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Abstract

The real-world data tends to be heavily imbalanced and
severely skew the data-driven deep neural networks, which
makes Long-Tailed Recognition (LTR) a massive challeng-
ing task. Existing LTR methods seldom train Vision Trans-
formers (ViTs) with Long-Tailed (LT) data, while the off-
the-shelf pretrain weight of ViTs always leads to unfair
comparisons. In this paper, we systematically investigate
the ViTs’ performance in LTR and propose LiVT to train
ViTs from scratch only with LT data. With the observa-
tion that ViTs suffer more severe LTR problems, we con-
duct Masked Generative Pretraining (MGP) to learn gener-
alized features. With ample and solid evidence, we show
that MGP is more robust than supervised manners. Al-
though Binary Cross Entropy (BCE) loss performs well with
ViTs, it struggles on the LTR tasks. We further propose
the balanced BCE to ameliorate it with strong theoreti-
cal groundings. Specially, we derive the unbiased exten-
sion of Sigmoid and compensate extra logit margins for de-
ploying it. Our Bal-BCE contributes to the quick conver-
gence of ViTs in just a few epochs. Extensive experiments
demonstrate that with MGP and Bal-BCE, LiVT success-
fully trains ViTs well without any additional data and out-
performs comparable state-of-the-art methods significantly,
e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNatural-
ist 2018 without bells and whistles. Code is available at
https://github.com/XuZhengzhuo/LiVT.

1. Introduction
With the vast success in the computer vision field, Vision

Transformers (ViTs) [15, 43] get increasingly popular and
have been widely used in visual recognition [15], detec-
tion [5], and video analysis [16]. These models are heavily
dependent on large-scale and balanced data to avoid overfit-
ting [39,52,82]. However, real-world data usually confronts
severe class-imbalance problems, i.e., most labels (tail) are
associated with limited instances while a few categories
(head) occupy dominant samples. The models simply clas-
sify images into head classes for lower error because the
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Figure 1. Top-1 Acc v.s. Model Size on ImageNet-LT dataset.
We choose the Tiny / Small / Base / Large ViT and multi-expert
approaches. R50 represents the ResNet50 model. ViT-Base gets
lower Acc than ResNet50 when trained in a supervised manner.

head always overwhelms tail ones in LTR. The data paucity
also results in the model overfitting on the tail with unac-
cepted generalization. The aforementioned problems make
Long Tail Recognization (LTR) a challenging task.

Numerous papers [4,13,22,34,35,44,70] handle the LTR
problem with traditional supervised cross-entropy learning
based on ResNet [20] or its derivatives [68]. Some meth-
ods use ViTs with pretrained weights on ImageNet [52] (or
larger datasets), which leads to unfair comparisons with ad-
ditional data, e.g. on ImageNet-LT (a subset of ImageNet-
1K) benchmark. Moreover, there are still limited explo-
rations on the utilization of Long-Tailed (LT) data to train
ViTs effectively. Therefore, in this paper, we try to train
ViTs from scratch with LT data. We observe that it is par-
ticularly difficult to train ViT with LT labels’ supervision.
As Tab. 1 shows, ViTs degrade heavily when training data
become skewed. ViT-B is much worse than ResNet50 with
the same CE training manner (c.f. Fig. 1). One reason-
able explanation is that ViTs require longer training to learn
the inductive bias, while CNNs offer the built-in translation
invariance implicitly. Yet another one lies in the label sta-
tistical bias in the LTR datasets, which confuses models to
make predictions with an inherent bias to the head [12, 47].
The well-trained ViTs have to overcome the above plights
simultaneously to avoid falling into dilemmas.
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Inspired by decoupling [29], many methods [9, 12, 60,
80, 83] attempt to enhance feature extraction in supervised
manners like mixup [74] / remix [9], or Self-Supervised
Learning (SSL) like Contrastive Learning (CL) [7,19]. Liu
et al. [41] claim that SSL representations are more robust to
class imbalance than supervised ones, which inspires us to
train ViTs with SSL. However, CL is quite challenging for
extensive memory requisition and converge difficulties [8],
where more explorations are required to work well with
ViTs in LTR. In contrast, we propose to Learn imbalanced
data with ViTs (LiVT) by Masked Generative Pretraining
(MGP) and Balanced Fine Tuning (BFT).

Firstly, LiVT adopts MGP to enhance ViTs’ feature ex-
traction, which has been proven effective on BeiT [2] and
MAE [18]. It reconstructs the masked region of images
with an extra lightweight decoder. We observe that MGP
is stable with ViTs and robust enough to LT data with em-
pirical evidence. Despite the label distribution, the compa-
rable number of training images will bring similar feature
extraction ability, which greatly alleviates the toxic effect
of LT labels [26]. Meanwhile, the training is accelerated by
masked tokens with acceptable memory requisition.

Secondly, LiVT trains the downstream head with rebal-
ancing strategies to utilize annotation information, which
is consistent with [29, 35, 80]. Generally, Binary Cross-
Entropy (BCE) loss performs better than Cross-Entropy
loss when collaborating with ViTs [55]. However, it fails
to catch up with widely adopted Balanced Cross-Entropy
(Bal-CE) loss and shows severe training instability in LTR.
We propose the Balanced BCE (Bal-BCE) loss to revise the
mismatch margins given by Bal-CE. Detailed and solid the-
oretical derivations are provided from Bayesian theory. Our
Bal-BCE ameliorates BCE by a large margin and achieves
state-of-the-art (SOTA) performance with ViTs.

Extensive experiments show that LiVT learns LT data
more efficiently and outperforms vanilla ViT [15], DeiT
III [55], and MAE [18] remarkably. As detailed compar-
isons in Fig. 1, LiVT achieves SOTA on ImageNet-LT with
affordable parameters, despite that ImageNet-LT is a rel-
atively small dataset for ViTs. The ViT-Small [55] also
achieves outstanding performance compared to ResNet50.
Our key contributions are summarized as follows.

• To our best knowledge, we are the first to investigate
training ViTs from scratch with LT data systematically.

• We pinpoint that the masked generative pretraining is
robust to LT data, which avoids the toxic influence of
imbalanced labels on feature learning.

• With a solid theoretical grounding, we propose the bal-
anced version of BCE loss (Bal-BCE), which improves
the vanilla BCE by a large margin in LTR.

• We propose LiVT recipe to train ViTs from scratch,
and the performance of LiVT achieves state-of-the-art
across various benchmarks for long-tailed recognition.

Table 1. Top-1 accuracy (%) of different recipes to train ViT-B-16
from scratch on ImageNet-LT/BAL. All perform much worse on
LT than BAL. See descriptions of LT & BAL in section 5.1.

Dataset ViT ∆ DeiT III ∆ MAE ∆

ImageNet-BAL 38.7 - 67.2 - 69.2 -
ImageNet-LT 31.6 -7.0 48.4 -18.8 54.5 -14.7

2. Related Work

2.1. Long-tailed Visual Recognition

We roughly divide LTR progress into three groups.
Rebalancing strategies adjust each class contribution with
delicate designs. Re-sampling methods adopt class-wise
sampling rate to learn balanced networks [13,35,62,72,81].
More sophisticated approaches replenish few-shot samples
with the help of many-shot ones [9, 10, 31, 49, 70, 78].
The re-weighting proposals modify the loss function by
adjusting class weights [1, 13, 38, 50, 53, 54, 80] to as-
sign different weights to samples or enlarging logit mar-
gins [4, 22, 35, 47, 51, 70, 75, 77] to learn more challenging
and sparse classes. However, the rebalancing strategies are
always at the cost of many-shot accuracy inevitably.
Multi-Expert networks alleviate the LTR problem with
single expert learning and knowledge aggregation [3, 21,
25,33, 34,37,61,67, 77,81]. LFME [67] trains experts with
the subsets with a lower imbalance ratio and aggregate via
knowledge distillation. TADE [77] learns three classifiers
with the different test labels prior based on Logit Adjust-
ment [47] and optimizes classifiers’ output weights by con-
trastive learning [7]. NCL [34] collaboratively learns mul-
tiple experts together to reduce tail uncertainty. However,
it is still heuristic to design expert individual training and
knowledge aggregation manners. The overly complex mod-
els also make training difficult and limit the inference speed.
Multi-stage training is another effective training strategy
for LTR. Cao et al. [4] propose to learn features at first and
defer re-weighting in the second stage. Kang et al. [29]
further decouples the representation and classifier learning
separately, where the classifier is trained with re-balancing
strategies just in the second stage. Some works [9, 70, 80]
adopt more approaches, e.g., mixup [74] or remix [9], to im-
prove features in the first stage. More recently, Contristive
Learning (CL) [7, 19] is gaining increasing concern. Kang
et al. [28] exploit to learn balanced feature representations
by CL to bypass the influence of imbalanced labels. How-
ever, it is more effective to adopt Supervised Contristive
Learning (SCL) to utilize the labels [60,71]. With SCL, SO-
TAs [12,27,36,83] all adopt the Bal-CE loss [22,47,51,70]
to train the classifier for better performance. Masked Gener-
ative learning [6,14,18] is another effective feature learning
method. However, there is still limited research on it in the
community of LTR.
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2.2. Vision Transformers

Current observations and conclusions are mostly based
on ResNets [20, 68]. Most recently, ViT [15] has shown
extraordinary performance after pre-training on large-scale
and balanced datasets. Swin transformer [43] proposes a hi-
erarchical transformer with shift windows to bring greater
efficiency. DeiT [55] introduces a simple but effective
recipe to train ViT with limited data. BeiT [2] trains ViT
with the idea of Mask Language Models. MAE [18] fur-
ther reduces the computation complexity with a lightweight
decoder and higher mask ratio. Although RAC [45] adopts
ViTs with pretrained checkpoints, there is limited research
to train ViTs from scratch on long-tailed datasets.

3. Preliminaries
3.1. Task Definition

With a N -sample and C-class dataset D = {X ,Y}, we
note each instance xi ∈ X := {x1, · · · ,xN} and corre-
sponding yi ∈ Y := {y1, · · · ,yN}, where each yi ∈ C :=
{1, · · · , C}. In long-tailed visual recognition, each cate-
gory Ci has a different instance number ni = |Ci| and we
set γ = nmax/nmin to measure how skewed the long-tailed
dataset is. We train the modelM := {Fθf ,Wθw} with D,
which contains a feature encoder Fθf and a classifier Wθw .
Besides, we consider a lightweight decoder Dθd for mask
autoencoder architecture. For an input image x, the encoder
extracts the feature representation v := F (x|θf ) ∈ Rd,
the classifier gives the logits z := W (v|θw) ∈ RC and
the decoder reconstructs original image x̂ := D(v|θd) ∈
RH×W×3. The d / H / W is feature dimension / resized
height / resized width, respectively.

3.2. Balanced Cross-entropy

Here, we revisit the balanced softmax and corresponding
Balanced Cross-Entropy (BalCE) loss [22,34,47,51,70,83],
which has been widely adopted in LTR. Consider the stan-
dard softmax operation and cross-entropy loss:

LCE(M(x|θf , θw),yi) = − log(p(yi|x; θf , θw))

= − log[ezyi/
∑
yj∈Y

ezyj ] = log[1 +
∑

yj ̸=yi

ezyj
−zyi ]. (1)

If we take the class instance number nyi into account for
softmax [51], we have the balanced cross-entropy loss:

LBal-CE(M(x|θf , θw),yi) = − log(p(yi|x; θf , θw))

= − log[
nyie

zyi∑
yj∈Y nyj

ezyj
]

= log[1 +
∑

yj ̸=yi

elognyj
−lognyi · ezyj

−zyi ].

(2)

Theorem 1. Logit Bias of Balanced CE. Let πyi = nyi/N
be the training label yi distribution. If we implement the
balanced cross-entropy loss via logit adjustment, the bias
item of logit zyi

will be Bce
yi

= log πyi
, i.e.,

LBal-CE = log[1 +
∑

yj ̸=yi

elognyj
−lognyi · ezyj

−zyi ]

= log[1 +
∑

yj ̸=yi

e(zyj
+lognyj

)−(zyi
+lognyi

)]

= log[1 +
∑

yj ̸=yi

e(zyj
+log πyj

)−(zyi
+log πyi

)].

(3)

Proof. See subsection 5.1 from [47] or detail derivation
in the Appendix from the Bayesian Theorem perspective.

Bal-CE loss strengthens the tail instance’s contributions
while suppressing bias to the head, which alleviates the LTR
problem effectively. However, the Bce

yi
in Thm.1 fails to

work well when collaborating with BCE, where More anal-
ysis is required to build a balanced version BCE loss.

4. Methodology
In this section, we introduce our LiVT in two stages. In

section 4.1, we revisit the generative masked auto-encoder
as our first stage. Then, we propose the novel balanced sig-
moid and corresponding binary cross entropy to collaborate
with ViTs in section 4.2. Eventually, we summarize our
whole pipeline in section 4.3.

4.1. Masked Generative Pretraining

Inspired by BeiT [2] and MAE [18], we pretrain feature
encoder Fθf via MGP for its training efficiency and label ir-
relevance. MGP trains the encoder parameters θf with high
ratio masked images and reconstructs the original image by
a lightweight decoder Dθd .

x̂ = Dθd

(
Fθf (M⊙ x)

)
, (4)

where M ∈ {0, 1}H×W is a random patch-wise binary
mask. Then, we optimize θf , θd end-to-end via minimiz-
ing the mean squared error between x and x̂.

We adopt MGP for two reasons: 1) It is difficult to train
ViTs directly with label supervision (see plain ViT-B perfor-
mance in Fig. 1) for its convergence difficulty and computa-
tion requirement. The DeiT III [55] is hard to catch up with
SOTAs in LTR, even with more training epochs, stronger
data augmentation, and larger model sizes. 2) The feature
extraction ability of MGP is affected slightly by class in-
stance number, compared with previous mixup-based su-
pervision [29,35,80], CL [60] or SCL [12,27,36,83]. Even
pretraining on LTR datasets, the transfer performance of
MGP is on par with that trained on balanced datasets with
comparable total training instances. See transfer results in
Tab. 5 and more visualization in Appendix.
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4.2. Balanced Fine Tuning

In the Balanced Fine-Tuning (BFT) phase, softmax + CE
loss has been the standard paradigm for utilizing annotated
labels. However, recent research [42, 55, 65] pinpoint that
Binary Cross-Entropy (BCE) loss works much well with
ViTs and is more convenient when employed with mixup-
manners [42, 73, 74], which can be written as:

LBCE = −
∑
yi∈C

wyi [1(yi) · log σ(zyi)

+ (1− 1(yi)) · log(1− σ(zyi
))],

(5)

where σ(x) = 1/(1+e−x) indicates the sigmoid operation.
In LTR, Balanced CE (Eq. 2) improves original CE

(Eq. 1) remarkably. However, we observe that it is not di-
rectly applicable when it comes to BCE. The logit bias Byi

in Thm. 1 leads to an even worse situation. Here, we claim
that the proper bias of BCE shall be revised as Thm. 2 when
collaborating with BCE in LTR.

Theorem 2. Logit Bias of Balanced BCE. Let πyi
=

nyi/N be the class yi distribution. If we implement the
balanced binary cross-entropy loss via logit adjustment, the
bias item of logit zyi

will beBbce
yi

= log πyi
−log(1−πyi),

LBal-BCE = −
∑
yi∈C

wi[1(yi) · log
1

1 + e−[zyi
+log πyi

−log(1−πyi
)]

+ (1− 1(yi)) · log(1−
1

1 + e−[zyi
+log πyi

−log(1−πyi
)]
)]

(6)
Proof. We regard Binary CE as C binary classification loss.
Hence, for the class yi, πyi indicates positive samples pro-
portion and 1− πyi indicates negative ones. Here, we start
by revising the sigmoid activation function:

σ(zyi
) =

1

1 + e−zyi
=

e0

e0 + e−zyi
=

ezyi

ezyi + e0
(7)

If we view Eq. 7 as the binary version of softmax, ex (e0)
will be the normalized probability to indicate yes (no). Sim-
ilar to Eq. 2, we use instance number to balance sigmoid:

σ̂(zyi
) =

nyi
· ezyi

nyi
· ezyi + (N − nyi

) · e0

=
πyi · ezyi

πyi
· ezyi + (1− πyi

) · e0

=
1

1 +
1−πyi

πyi
· e−zyi

(8)

Considering the log-sum-exp trick for numerical stabil-
ity, we change the weight of e−zyi to the bias term of zyi

:

σ̂(zyi
) =

1

1 +
1−πyi

πyi
· e−zyi

=
1

1 + e
−zyi

+log
1−πyi
πyi

=
1

1 + e−zyi
+log (1−πyi

)−log πyi

=
1

1 + e−[zyi
+log πyi

−log (1−πyi
)]

(9)

Hence, we derive the bias item of logit zi shall be Bbce
yi

=
log πyi

− log(1 − πyi
). If we bring Eq. 9 into Binary CE

(Eq. 5), we will get the Balanced Binary CE as Eq. 6.

Interpretation. With the additional − log(1 − πyi), Bbce
yi

keeps consistent character with Bce
yi

w.r.t. πyi
. Similar to

Bce
yi

, it enlarges the margins to increase the difficulty of the
tail (smaller πyi ). However, Bbce

yi
further reduces the head

(larger πyi
) inter-class distances with larger positive values.

Notice that BCE is not class-wise mutually exclusive, and
the smaller head inter-class distance helps the networks fo-
cus more on the tail’s contributions. See visualizations and
more in-depth analysis in Appendix.

Through Bayesian theory [70], we can further extend the
proposed Balanced BCE if the test distribution is available
as πt, which can be summarized as the following theorem:

Theorem 3. Logit Bias of Balanced BCE with Test Prior.
Let πs

yi
and πt

yi
be the label yi training and test distribution.

If we implement the balanced cross-entropy loss via logit
adjustment, the bias item of logit zyi will be:

Bbce
yi

= (log πs
yi
− log πt

yi
)− (log(1− πs

yi
)− log(1− πt

yi
))

Proof. See detailed derivation in Appendix.

Notice that for the balanced test dataset, πt
yi

= 1/C.
Hence, the logit bias in Thm.3 will be:

Bbce
yi

= (log πs
yi
− log 1/C)− (log(1− πs

yi
)− log(

C − 1

C
))

= log πs
yi
− log(1− πs

yi
) + log(C − 1)

(10)
Compared with the conclusion of Thm. 2, we get an extra

term log(C − 1). From the convex objectives optimization
view, there is no expected difference between Thm. 2 and
Eq. 10. However, it will increase ViTs’ training stability
remarkably, especially when the class number C gets larger.

4.3. Pipeline

We describe LiVT training pipeline precisely in Alg. 1,
which can be divided into two stages, i.e., MGP and BFT.
Specifically, in the MGP stage, we adopt simple data aug-
mentation Apt and more training epochs Tpt to update the
parameters of F and D . In the BFT stage, the decoder D
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Algorithm 1 LiVT Training Pipeline.

Input: D, F , W , D , Tpt, Tft, Apt, Aft, πyi
, τ

Output: Optimized θf , θw.

1: Initialize θf , θd randomly. ▷ MGP Stage

2: for t = 1 to Tpt do
3: for {x,y} sampled from D do
4: x := Apt(x)

5: x̂ = D (F (M⊙ x | θf ) | θd)
6: LMSE(x̂,x) = ||x̂− x||2
7: {θf , θd} ← {θf , θd}−α∇{θf ,θd} ·LMSE(x̂,x)
8: end for
9: end for

10: Initialize θw randomly. ▷ BFT Stage

11: Calculate logit bias Bbce
yi

via Eq. 10.

12: for t = 1 to Tft do
13: for {x,y} sampled from D do
14: x := Aft(x)

15: v = F (x | θf )
16: z = W (v | θw) + τ · Bbce

17: Calculate LBCE via Eq. 5 with calibrated z.

18: {θf , θw} ← {θf , θw} − α∇{θf ,θw} · LBCE

19: end for
20: end for

is discarded. We adopt more general data augmentations
Aft to finetune a few epochs Tft. As shown in Alg. 1 Line
16, we add a hyper-parameter τ to control the influence of
the proposed bias. It is worth noticing that the proposed
logit bias will add negligible computational costs. With
Balanced Binary CE loss, we further optimize the param-
eters of F and W to achieve satisfying networks.

5. Experiment

5.1. Datasets

CIFAR-10/100-LT are created from the original CIFAR
datasets [32], where γ controls the data imbalance degree.
Following previous works [4, 12, 70, 81], we employ im-
balance factors {100, 10} in our experiments. ImageNet-
LT/BAL are both the subsets of popular ImageNet [52].
The LT version [44] (γ = 256) is selected following the
Pareto distribution with power value α = 6, which contains
115.8K images from 1,000 categories. We build the BAL
version (γ = 1) by sampling 116 images per category to ex-
ploit how ViTs perform given a similar number of training
images. Notice that both LT and BAL adopt the same vali-
dation dataset. iNaturalist 2018 [57, 63] (iNat18 for short)
is a species classification dataset, which contains 437.5K

Table 2. Top-1 accuracy (%) of ResNet50 on ImageNet-LT. † in-
dicates results with ResNeXt50. ∗: training with 384 resolution.

Method Ref. Many Med. Few Acc

CE [13] CVPR 19 64.0 33.8 5.8 41.6
LDAM [4] NeurIPS 19 60.4 46.9 30.7 49.8
c-RT [29] ICLR 20 61.8 46.2 27.3 49.6
τ -Norm [29] ICLR 20 59.1 46.9 30.7 49.4
Causal [54] NeurIPS 20 62.7 48.8 31.6 51.8
Logit Adj. [47] ICLR 21 61.1 47.5 27.6 50.1
RIDE(4E)† [61] ICLR 21 68.3 53.5 35.9 56.8
MiSLAS [80] CVPR 21 62.9 50.7 34.3 52.7
DisAlign [75] CVPR 21 61.3 52.2 31.4 52.9
ACE† [3] ICCV 21 71.7 54.6 23.5 56.6
PaCo† [12] ICCV 21 68.0 56.4 37.2 58.2
TADE† [77] ICCV 21 66.5 57.0 43.5 58.8
TSC [36] CVPR 22 63.5 49.7 30.4 52.4
GCL [35] CVPR 22 63.0 52.7 37.1 54.5
TLC [33] CVPR 22 68.9 55.7 40.8 55.1
BCL† [83] CVPR 22 67.6 54.6 36.6 57.2
NCL [34] CVPR 22 67.3 55.4 39.0 57.7
SAFA [23] ECCV 22 63.8 49.9 33.4 53.1
DOC [58] ECCV 22 65.1 52.8 34.2 55.0
DLSA [69] ECCV 22 67.8 54.5 38.8 57.5

ViT-B training from scratch
ViT [15] ICLR 21 50.5 23.5 6.9 31.6
MAE [18] CVPR 22 74.7 48.2 19.4 54.5
DeiT [55] ECCV 22 70.4 40.9 12.8 48.4
LiVT - 73.6 56.4 41.0 60.9
LiVT ∗ 76.4 59.7 42.7 63.8

images from 8,142 categories and suffers from extremely
LTR problem (γ = 512). Places-LT is a synthetic long-
tail variant of the large-scale scene classification dataset
Places [82]. With 62.5K images from 365 categories, its
class cardinality ranges from 5 to 4,980 (γ = 996). All
datasets adopt the official validation images for fair com-
parisons. See detailed dataset information in Appendix.

5.2. Implement Details

For image classification on main benchmarks, we adopt
ViT-Base-16 [15] as the backbone and ViT-Tiny / Small [55]
ViT-Large [15] for the ablation study. All models are trained
with AdamW optimizer [46] with βs = {0.9, 0.95}. The
effective batch size is 4,096 (MGP) / 1,024 (BFT). Vanilla
ViTs [15], DeiT III [55] and MAE [18] are all trained 800
epochs because ViTs require longer training time to con-
verge. Following previous work [18], LiVT is pretrained
800 epochs with the mask ratio 0.75 and finetuned 100(50)
epochs for ViT-T/S/B(L). We train all models with Ran-
dAug(9, 0.5) [11], mixup (0.8) and cutmix (1.0). All exper-
iments set τ ≡ 1. For fair comparisons, we re-implement
[4, 13, 22, 50, 51] with ViTs in the same settings. Follow-
ing [44], we report Top-1 accuracy and three groups’ ac-
curacy: Many-shot (>100 images), Medium-shot (20∼100
images) and Few-shot (<20 images). Besides, we report
the Expected Calibration Error (ECE) and Maximum Cali-
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Table 3. Top-1 accuracy (%) of ResNet50 on iNaturalist 2018. ∗:
training with 384 resolution.

Method Ref. Many Med. Few Acc

CE [13] CVPR 19 72.2 63.0 57.2 61.7
OLTR [44] CVPR 19 59.0 64.1 64.9 63.9
c-RT [29] ICLR 20 69.0 66.0 63.2 65.2
τ -Norm [29] ICLR 20 65.6 65.3 65.9 65.6
LWS [29] ICLR 20 65.0 66.3 65.5 65.9
BBN [81] CVPR 20 61.8 73.6 66.9 69.6
BS [51] ICLR 21 70.0 70.2 69.9 70.0
RIDE(4E) [61] ICLR 21 70.9 72.5 73.1 72.6
DisAlign [75] CVPR 21 69.0 71.1 70.2 70.6
MiSLAS [80] CVPR 21 73.2 72.4 70.4 71.6
DiVE [21] ICCV 21 70.6 70.0 67.6 69.1
ACE(4E) [3] ICCV 21 - - - 72.9
TADE [77] ICCV 21 74.4 72.5 73.1 72.9
PaCo [12] ICCV 21 70.4 72.8 73.6 73.2
ALA [79] AAAI 22 71.3 70.8 70.4 70.7
TSC [36] CVPR 22 72.6 70.6 67.8 69.7
LTR-WD [1] CVPR 22 71.2 70.4 69.7 70.2
GCL [35] CVPR 22 67.5 71.3 71.5 71.0
BCL [83] CVPR 22 66.7 71.0 70.7 70.4
NCL [34] CVPR 22 72.0 74.9 73.8 74.2
DOC [58] ECCV 22 72.8 71.7 70.0 71.0
DLSA [69] ECCV 22 - - - 72.8

ViT-B training from scratch
ViT [15] ICLR 21 65.4 55.3 50.9 54.6
MAE [18] CVPR 22 79.6 70.8 65.0 69.4
DeiT [55] ECCV 22 72.9 62.8 55.8 61.0
LiVT - 78.9 76.5 74.8 76.1
LiVT ∗ - 83.2 81.5 79.7 81.0

bration Error (MCE) to quantify the predictive uncertainty
[17]. See detailed implementation settings in Appendix.

5.3. Comparison with Prior Arts

We conduct comprehensive experiments with ViT-B-16
on ImageNet-LT, iNat18, and Place-LT benchmarks. LiVT
successfully trains it from scratch without any additional
data pretraining and outperforms ResNet50, ResNeXt50
and ResNet152 conspicuously.

Comparison on ImageNet-LT. Tab. 2 shows the experi-
mental comparison results with recent SOTA methods on
ImageNet-LT. The training resolution of LiVT is 224 / 224
for MGP / BFT. Based on the model ensemble, multi-expert
methods like RIDE [61], TADE [77], and NCL [34] ex-
hibit powerful preference with heavier model size com-
pared to baseline. The CL-based methods (PaCo [12], TSC
[36], BCL [83]) also achieve satisfying results with larger
batches and longer training epochs. However, our LiVT
has shown superior performance without bells and whis-
tles and outperforms them consistently on all metrics while
training ViTs from scratch. Notice that LiVT gains more
performance (63.8% vs 60.9%) with higher image resolu-

Table 4. Top-1 accuracy (%) of ResNet152 (with ImageNet-1K
pretrained weight) on Places-LT. ∗: training with 384 resolution.

Method Ref. Many Med. Few Acc

CE [13] CVPR 19 45.7 27.3 8.2 30.2
Focal [38] ICCV 17 41.1 34.8 22.4 34.6
Range [76] CVPR 17 41.1 35.4 23.2 35.1
OLTR [44] CVPR 19 44.7 37.0 25.3 35.9
FSA [10] ECCV 20 42.8 37.5 22.7 36.4
LWS [29] ICLR 20 40.6 39.1 28.6 37.6
Causal [54] NeurIPS 20 23.8 35.8 40.4 32.4
BS [51] NeurIPS 20 42.0 39.3 30.5 38.6
DisAlign [75] CVPR 21 40.4 42.4 30.1 39.3
LADE [22] CVPR 21 42.8 39.0 31.2 38.8
RSG [59] CVPR 21 41.9 41.4 32.0 39.3
TADE [77] ICCV 21 43.1 42.4 33.2 40.9
PaCo [12] ICCV 21 36.1 47.9 35.3 41.2
ALA [79] AAAI 22 43.9 40.1 32.9 40.1
NCL [34] CVPR 22 - - - 41.8
BF [24] CVPR 22 44.0 43.1 33.7 41.6
CKT [48] CVPR 22 41.6 41.4 35.1 40.2
GCL [35] CVPR 22 - - - 40.6
Bread [40] ECCV 22 40.6 41.0 33.4 39.3

ViT-B training from scratch
MAE [18] CVPR 22 48.9 24.6 8.7 30.3
DeiT [55] ECCV 22 51.6 31.0 9.4 34.2
LiVT - 48.1 40.6 27.5 40.8
LiVT ∗ - 50.7 42.4 27.9 42.6

Table 5. The transfer performance of ViT-B (resolution 224×224)
on iNat18 dataset. D-PT represents the pretrain datasets. BAL and
LT have similar amounts of data and contribute to similar transfer
performance, which means MGP is robust to data distribution.

D-PT Loss Many Med. Few Acc ECE MCE

BAL CE 63.7 57.1 52.4 55.9 1.2 3.4
LT CE 64.5 57.5 52.7 56.4 1.2 3.1

BAL Bal-BCE 53.3 58.8 60.7 59.0 0.8 1.6
LT Bal-BCE 56.5 60.8 61.6 60.7 1.0 2.9

tion in the BFT stage, which is consistent with the ob-
servations in [43, 55, 56]. Notice that LiVT improves the
iNat18 dataset most significantly because BCE mitigates
fine-grained problems as well [64].

Comparison on iNaturalist 2018. Tab. 3 lists experimen-
tal results on iNaturalist 2018. The training resolution of
LiVT is 128 / 224 for MGP / BFT. LiVT consistently sur-
passes recent SOTA methods like PcCo [12], NCL [34] and
DLSA [69]. Unlike most LTR methods, our LiVT improves
all groups’ Acc without sacrificing many-shot performance.
Compared to ensemble NCL (3×), LiVT surpasses it by
1.9% (6.8% higher resolution) with comparable model size,
which verifies the effectiveness of LiVT .

Comparison on Places-LT. Tab. 4 summarizes the exper-
imental results on Places-LT. All LTR proposals adopt
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Table 6. Ablation study of the proposed bias (c.f. Eq. 10) on CE / BCE. All models are trained on ImageNet-LT with the same settings.
Our Bal-BCE ameliorates the original BCE by a large margin in all aspects, which is consistent with CE and Bal-CE.

Model Size Loss Many ↑ Med. ↑ Few ↑ Acc ↑ ECE ↓ MCE ↓

ViT-Tiny [55] 5.7M

CE 56.1 29.2 10.5 37.0 3.7 6.1
Bal-CE 48.8 (-7.3) 39.2 (+10.0) 28.1 (+17.6) 41.4 (+4.4) 2.6 (-1.1) 4.6 (-1.6)

BCE 42.1 11.1 0.9 21.6 2.9 8.6
Bal-BCE 50.6 (+8.4) 37.2 (+26.1) 26.1 (+25.2) 40.8 (+19.2) 3.1 (+0.1) 6.8 (-1.8)

ViT-Small [55] 22M

CE 68.9 43.1 17.3 49.5 4.7 9.2
Bal-CE 62.7 (-6.2) 52.0 (+8.9) 36.3 (+19.0) 54.0 (+4.5) 0.9 (-3.8) 2.4 (-6.8)

BCE 62.4 30.6 8.4 39.8 5.7 11.1
Bal-BCE 65.8 (+3.4) 50.6 (+20.0) 32.9 (+24.6) 54.1 (+14.2) 4.8 (-0.9) 9.0 (-2.2)

ViT-Base [15] 86M

CE 74.7 48.2 19.4 54.5 5.1 6.8
Bal-CE 70.5 (-4.3) 56.8 (+8.6) 43.7 (+24.3) 60.1 (+5.6) 3.7 (-1.4) 4.9 (-1.9)

BCE 73.7 46.5 15.6 52.4 5.6 7.9
Bal-BCE 73.6 (-0.1) 55.8 (+9.3) 41.0 (+25.4) 60.9 (+8.6) 2.4 (-3.1) 3.2 (-4.7)

ViT-Large [15] 304M

CE 77.3 51.5 21.7 57.4 3.6 7.4
Bal-CE 72.7 (-4.5) 60.1 (+8.6) 41.9 (+20.3) 62.1 (+4.8) 2.1 (-1.5) 4.2 (-3.2)

BCE 74.7 46.7 17.0 53.4 8.4 15.9
Bal-BCE 75.3 (+0.6) 58.8 (+12.1) 37.5 (+20.5) 62.6 (+9.2) 6.6 (-1.8) 14.8 (-1.1)

ResNet152 pre-trained on ImageNet-1K. For fair compar-
isons, we conduct MGP at ImageNet-1K and BFT at Places-
LT. As illustrated in Tab. 4, LiVT obtains satisfying perfor-
mance compared with previous SOTAs. Notice that Places-
LT has limited instances compared to iNat18 (437.5K) and
ImageNet-1K (1M). Considering both Tab. 3 and Tab. 4 re-
sults, we observe that ViTs, which benefit from large-scale
data, are limited in this case. However, our LiVT performs
the best even in such data paucity situations.

5.4. Further Analysis

Robustness of MGP. The performance results in Tab. 1 have
shown that MGP is more robust to learning label irrele-
vant features than supervised methods. For deeper obser-
vations, we show the transfer results in Tab. 5. Concretely,
we conduct MGP on ImageNet-LT / ImageNet-BAL (See
section 5.1) and BFT on iNat18 with resolution 224. Re-
gardless of the data distribution of the MGP dataset, both
BAL and LT achieve quite similar performance in terms of
all evaluated metrics on iNat18. If we further compare the
reported results with Tab. 3, we will draw the conclusion
that the training instance number plays the key role in LiVT
instead of the label distribution, which is clearly different
from previous SCL [12,83] methods. We show more recon-
struction visualization given by LT / BAL in Appendix.

Effectiveness of Proposed Bias. To learn balanced ViTs,
we propose Bal-BCE with a simple yet effective logit bias
(c.f. Eq. 10). To validate its effectiveness, we conduct the
ablation study and compare it with the most popular re-
balance loss, i.e., Bal-CE. As shown in Tab. 6, the new logit
bias boosts vanilla BCE significantly with lower ECE on
four ViT backbones, which is consistent with the behavior
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Figure 2. Training loss and Top-1% accuracy of ViT-S on iNatu-
ralist 2018 dataset. Solid and dot lines represent the accuracy and
training loss, respectively. All models adopt the same settings and
random seed except for loss type.

of Bal-CE. It is worth noticing that CE generally performs
better than BCE in LTR scenarios, which is different from
the conclusion in balanced datasets [55]. However, our Bal-
BCE alleviates it remarkably and outperforms Bal-CE in
most cases. In addition, Bal-BCE shows more satisfying
numerical stability and faster convergence. See Bal-BCE in
Fig. 2. for detailed illustrations.

For comprehensive comparisons, we re-implement re-
cent rebalancing strategies in our BFT stage and show the
results of ViT-B on CIFAR-LT in Tab. 7. Without loss of
fairness, we conduct MGP on ImageNet-1K because the
resolution (32×32) of CIFAR is too small to mask for ViT-
B-16. We do not reproduce the CL-based (conflict to MGP)
and ensemble (memory limitation) methods. We also give
up some ingenious rebalancing methods for loss NaN dur-
ing training. As shown in Tab. 7, the proposed Bal-BCE
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Table 7. Ablation study of rebalancing strategies on ViT-B.

Method CIFAR-10-LT CIFAR-100-LT

γ 100 10 100 10

CE [13] 79.2 89.5 50.9 66.1
CB [13] 82.0 89.9 52.0 66.8
LDAM [4] 78.6 88.6 52.56 66.1
LADE [22] 68.8 81.7 56.7 68.2
IB [50] 75.4 79.2 50.8 51.6
Bal-CE [51] 84.4 90.7 56.8 68.1
Bal-BCE (ours) 86.3 91.3 58.2 69.2

achieves the best results, which firmly manifests its effec-
tiveness. Notice that some methods are not consistent with
their performance on ResNet, which means some exquisite
designs may not generalize well on ViTs.

Hyper-Parameter Analysis. In Alg. 1 Line 11, we add a
hyper-parameter τ to adjust our proposed bias (Eq. 10). We
further present in-depth investigations on the influence of τ .
Similar to the aforementioned settings with plain augmenta-
tions, we conduct the ablation study on CIFAR-100-LT with
MGP on ImageNet-1K and show the results in Fig.3. The
few-shot accuracy gets obvious amelioration when τ gets
larger, which is consistent with our explanations in section
4.2. The best overall accuracy is obtained around 1, which
inspires us to set τ ≡ 1 in LiVT for all experiments by
default. Besides, the ECE gets smaller with increasing τ ,
which means that the proposed bias guides ViTs to be the
calibrated models with Fisher Consistency ensured [47].

6. Discussion

Why train from scratch? Previous ViTs papers are all based
on pretrained weights from ImageNet-1K or ImageNet-22K
and thus may lead to unfair comparisons with LTR methods,
which are all trained from scratch. It is difficult to conclude
that the intriguing performance mainly benefits from their
proposals. Our approach provides a strong baseline to ver-
ify proposals’ effectiveness with ViTs. It’s also instructive
to train plain ViTs for areas where data exhibits severe do-
main gaps. From the original intention of the LTR task,
the core is to learn more large-scale imbalanced data effec-
tively. Our work provides a feasible way to utilize more
real-world LT (labels or attributes) data without expensive
artificial balancing to achieve better representation learning.

How we extend MAE. We empirically prove that masked
autoencoder learns generalized features even with im-
balanced data, which is quite different from other self-
supervised manners like CL [7] and SCL [30]. Extensive
experiments on ImageNet-LT/BAL show that the instance
number is more crucial than balanced annotation. We fur-
ther propose the balanced binary cross-entropy loss to build
our LiVT and achieve a new SOTA in LTR.

Limitations. One limitation is that LiVT can not be de-
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Figure 3. Performance of ViT-B with different τ on CIFAR-100-
LT. A bigger τ results in better few-shot performance.

ployed in an end-to-end manner. An intuitive idea is two
branches learning to optimize the decoder and classifier
simultaneously, like BBN [81] or PaCo [12]. However,
the heavily masked image prevents effective classification,
while dynamic mask ratios exacerbate memory limitations.

7. Conclusion
In this paper, we propose to Learn imbalanced data with

Vision Transformers (LiVT), which consists of Masked
Generative Pretraining (MGP) and Balanced Fine Tuning
(BFT). MGP is based on our empirical insight that it guides
ViTs to learn more generalized features on long-tailed
datasets compared to supervised or contrastive paradigms.
BFT is based on the theoretical analysis of Binary Cross-
Entropy (BCE) in the imbalanced scenario. We propose the
balanced BCE to learn unbiased ViTs by compensating ex-
tra logit margins. Bal-BCE ameliorates BCE significantly
and surpasses the powerful and widely adopted Balanced
Cross-Entropy loss when cooperating with ViTs. Extensive
experiments on large-scale datasets demonstrate that LiVT
successfully trains ViTs without any additional data and
achieves a new state-of-the-art for long-tail recognition.
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