76.6 51.5 92.4
MobRecon [8] 6.4 87.3 5.6 88.9 78.5 98.8 14.2 73.7 13.1 76.1 50.8 92.1
Our H2ONet† 5.7 88.9 5.5 89.1 80.1 99.0 14.0 74.6 13.0 76.2 51.3 92.1
Our H2ONet 5.3 89.4 5.2 89.6 80.5 99.3 13.7 74.8 12.7 76.6 52.1 92.3

Table 1. Results on the DexYCB dataset. -: the results are unavailable. †: our method only uses single-frame input. The best and second-
best results are marked in bold and underlined for better comparison. Our method achieves the best performance on almost all metrics.

Methods J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑
Pose2Mesh [13] 12.5 - 12.7 - 44.1 90.9
I2L-MeshNet [39] 11.2 - 13.9 - 40.9 93.2
ObMan [20] 11.1 - 11.0 77.8 46.0 93.0
HO3D et al. [16] 10.7 78.8 10.6 79.0 50.6 94.2
METRO [33] 10.4 - 11.1 - 48.4 94.6
Liu et al. [35] 10.2 79.7 9.8 80.4 52.9 95.0
I2UV-HandNet [7] 9.9 80.4 10.1 79.9 50.0 94.3
Tse et al. [54] - - 10.9 - 48.5 94.3
HandOccNet [45] 9.1 81.9 9.0 81.9 56.1 96.2
MobRecon∗ [8] 9.2 - 9.4 - 53.8 95.7
MobRecon [8] 9.4 81.3 9.5 81.0 53.3 95.5

SF

Our H2ONet† 9.0 82.0 9.0 81.9 55.4 96.0

Hasson et al. [18] 11.4 77.3 11.4 77.3 42.8 93.2
Hasson et al. [19] - - 14.7 - 39.0 88.0
Liu et al. ‡ [35] 9.8 - 9.4 81.2 53.0 95.7M

F

Our H2ONet 8.5 82.9 8.6 82.8 57.0 96.6

Table 2. Results on the HO3D-v2 dataset (after PA). SF and MF
denote single-frame input and multi-frame input, respectively. ∗:
the model is trained with complement data. -: the results are un-
available from previous papers. ‡: the model uses multi-frame
supervision. †: our method with only a single frame as input. Our
method achieves the best performance on all metrics.

Methods J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑
Liu et al. [35] 30.0 49.0 28.9 50.3 23.2 68.5
HandOccNet [45] 24.9 53.9 24.2 55.1 26.0 72.9
MobRecon [8] 25.2 53.7 24.4 55.0 26.4 72.0
Our H2ONet∗ 23.0 56.6 22.4 57.7 26.7 73.6

Table 3. Results on the HO3D-v2 dataset (before PA). ∗: the model
is trained with complement data. Our method achieves the best
performance on all metrics.

triangle face, respectively. Note that they are computed only
for the hand mesh at the canonical pose.

Moreover, for the finger-level occlusion prediction, the
commonly-used soft-max cross-entropy loss is employed:

LO = −
N−1∑
i=0

D−1∑
d=0

ω̂d
t−ik logω

d
t−ik, (10)

where ωd
t−ik means the predicted occlusion probability of

d-th finger in the (t−ik)-th frame.
For the hand orientation regression, the L2 loss is used:

LR =

N−1∑
i=0

||RT
t−ikR̂t−ik − 1||2, (11)

where 1 is an identity matrix.

Error (mm) Error (mm)
M

es
h 

3
D

 P
C

K

HO3D-v2 mesh AUCDex-YCB mesh AUC

Figure 4. The mesh AUC comparison under different thresholds.
Our method performs consistently better than others.

The overall loss is defined by Ltotal = LM + LJ3D
+

LJ2D
+ λLc

N + Lc
E + LO + LR and λ is set to 0.1.

4. Experiments
4.1. Experimental Settings

Datasets. We employ two benchmark datasets in our ex-
periments. The first one is Dex-YCB [5], a recent large-
scale 3D hand-object dataset. It provides 1,000 sequences
(over 582,000 frames) of 10 subjects grasping 20 differ-
ent objects from 8 independent views. We use the default
“S0” train/test split with 406,888/78,768 samples for train-
ing/testing. Evaluation on this large dataset can explore the
effectiveness and robustness of different methods. The sec-
ond one is HO3D-v2 [16], a widely-used 3D hand-object
dataset, providing 55/13 sequences of 66,034/11,524 sam-
ples for training/test, respectively. As ground truths in its
test set are not publicly accessible, evaluation can only be
done by submitting results to the official server.

Evaluation metrics. We adopt the evaluation metrics
from the HO3D-v2 official online competition. J-PE/V-PE
denotes the joint/vertex position error, measuring the av-
erage Euclidean distance in millimeters between the pre-
dicted and ground-truth 3D hand joint/vertex coordinates.
J-AUC/V-AUC indicates the area under the curve of the
percentage of correct keypoints (PCK) in different error
thresholds for joint/vertex. F-scores measure the harmonic
mean of the recall and precision between the predicted and
ground-truth hand mesh vertices; we adopt F@5mm and
F@15mm, following the previous works. Note that PA de-
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Figure 5. Example challenging cases in the two datasets, in which
the occlusions dominate the images. H2ONet can still estimate the
hand orientations and reconstruct plausible hand meshes.

notes metrics computed after Procrustes Alignment, mean-
ing that the global rotation and scale differences are ignored.

Implementation details. The feature encoder network is
pre-trained on ImageNet [47]. Adam optimizer [30] is ap-
plied to train the network with a batch size of 32 on an
NVidia RTX 3090. To stabilize the training, we adopt a
two-stage strategy. The hand mesh reconstruction branch is
first optimized before jointly training with other parts. Input
images are resized to 128×128 and augmented by random
scaling, rotating, and color jittering. For the multi-frame se-
lection, we set the frame gap k to 5 for Dex-YCB and 30 for
HO3D-v2, due to their different FPS. All other details will
be available in our code.

4.2. Comparison with State-of-the-art Methods

Evaluation on Dex-YCB. To evaluate the hand mesh re-
construction quality, we first compare our method with the
state-of-the-art methods quantitatively on the Dex-YCB test
set. We report the performance before and after the PA to
better show H2ONet’s effectiveness; see Table 1 and the top
plot of Fig. 4. Note that Dex-YCB is a very recent dataset,
so most previous works have not evaluated on it.

For a detailed comparison, we create a single-frame ver-
sion of our method, in which we remove the multi-frame
information fusions in both the mesh reconstruction and ro-
tation estimation branches. From the results, we can see
that the single-frame version of our H2ONet already at-
tains a comparable performance with the state-of-the-art
method HandOccNet, showing the effectiveness of our idea
of decoupling the mesh reconstruction and global rotation
estimation. Furthermore, the full multi-frame version of
H2ONet obtains the best results on almost all metrics, man-
ifesting its robustness against occlusion, while delivering
real-time speed; see Sec. 4.3 for the details. Some qualita-
tive results are shown in Fig. 5(a) and Fig. 6(a). More are
shown in the supp. material. The state-of-the-art methods
MobRecon and HandOccNet may fail to estimate the global
rotation or recover accurate shapes due to severe occlusions,
while our H2ONet can still produce satisfying results, re-
vealing the effectiveness of our occlusion-aware designs.

Pose2Mesh I2L-MeshNet ObMan Liu et al. HandOccNet MobReconMethods [13] [39] [20] [35] [45] [8] Ours† Ours

FPS 22 33 20 32 30 59 43 35

Table 4. Running time comparison with other methods. Ours†:
only a single frame as input. Ours: multi-frame input while being
real-time and achieving top performance (see Tabs. 1 to 3)

Models PA-J-PE ↓ PA-V-PE ↓ J-PE ↓ V-PE ↓
i) B 6.36 5.59 14.20 13.11
ii) B+D 5.65 5.45 14.02 13.03
iii) B+D+MF 5.57 5.41 14.01 13.02
iv) B+D+MF+FS 8.54 8.33 16.96 16.38
v) B+D+MF+FO 5.31 5.21 13.96 12.98
vi) B+D+MF+FO+HO 5.30 5.19 13.68 12.70

Table 5. Ablation study on major components.

Evaluation on HO3D-v2. To further evaluate the gener-
alizability, we conduct the same experiments on the HO3D-
v2 dataset. As the ground truths of its test set are not pub-
licly available, we obtain the results of the competitors from
the previous papers or the official evaluation server. The ex-
perimental results after and before PA are shown in Tables 2
and 3, respectively. We also provide the mesh AUC com-
parison under different thresholds; see the bottom plot of
Fig 4. Beyond the existing works, our method explicitly
considers finger-level occlusions and shows better perfor-
mance. During the experiments, we observe that our hand
orientation regression module often overfits the training set
of HO3D-v2, due to its limited 3D rotation distribution. So,
we pre-train the model on Dex-YCB for a few epochs to
alleviate this issue; please see the supp. material for the
rotation distribution comparison between the two datasets.

Also, from the results, it is clear to see that our method
achieves better precision on all metrics for all different
thresholds consistently, which demonstrates its effective-
ness and robustness. To have an intuitive comparison,
we show visual results for inputs with serious occlusions
in Fig. 5(b) and the comparison with other methods in
Fig. 6(b). Yet, our method can still produce plausible shapes
while estimating more accurate global orientations.

4.3. Efficiency

Table 4 reports the inference times. All methods are
tested on an NVidia RTX 2080Ti. Specifically, we set the
batch size to one, exclude the data-loading time, and av-
erage the computing time over the entire HO3D-v2 test
set (11,524 frames). Though our single-frame version is
slightly slower than MobRecon, we achieve better perfor-
mance. Particularly, our full model consistently attains the
best performance, while being real-time, even if it has to
process three times more frames.
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Figure 6. Qualitative comparison of our method and state-of-the-art 3D hand mesh reconstruction methods [8, 45] on different datasets.
The first and second rows in each example denote the normal view and another view, respectively, for better comparison.

4.4. Ablation Studies

We perform ablation studies on Dex-YCB to study the
effectiveness of H2ONet and its major components. As Ta-
ble 5 shows, we denote Baseline (B) as our model after
removing the following major components: Dual branch
structure (D), Multiple Frame inputs (MF), Finger-level
Occlusion-aware feature fusion (FO) in the hand recon-
struction branch, and Hand-level Occlusion-aware feature
fusion (HO) in the hand orientation regression branch. Be-
sides, FS denotes that we directly select the output of the
most non-occluded frame as the result of the current frame
according to the ground-truth occlusion labels.

Dual-branch encoder. The dual-branch encoder struc-
ture plays an important role in our framework. Comparing
the first two rows in Table 5, we can see that decoupling
the hand mesh reconstruction and the global orientation re-
gression can boost the performance with a relatively large
gap, especially for the metrics after PA, demonstrating the
effectiveness of our dual-branch design.

Finger-level occlusion-aware feature fusion. We first
compare the performance with and without multi-frame in-
puts. Row iii) denotes the model that fuses multi-frame fea-
tures by direct concatenation. Comparing Rows iii) and ii),
directly fusing the features only brings a tiny improvement,
implying that it is ineffective to let the network learn which
parts of the features are useful without any guidance. Be-
sides, comparing Rows iv) and iii), directly using the out-
put of the most non-occluded frame results in worse per-
formance since current non-occluded fingers may be oc-
cluded in the most non-occluded frame. However, compar-
ing Rows v) and iii), adopting the finger-level occlusion pre-
dictions improves the performance, revealing the efficiency
of adaptively combining the non-occluded information in

multiple frames.

Hand-level occlusion-aware feature fusion. Comparing
Rows vi) and v) shows an additional larger improvement
brought by introducing our frame-by-frame enquiry feature
fusion strategy, which demonstrates the effectiveness of our
hand-level occlusion-aware fusion module. Note that this
module has little influence on the metrics after PA, since it
does not modify the hand shape.

5. Conclusion
We presented H2ONet, a new 3D hand mesh reconstruc-

tion method that effectively utilizes non-occluding informa-
tion over fingers and multiple frames to address the occlu-
sion issue. To better fuse multi-frame features, we decou-
ple the pipeline into two branches to reconstruct the hand
mesh at the canonical pose and regress the hand orientation.
Besides, we design finger-level and hand-level occlusion-
aware feature fusions to better exploit information from
non-occluded regions across multi-frames. Experimental
results confirm the state-of-the-art performance of H2ONet
on two hand-object benchmarks.

Limitations. First, the rigid body assumption of the hand
may limit the application scenarios in the real world. Sec-
ond, it requires diverse rotation distribution of the dataset
to train the hand orientation regression branch. Third, the
mesh vertices offset may cause artifacts in some cases.
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