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Figure 1. Left: a physical scene is composed of mutually-correlated entities, e.g., points belonging to the same part or object. We pursue a
subspace of the parameters of an implicit scene representation so that when the scene is perturbed along the gradient of a specific point, a
resonance emerges with other points having high mutual information. For example, if the brightness of a point p on the wall changes, the
other wall points should also change coherently (while points on the ceiling should be unaffected). Right: a comparison between responses
to perturbations along the gradient of the highlighted red point in the scene. The response from the original NeRF spreads all over the
scene, while the localized response from the proposed JacobiNeRF demonstrates coherence between points with similar semantics.

Abstract

We propose a method that trains a neural radiance field
(NeRF) to encode not only the appearance of the scene but
also semantic correlations between scene points, regions, or
entities – aiming to capture their mutual co-variation pat-
terns. In contrast to the traditional first-order photomet-
ric reconstruction objective, our method explicitly regular-
izes the learning dynamics to align the Jacobians of highly-
correlated entities, which proves to maximize the mutual
information between them under random scene perturba-
tions. By paying attention to this second-order information,
we can shape a NeRF to express semantically meaningful
synergies when the network weights are changed by a delta
along the gradient of a single entity, region, or even a point.
To demonstrate the merit of this mutual information model-
ing, we leverage the coordinated behavior of scene entities
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that emerges from our shaping to perform label propagation
for semantic and instance segmentation. Our experiments
show that a JacobiNeRF is more efficient in propagating
annotations among 2D pixels and 3D points compared to
NeRFs without mutual information shaping, especially in
extremely sparse label regimes – thus reducing annotation
burden. The same machinery can further be used for entity
selection or scene modifications. Our code is available at
https://github.com/xxm19/jacobinerf.

1. Introduction
When a real-world scene is perturbed, the response is

generally local and semantically meaningful, e.g., a slight
knock on a chair will result in a small displacement of just
that chair. Such coherence in the perturbation of a scene
evidences high mutual information between certain scene
points or entities that can be leveraged to discover instances
or semantic groups [37, 38]. A NeRF scene representation,
however, solely supervised with 2D photometric loss may
not converge to a configuration that reflects the actual scene
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structure [41]; even if the density is correctly estimated, the
network in general will not be aware of the underlying se-
mantic structure. As shown in Fig. 1, a perturbation on a
specific entity of the scene through the network weights ac-
tivates almost all other entities.

This lack of semantic awareness may not be a problem
for view synthesis and browsing, but it clearly is of con-
cern when such neural scene representations are employed
for interactive tasks that require understanding the underly-
ing scene structure, e.g., entity selection, annotation prop-
agation, scene editing, and so on. All these tasks can be
greatly aided by a representation that better reflects the cor-
relations present in the underlying reality. We take a step
towards endowing neural representations with such aware-
ness of the mutual scene inter-dependencies by asking how
it is possible to train a NeRF, so that it not only reproduces
the appearance and geometry of the scene, but also gener-
ates coordinated responses between correlated entities when
perturbed in the network parameter space.

Current approaches that encode semantics largely treat
semantic labels (e.g., instance segmentation) [17, 42] as a
separate channel, in addition to density or RGB radiance.
However, in the semantics case, the value of the channel
(e.g., instance ID) is typically an artifact of the implemen-
tation. What really matters is the decomposition of the
2D pixels (or of the scene 3D points) the NeRF encodes
into groups – this is because semantics is more about rela-
tionships than values. Thus, we introduce an information-
theoretic technique whose goal is to “shape” an implicit
NeRF representation of a scene to better reflect the underly-
ing regularities (“semantics”) of the world; so as to enforce
consistent variation among correlated scene pixels, points,
regions, or entities, enabling efficient information propaga-
tion within and across views.

The key to the proposed “shaping” technique is an equiv-
alence between mutual information and the normalized in-
ner product (cosine similarity) of the Jacobians at two pixels
or 3D points. More explicitly, if we apply random delta per-
turbations to the NeRF weights, the induced random values
of two pixels share mutual information up to the absolute
cosine similarity of their gradients or Jacobians with respect
to the weights computed at the unperturbed NeRF. This the-
oretical finding ensures a large correlation between scene
entities with high mutual information – and thus coherent
perturbation-induced behaviors – if their tangent spaces are
aligned. Based on this insight, we apply contrastive learn-
ing to align the NeRF gradients with general-purpose self-
supervised features (e.g., DINO), which is why we term our
NeRF “JacobiNeRF”. While several prior works [16, 30]
distill 1st-order semantic information from 2D views to get
a consensus 1st-order feature in 3D, we instead regularize
the NeRF using 2nd-order, mutual information based con-
trastive shaping on the NeRF gradients to achieve semantic

consensus – now encoded in the NeRF tangent space.
The proposed NeRF shaping sets up resonances between

correlated pixels or points and makes the propagation of all
kinds of semantic information possible from sparse annota-
tions – because pixels that co-vary with the annotated one
are probably of the same semantics indicated by the mutual
information equivalence. For example, we can use such res-
onances to propagate semantic or instance information as
shown in Sec. 3.4, where we also show that our contrastive
shaping can be applied to gradients of 2D pixels, or of 3D
points. The same machinery also enables many other func-
tions, including the ability to select an entity by clicking at
one of its points or the propagation of appearance edits, as
illustrated in Fig. 9. Additionally, our approach suggests
the possibility that a NeRF shaped with rich 2nd-order re-
lational information in the way described may be capable
of propagating many additional kinds of semantics without
further re-shaping – because the NeRF coefficients have al-
ready captured the essential “DNA” of points in the scene,
of which different semantic aspects are just different expres-
sions. In summary, our key contributions are:

• We propose the novel problem of shaping NeRFs to re-
flect mutual information correlations between scene enti-
ties under random scene perturbations.

• We show that the mutual information between any two
scene entities is equivalent to the cosine similarity of their
gradients with respect to the perturbed weights.

• We develop JacobiNeRF, a shaping technique that ef-
fectively encodes 2nd-order relational information into a
NeRF tangent space via contrastive learning.

• We demonstrate the effectiveness of JacobiNeRF with
state-of-the-art performance on sparse label propagation
for both semantic and instance segmentation tasks.

2. Related Work
Neural Radiance Fields. Recent work has demonstrated
promising results in implicitly parametrizing 3D scenes
with neural networks. NeRF [23] is one notable work
among many others [1, 7, 14, 19, 21, 24, 27, 35, 39, 41] that
train deep networks to encode photometric attributes for
novel view synthesis. Besides rendering quality, quite a few
focus on the reconstructed geometry [8, 18, 25, 32, 34, 43].
There are also attempts towards making NeRF composi-
tional, e.g., GRAF [28], CodeNeRF [13], CLIP-NeRF [31]
and PNF [17] explicitly model shape and appearance so that
one can modify the color or shape of an object by adjust-
ing their separate codes. EditNeRF [20] further extends
this direction by exploring different structures and tuning
methods for edit propagation via delicate control of sampled
rays. These methods, however, mostly work with object-
level or category-level NeRFs in contrast to a whole scene
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composed of many objects. Moreover, disentanglement in
shape and appearance does not necessarily guarantee in-
stance or semantic consistency. For example, [36] learns
object-compositional neural radiance field for scene editing,
yet instance masks are required during training. Our work
studies how to further shape a holistic NeRF representation
to enable awareness of the underlying semantic structure.

Self-supervised Representation Learning. Due to the
absence of annotations, self-supervised feature learning
has attracted much attention in recent literature [2, 4, 5,
10–12, 40]. Among these, DINO [3] proposes to per-
form self-distillation with a teacher and a student net-
work, demonstrating that the features learned exhibit rea-
sonable semantic information. There are also works utiliz-
ing self-supervised features for scene partition. For exam-
ple, [22, 33] formulates unsupervised image decomposition
as a traditional graph partitioning with affinity matrix com-
puted from self-supervised features. Please refer to [15] for
a more comprehensive overview of self-supervised feature
learning techniques and their applications. Besides clus-
tering with self-supervised features, CIS [37, 38] directly
leverages mutual information learned in an adversarial man-
ner to perform unsupervised object discovery. However, our
focus is to encode mutual information in 3D scene represen-
tations. Moreover, our work can seamlessly incorporate ar-
bitrary self-supervised features for learning meaningful cor-
relations between scene entities.

2D to 3D Feature Distillation & Label Propagation 2D
information annotated on NeRF 2D views (e.g., semantic
labels) can be pushed into the 3D structure of a NeRF [42].
And the process can be regularized and improved, for ex-
ample, N3F [30] treats 2D image features from pretrained
networks as additional color channels and train a NeRF to
reconstruct the augmented radiance. DFF [16] similarly
distills knowledge of off-the-shelf 2D image feature extrac-
tors into NeRFs with volume rendering. In contrast to fea-
ture distillation, Semantic-NeRF [42] adds a parallel branch
along the color one in NeRF [23] to predict semantic log-
its supervised by annotated pixels or images. With simi-
lar technique, Panoptic-NeRF [9] encodes coarse and noisy
annotations into NeRFs. Both demonstrate that volume ren-
dering improves 3D consistency, and is capable of denois-
ing and interpolating imperfect 2D labels. However, as they
are first-order, they can only replicate the provided supervi-
sion and cannot be used for other tasks.

3. Method
We seek scene representations that not only mirror the

appearance and geometry of a scene, but also encode mu-
tual correlations between scene regions and entities – in
the sense that the representation facilitates the generation

Figure 2. We examine mutual information between scene entities
induced by perturbing the NeRF weights in different patterns: (a):
a set of randomly selected neurons; (b): a single layer of the MLP;
(c): a block of layers, e.g., the color branch in the MLP.

of semantically meaningful scene perturbations which will
change such regions and entities in coordinated ways. Our
study here mainly focuses on NeRFs, due to their capability
for high-fidelity view synthesis. We show, however, that in
the absence of correlation regularization on the learning dy-
namics, solely reconstructing the scene with standard pho-
tometric losses, does not guarantee semantic synergies be-
tween entities under various scene perturbations.

In order to analyze how NeRFs render mutual correla-
tion under perturbations, we derive that the mutual infor-
mation (MI) between any two scene entities is equivalent
to the cosine similarity of their gradients with respect to
the perturbed network parameters. Based on this equiva-
lence, we propose a training regiment that biases the pa-
rameters to properly encode mutual correlation between 3D
points or 2D pixels. Our method shapes NeRFs in a way
that minimizes the synthesis discrepancy, while maximizing
the synergy between correlated scene entities when perturb-
ing along the gradients, without changing the architecture.
We further show how this mutual-information-induced syn-
ergy can be leveraged to propagate labels for both semantic
and instance segmentation.

3.1. NeRF preliminaries

Given a set of posed images {Ik}, NeRFs aim at learning
an implicit field representation of the scene from which new
views can be generated through volume rendering density
and radiance values. Denote x ∈ R3 as a point in 3D whose
radiance is determined by a color function c : R3 × S2 →
R3, mapping the point coordinate x and a viewing direction
v ∈ S2 to an RGB value. Also, denote p as a pixel on the
image plane specified by a camera center o and a direction
v, the volume rendering procedure that generates the pixel
value of p can be described by:

I(p) = Φ(o,v; θ) =

+∞∫
0

w(t; θ)c(p(t),v; θ)dt , (1)

where {p(t) = o + tv | t ≥ 0} is the camera ray pass-
ing through the camera center o and the pixel p, and w
is a weight function computed from the density values.
While an immense number of NeRF variations have been
explored, for simplicity we use the original and most basic
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Figure 3. Mutual information computed with Eq. (5) under differ-
ent perturbation patterns. (a): a set of randomly selected neurons;
(b): a single MLP layer; (c): a block of layers, e.g., the color
branch. As observed, none of the perturbation patterns induces
correlations that are localized and semantically meaningful.

MLP formulation. Please refer to [23] for more details on
volume rendering and w, together with how to perform the
integration in Eq. (1) under discretization.

The natural way to perturb a scene represented by such a
NeRF is to perturb the MLP parameters. Unless otherwise
mentioned, all trainable parameters are compacted into the
vector θ in Eq. (1). Traditional NeRFs losses are 1st-order,
optimizing values such as density and color. In this work
we focus additionally and crucially on 2nd-order supervi-
sion, optimizing correlations between scene entities when
the scene is perturbed through changes in the MLP param-
eters. In this way we aim to “shape” the NeRF MLP to bet-
ter reflect any supervision we may have on the co-variation
structure of the scene contents. Next, we detail the per-
turbations and the derivation of mutual information in an
analytical form.

3.2. Mutual information approximation by Jaco-
bian inner products

We study the correlation under MLP parameter pertur-
bations of the values produced by the NeRF, either at 3D
points, or (after volume rendering) at 2D view pixels. For
concreteness, we focus on two pixels pi and pj and their
gray-scale values I(pi) and I(pj), respectively (the pixels
may or may not come from the same view):

I(pi) = Φ(oi,vi; θ) ,

I(pj) = Φ(oj ,vj ; θ) .

Further, we denote by θD the set of parameters that will
be perturbed by a random noise vector n ∈ RD sampled
from a uniform distribution on the sphere SD−1. Please see
Fig. 2 for different selection patterns of θD. The random

variables representing the perturbed pixel values are then:

Î(pi) = Φ(oi,vi; θ
D + n) ,

Î(pj) = Φ(oj ,vj ; θ
D + n) ,

and we omit parameters that remain unchanged for clarity.
Now we characterize the mutual information between

Î(pi) and Î(pj) under the perturbation-induced joint prob-
ability distribution P(Î(pi), Î(pj)). However, calculating
the joint distribution under a push-forward of the MLP is
complicated due to non-linearities. Thus, we proceed by
constraining the magnitude of the perturbations, namely,
multiplying the random noise n by σ ≪ 1.0. This con-
straint improves compliance with the fact that a small per-
turbation in the physical scene is enough to reveal mutual
information between scene entities. For example, slightly
pushing a chair can generate a motion that shows correla-
tions between different parts of the environment. Moreover,
it makes it likely that the perturbed representation still rep-
resents a legitimate scene. With this constraint, we can ex-
plicitly write the random variables under consideration as:

Î(pi) = I(pi) + σn · ∂Φ(oi,vi; θ)

∂θD
, (2)

Î(pj) = I(pj) + σn · ∂Φ(oj ,vj ; θ)

∂θD
, (3)

following a Taylor expansion. We denote the respective Ja-
cobians as ∂Φi/∂θ

D or ∂Φi for notational ease. We can
then show that the mutual information is:

I(Î(pi), Î(pj)) = H(Î(pj))−H(Î(pj) | Î(pi))
= H(σn · ∂Φj)−H(σn · ∂Φj | σn · ∂Φi) , (4)

leveraging the fact that entropy is translation-invariant. Fur-
thermore, by writing the random noise and the Jacobians in
spherical coordinates, we can derive that:

I(Î(pi), Î(pj)) = log(
1√

1− cos2 α
) + const. (5)

Here, α is the angle between ∂Φi and ∂Φj . For more deriva-
tion details, please refer to the Appendix. The key insight is
that the mutual information between the perturbed pixels is
positively correlated with the absolute value of the cosine
similarity of their gradients with respect to the perturbed
parameters. More explicitly, if ∂Φi and ∂Φj are pointing at
the same or opposite direction, i.e., ∥ cosα∥ is close to 1,
then the mutual information between Î(pi) and Î(pj) be-
comes infinity (maximized). Otherwise, if ∂Φi and ∂Φj are
perpendicular, i.e., ∥ cosα∥ is 0, then the mutual informa-
tion between the perturbed pixels is minimized.

With this analytical expression of the mutual informa-
tion, we can efficiently check how different entities from
the same scene are correlated. As observed in Fig. 3, NeRF
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Figure 4. Left: Mutual information shaping of a NeRF in the tangent space. The pre-shaping NeRF (triangle on the manifold) has a tangent
space where the Jacobians of semantically similar points distribute randomly, so that a perturbation along the gradient of a point from the
pillow induces changes all over the scene. After MI-shaping, the NeRF (circle on the manifold) can still render the same scene, but now the
Jacobians in the tangent space are consistently distributed. Thus the same perturbation only affects the scene region corresponding to the
selected pillow. Right: Given a target (unlabeled) view of the scene, we can generate labels for it by taking the argmax of the perturbation
responses from those annotated in the source view (dots in the image above the manifold) leveraging the post-shaping resonances.

weights obtained solely by the reconstruction loss do not
reveal meaningful correspondences. Next, we describe our
method that biases the training dynamics of NeRFs so that
the shaped weights not only reconstruct the scene well but
also reflect the mutual correlation between scene entities.

3.3. Shaping neural radiance fields with mutual
information gradients

According to Eq. (5), if we want to render two pixels
or points correlated (with high mutual information), we can
align their gradients regarding the perturbed parameters. On
the other, for entities that share little mutual information,
we like their gradients to be orthogonal. Suppose (pi,pi+)
is a pair of highly correlated pixels, whereas (pi,pi−) are
independent, then we should observe:

∥∂ΦT
i ∂Φi+∥

∥∂Φi∥∥∂Φi+∥
>

∥∂ΦT
i ∂Φi−∥

∥∂Φi∥∥∂Φi−∥
. (6)

Since our goal is to encode the relative correlations be-
tween different pairs of scene entities instead of the exact
mutual information values, it suffices to minimize the In-
foNCE [26] loss with positive and negative gradient pairs:

LMIG = − log
exp(∥ cos(∂Φi, ∂Φi+)∥/τ)∑

i+∪{i−} exp(∥ cos(∂Φi, ∂Φi−)∥/τ)
,

(7)

where τ is the temperature and we (ab)use cos for co-
sine similarity. Note, Lmig encourages highly correlated
(positive) points to have large cosine similarity by the pull
through the numerator.

The question now is how to select positive and nega-
tive gradient pairs – which seems require knowledge about
the mutual information between scene entities. Unfortu-
nately, since the posed images for training NeRFs are from
a (static) snapshot of the physical scene, the joint distri-
bution needed to compute the mutual information is diffi-
cult to recover. This necessitates that we resort to exter-
nal sources for surrogates of the mutual information, for
which, fortunately, we have several candidates. For ex-
ample, self-supervised features can come from contrastive
learning methods. We choose DINO features [3] as our
primary surrogate due to their capability to capture seman-
tic similarity while maintaining reasonable discriminability.
We can of course also accept direct supervision through off-
the-shelf external semantic and instance segmentation tools.
An interesting issue that we investigate is exactly how much
such supervision is needed for meaningful NeRF shaping.
We detail the selection process and our results in Sec. 4.2.

With positive and negative samples, we can write the
training loss that endows NeRFs with mutual-information-
awareness in the tangent space (perturbations) as:

LTM = LNeRF + λLMIG + γ(1.0− ∥∂Φi∥)2 , (8)

where LNeRF is for photometric reconstruction, and
LMIG shapes NeRF with mutual information (MI-shaping)
through cosine similarity of gradients. The last term im-
proves the training efficiency by compacting the gradients
onto a unit sphere, which also facilitates label propaga-
tion with perturbation response in the following. Please see
Fig. (4) (left) for a visual illustration of MI-shaping.

We term our 2nd-order NeRF “JacobiNeRF” exactly be-
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cause of the use of the inner products of Jacobians to define
these 2nd-order losses that capture mutual information. Our
MI-shaping regiment can be thought of a NeRF operator,
acting to better align the tangent space of a given NeRF
with information we have on mutual correlations between
scene pixels, points, regions, or entities.

3.4. Label propagation with JacobiNeRF

Besides revealing correlations under small perturbations,
we can also leverage the synergy between different scene
entities in a JacobiNeRF to perform label propagation by
either transporting annotations from one view to another
or to densify labels from a few annotated points to the re-
maining ones. Next, we illustrate the propagation proce-
dure from a source view I(psi ) = ΦJ(os,vs

i ; θ) to a target
I(pti) = ΦJ(ot,vt

i ; θ) with semantic segmentation – note
that the same method can be directly applied to instance
segmentation as well as to different combinations of views.

Suppose we have a list of labeled pixels from the source
view {(psk, lsk)}k=1...K with one label for each of the K
classes, i.e., lsk = k. The goal is to determine the seman-
tic labels for every pixel pti of the target view. In principle,
we can perform a maximum a posteriori (MAP) estimation
for each target pixel by:

lti = argmax
l̂ti

P(l̂ti | {(psk, lsk)},ΦJ) . (9)

If the mutual-information shaping described in Sec. 3.3 con-
verges properly, we can assume conditional independence
between uncorrelated entities. Then the target label lti de-
pends only on the source pixel psk∗ which conveys the max-
imum mutual information towards pti. Thus, it is legitimate
to assign lsk∗ or k∗ to pti in order to maximize the posterior
in Eq. (9). In other words, lti = lsk∗ , so that:

k∗ = argmax
k

I(ΦJ(os,vs
k; θ),Φ

J(ot,vt
i ; θ)) , (10)

= argmax
k

∥∂ΦJ,s
k · ∂ΦJ,t

i ∥
∥∂ΦJ,s

k ∥∥∂ΦJ,t
i ∥

. (11)

As encouraged by the third term of the shaping loss in
Eq. (8), the norm of the gradients should be close to 1.0,
which allows us to approximate the cosine similarity be-
tween ∂ΦJ,s

k and all ∂ΦJ,t
i ’s by a single delta perturbation

along ∂ΦJ,s
k as evidenced by the Taylor expansion. Namely,

for each of the labeled pixels, we first generate a perturbed
JacobiNeRF along its gradient, i.e.,

ΦJ(:; θ + σ∂ΦJ,s
k ), k = 1...K . (12)

Then each of the perturbed JacobiNeRFs will be used to
synthesize a perturbed image in the target view:

Ik(p
t
i) = ΦJ(ot,vt

pt
i
; θ + σ∂ΦJ,s

k ), k = 1...K . (13)

Next, we calculate the perturbation response as the absolute
difference between the perturbed and original target images:

Rk(p
t
i) = | Ik(pti)− I(pti) |, k = 1...K . (14)

Finally, since the perturbation response Rk(p
t
i) resembles

the mutual information between I(psk) and I(pti) (Eq. (11)),
we can treat the concatenation [Rk(p

t
i)] as the logits for a K-

way semantic segmentation on the target image. Thus, we
obtain the semantic label for pti as: lti = argmaxk Rk(p

t
i).

Please note that the propagation principle discussed
above is applicable to any task that is view-invariant. For
example, K can be the number of entity instances in the
scene, and we perform propagation for instance segmenta-
tion. Here, the absolute difference logits are computed in
the 2D domain (after volume rendering) in Eq. (14). How-
ever, we can also measure the perturbation differences in
3D first, e.g., estimate difference logits for a 3D point along
the ray emanating from a certain pixel (following the hier-
archical sampling strategy of [23]), and then leverage vol-
ume rendering to accumulate the sampled perturbation dif-
ferences and arrive at a 2D logit. In this 3D case, noise in
the perturbation may be averaged out, improving the result.
We name the results obtained directly in 2D as J-NeRF 2D
while the latter as J-NeRF 3D.

4. Experiments
We first describe the datasets in Sec. 4.1, which we use

for evaluating JacobiNeRF on semantic and instance label
propagation in Sec. 4.2 and Sec. 4.3, respectively. We then
perform an extensive ablation in Sec. 4.4 on the hyper-
parameters. Results show that JacobiNeRF is effective in
propagating annotations with the encoded correlations, es-
pecially in the very sparse label regimes.

4.1. Datasets
Replica [29] is a synthetic indoor dataset with high-quality
geometry, texture, and semantic annotations. We pick the
7 scenes selected by [42] for fair comparison. Each of the
scenes comes with 900 posed frames, which are partitioned
into a training set and a test set of 180 frames respectively.
ScanNet [6] is a real-world RGB-D indoor dataset. Again,
we uniformly sample training and test frames, and ensure
that the training and test sets do not overlap and contain ap-
proximately the same number of frames (from 180 to 200).

4.2. Label propagation for semantic segmentation

Experimental setting. The training of JacobiNeRF follows
Sec. 3.3, and for test-time label propagation, we implement
two schemes, i.e., J-NeRF 2D and J-NeRF 3D following
Sec. 3.4. Please also refer to the appendix for more details.

We test the effectiveness of segmentation label propaga-
tion under two settings. In the sparse setting, we only pro-
vide a single randomly selected pixel label for each class in
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Figure 5. Qualitative results of label propagation for semantic segmentation. Top: propagating sparse labels (colored dots) to different
views of the same scene. Bottom: one-view dense label propagation on Replica (left) and ScanNet (right).

the source view, simulating the real-world annotation sce-
nario of user clicking. While for the dense setting, all pixels
in the source view are annotated. This is useful when we
want to obtain fine-grained labels with a higher annotation
cost. The propagation strategy for the sparse setting is elab-
orated in Sec. 3.4. For the dense setting, we employ an
adaptive sampling strategy to select the most representative
gradients for each class to save possibly redundant pertur-
bations. Furthermore, to best leverage the given dense la-
bels, we apply a lightweight decoding MLP to enhance the
argmax operator described in Sec. 3.4. More details can be
found in the appendix.

We compare JacobiNeRF (J-NeRF) to Semantic-NeRF
[42] (S-NeRF), which adds a semantic branch to the origi-
nal NeRF, and hence predicts semantic labels from the color
feature integrated into the radiance field. We also com-
pare to DINO-2D, which extracts DINO features from the
images and propagates with DINO feature similarity; and
DINO-NeRF [16] (D-NeRF), which distills DINO features
to a DINO branch appended to NeRF, and propagates labels
with feature similarity of the volume rendered DINO fea-
tures. All methods are tested given the same source view
labels. We evaluate with three standard metrics. Namely,
mean intersection-over-union (mIoU), averaged class accu-
racy, and total accuracy. The scores are obtained by aver-
aging all test views for each scene. Since we only provide
sparse or dense labels from one view, some classes in the
test views may not be seen from the source view. Therefore,
we exclude them and only evaluate with the seen classes.
Results. Tab. 1 summarizes the quantitative results for se-
mantic segmentation propagation on the 7 scenes from the
Replica [29] dataset. Our method consistently achieves the
best performance in both sparse and dense settings by uti-
lizing correlations encoded in the tangent space.

Figure 6. Qualitative results of instance segmentation propagation.
Examples are from the ScanNet dataset.

Method S-NeRF DINO-2D D-NeRF J-NeRF 2D J-NeRF 3D

S. mIoU ↑ 0.187 0.181 0.253 0.263 0.283
Avg Acc ↑ 0.461 0.461 0.527 0.489 0.524
Total Acc ↑ 0.310 0.414 0.407 0.483 0.503

D. mIoU ↑ 0.523 0.335 0.403 0.446 0.524
Avg Acc ↑ 0.728 0.624 0.654 0.619 0.689
Total Acc ↑ 0.766 0.714 0.683 0.751 0.864

Table 1. Semantic segmentation propagation on Replica in sparse
(S) and dense (D) settings.

Fig. 5 compares JacobiNeRF with the baselines quali-
tatively. As observed, with sparse annotations, JacobiN-
eRF propagates to novel views with much better quality
and smoothness than the baselines. In the dense setting,
JacobiNeRF demonstrates the ability to propagate labels at
a finer granularity on both synthetic and real-world data.

4.3. Label propagation for instance segmentation

Experimental setting. The training and test settings are the
same as the semantic segmentation procedure in Sec. 4.2.
Results. In Tab. 2, we show the results of instance segmen-
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Method S-NeRF DINO-2D D-NeRF J-NeRF 2D J-NeRF 3D

S. mIoU ↑ 0.154 0.206 0.191 0.232 0.332
Avg Acc ↑ 0.313 0.355 0.357 0.437 0.525
Total Acc ↑ 0.327 0.362 0.372 0.425 0.547

D. mIoU ↑ 0.421 0.344 0.353 0.353 0.421
Avg Acc ↑ 0.619 0.525 0.541 0.526 0.558
Total Acc ↑ 0.603 0.625 0.620 0.651 0.671

Table 2. Label propagation for instance segmentation on ScanNet
with sparse (S.) and dense (D.) annotations.

View Distance Close Far

S-NeRF mIoU ↑ 0.77 0.28
Total Acc ↑ 0.91 0.58

J-NeRF mIoU ↑ 0.75 0.47
Total Acc ↑ 0.93 0.83

View Number 1 2 3

S-NeRF mIoU ↑ 0.18 0.38 0.57
Total Acc ↑ 0.64 0.85 0.90

J-NeRF mIoU ↑ 0.22 0.38 0.55
Total Acc ↑ 0.75 0.90 0.92

Table 3. Left: propagation performance on near and distant views
(dense). Right: comparison with multiview dense supervision.

tation propagation on 4 scenes from the ScanNet dataset.
We compare with the same baselines as in the semantic
segmentation task. In this more challenging setting again
JacobiNeRF significantly outperforms the other baselines
on all metrics in the sparse setting, and is comparable with
Semantic-NeRF [42] in the dense setting – though across
the board performance is lower than in the semantic seg-
mentation case. Fig. 6 shows the qualitative results under
both sparse and dense settings. Our scheme demonstrates
the capability to discriminate between different instances of
the same class and correctly transport given labels.

4.4. Ablation study

Figure 7. Propagation performance
under different label densities.

Label density. Fig. 7
shows the semantic label
propagation performance
of our method on one
scene under various label
density settings. We pro-
vide dense labels from one
view, and randomly select
a sub-region of labels for
each class, following the
setting in [42] with varying

density. The horizontal axis denotes the percentage (in area)
of used labels for each class. As the density of the label in-
creases, the propagation performance also gets better.
Views far from the source view. We find that S-NeRF
overfits to the source view with low-quality propagation on
distant views. In contrast, J-NeRF generalizes much better
as the shaping can be applied on all views (Tab. 3, left).
Multiview dense supervision. We report the results with
multiview supervision in Tab. 3 (right). The gap between S-
NeRF and J-NeRF decreases as the view number increases,
due to the sub-optimal downsampling of dense labels with
limited computation. A more sufficient and efficient down-

sampling scheme is our next goal.

Figure 8. Effect of the perturbation
magnitude σ for label propagation.

Perturbation magnitude.
We study how different
perturbation scales, i.e.,
the σ in Eq. 12, affect the
label propagation perfor-
mance. Fig. 8 shows the
results of J-NeRF 2D in
the sparse setting. As ob-
served, if the magnitude is
too small, the propagation
is not good due to weak

(noisy) responses. However, if the magnitude is too large,
the approximation with Taylor expansion in Eq. 2 becomes
invalid, thus producing worse results. So we treat it as a
hyper-parameter and empirically set σ = 0.1 for all runs.

4.5. Beyond label propagation

Figure 9. Scene re-coloring.

Our approach can also
be used to propagate or
edit other kinds of in-
formation. Remarkably,
the emerged resonances
from MI-shaping allow
re-coloring an entire se-
mantic entity (Fig. 9) by perturbing just one of its pixels
along the RGB channels.

5. Conclusion
We have demonstrated a way to regularize the learn-

ing dynamics of a NeRF, so it reflects the correlations be-
tween high mutual information entities. This is achieved
through the MI-shaping technique that aligns gradients of
these correlated entities with respect to the network param-
eters via a contrastive learning. Once shaped in the tan-
gent space with second-order training, the induced reso-
nances in a NeRF can propagate value information from
selected quantities to other correlated quantities leveraging
the mutual-information-induced synergies. We demonstrate
this capability by the propagation of semantic and instance
information, as well as semantic entity selection and edit-
ing. Currently, the shaping scheme relies on self-supervised
visual features, but it can be easily oriented to consume fea-
tures from foundation models to encode cross-modal mu-
tual correlations. We expect more correlation-informed ap-
plications to be possible using the proposed mutual infor-
mation gradient alignment techniques for NeRFs.
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Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction. In International Conference on Ma-
chine Learning, pages 12310–12320. PMLR, 2021. 3

[41] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 2

[42] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-
drew J Davison. In-place scene labelling and understanding
with implicit scene representation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 15838–15847, 2021. 2, 3, 6, 7, 8

[43] Bingfan Zhu, Yanchao Yang, Xulong Wang, Youyi Zheng,
and Leonidas Guibas. Vdn-nerf: Resolving shape-radiance
ambiguity via view-dependence normalization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023. 2

16507


	. Introduction
	. Related Work
	. Method
	. NeRF preliminaries
	. Mutual information approximation by Jacobian inner products
	. Shaping neural radiance fields with mutual information gradients
	. Label propagation with JacobiNeRF

	. Experiments
	. Datasets
	. Label propagation for semantic segmentation
	. Label propagation for instance segmentation
	. Ablation study
	. Beyond label propagation

	. Conclusion

