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Abstract

Weakly supervised dense object localization (WSDOL)
relies generally on Class Activation Mapping (CAM), which
exploits the correlation between the class weights of the im-
age classifier and the pixel-level features. Due to the lim-
ited ability to address intra-class variations, the image clas-
sifier cannot properly associate the pixel features, leading
to inaccurate dense localization maps. In this paper, we
propose to explicitly construct multi-modal class represen-
tations by leveraging the Contrastive Language-Image Pre-
training (CLIP), to guide dense localization. More specifi-
cally, we propose a unified transformer framework to learn
two-modalities of class-specific tokens, i.e., class-specific
visual and textual tokens. The former captures semantics
from the target visual data while the latter exploits the class-
related language priors from CLIP, providing complemen-
tary information to better perceive the intra-class diversi-
ties. In addition, we propose to enrich the multi-modal
class-specific tokens with sample-specific contexts compris-
ing visual context and image-language context. This en-
ables more adaptive class representation learning, which
further facilitates dense localization. Extensive experiments
show the superiority of the proposed method for WSDOL on
two multi-label datasets, i.e., PASCAL VOC and MS COCO,
and one single-label dataset, i.e., OpenImages. Our dense
localization maps also lead to the state-of-the-art weakly
supervised semantic segmentation (WSSS) results on PAS-
CAL VOC and MS COCO. 1

1. Introduction

Fully supervised dense prediction tasks have achieved
great success, which however comes at the cost of expensive
pixel-level annotations. To address this issue, recent works
have investigated the use of weak labels, such as image-

1https://github.com/xulianuwa/MMCST
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Figure 1. (a) CAM exploits the correlation between the image
classifier and the pixel features. (b) We propose to construct multi-
modal class-specific tokens to guide dense object localization.

level labels, to generate dense object localization maps as
pseudo labels for those tasks. For the weakly supervised ob-
ject localization (WSOL) task, most methods evaluate local-
ization results on the bounding-box level and a few recent
methods [5] evaluate on the pixel level. We use WSDOL
to focus on the pixel-level evaluation, which is critical for
downstream dense prediction tasks such as WSSS.

Previous works have exploited Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs) [7] for
WSDOL with image-level labels [21, 40]. These meth-
ods have generally relied on Class Activation Mapping
(CAM) [48], which generates class-specific localization
maps by computing the correlation between the class-
specific weight vectors of the image classifier and every
pixel feature vector. However, image classifiers generally
have a limited ability to address the intra-class variation, let
alone at the pixel level. This thus leads to inaccurate dense
localization results. In the conventional fully supervised
learning paradigm, the image classification model aims to
convert images to numeric labels, ignoring the context of
the labels. Hence, it tends to learn the pattern that max-
imizes the inter-class differences but disregards the intra-
class diversities. This largely restricts the model’s ability of
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understanding semantic objects.
Recently, Vision-Language (VL) models have attracted

much attention. In particular, CLIP, a representative VL
model, pre-trained on 400 million image-text pairs that are
readily available publicly, has been successfully applied to
a number of downstream tasks, due to its strong general-
ization ability. CLIP introduces a contrastive representation
learning method that constrains an image to match its re-
lated text while dis-matching the remaining texts from the
same batch, in a multi-modal embedding space. This en-
ables the model to perceive the differences across images,
thus facilitating it to better discriminate intra-class samples.

Motivated by these observations, we propose to lever-
age the strong representations of visual concepts encoded
by the pre-trained CLIP language model to guide the dense
object localization. More specifically, we extract the class-
related text embeddings by feeding the label prompts to the
pre-trained CLIP language model. As shown in Figure 1,
we propose a unified transformer framework which includes
multi-modal class-specific tokens, i.e., class-specific visual
tokens and class-specific textual tokens. The class-specific
visual tokens aim to capture visual representations from the
target image dataset, while the class-specific textual tokens
take the rich language semantics from the CLIP label text
embeddings. These two modalities of class-specific tokens,
with complementary information, are jointly used to corre-
late pixel features, contributing to better dense localization.

In order to construct more adaptive class representations,
which can better associate the sample-specific local features
for dense localization, we propose to enhance the global
multi-modal class-specific tokens with sample-specific con-
textual information. To this end, we introduce two designs:
(i) at the feature level, we use the sample-specific visual
context to enhance both the class-specific visual and tex-
tual tokens. This is achieved by combining these global to-
kens with their output local counterparts which aggregate
the patch tokens of the image through the self-attention lay-
ers; (ii) at the loss level, we introduce a regularization con-
trastive loss to encourage the output text tokens to match the
CLIP image embeddings. This allows the CLIP model to be
better adapted to our target datasets. Moreover, due to its
image-language matching pre-training objective, the CLIP
image encoder is learned to extract the image embeddings
that match the CLIP text embeddings of their corresponding
image captions. We thus argue that through this contrastive
loss, the rich image-related language context from the CLIP
could be implicitly transferred to the text tokens, which are
more beneficial for guiding the dense object localization,
compared to the simple label prompts.

In summary, the contribution of this work is three-fold:

• We propose a new WSDOL method by explicitly con-
structing multi-modal class representations in a unified
transformer framework.

• The proposed transformer includes class-specific vi-
sual tokens and class-specific textual tokens, which are
learned from different data modalities with diverse super-
visions, thus providing complementary information for
more discriminative dense localization.

• We propose to enhance the multi-modal global class rep-
resentations by using sample-specific visual context via
the global-local token fusion and transferring the image-
language context from the pre-trained CLIP via a regular-
ization loss. This enables more adaptive class representa-
tions for more accurate dense localization.

The proposed method achieved the state-of-the-art re-
sults on PASCAL VOC 2012 (72.2% on the test set) and
MS COCO 2014 (45.9% on the validation set) for WSSS.

2. Related Work
Weakly supervised dense object localization. Most ex-
isting methods rely on CAM which generates class-specific
localization maps based on the correlation between the class
weights of the image classifier and the pixel features. How-
ever, CAM produces inaccurate localization maps where
only the most discriminative object regions are activated.
Most previous works are based on CNNs and they have gen-
erally focused on improving image feature learning in var-
ious ways, such as manipulating training images [20, 32],
modifying the classification architecture [35, 41], and de-
signing new losses [4, 8, 14]. Recently, ViTs have made
breakthroughs in many computer vision tasks, outperform-
ing CNNs, due to their self-attention based processing
blocks that enable long-dependence modeling and cater for
different data modalities. Recent ViT-based methods, TS-
CAM [10] and MCTformer [40] have exploited the trans-
former attention [12] to generate localization maps, but
they still need to integrate CAM into ViTs to achieve a
decent localization performance. For these CAM-based
methods, one problem that has not been well investigated,
is that the class weights used to associate pixel features
are the global class representations for the entire dataset.
Thus, they cannot properly address the complex pixel-
level intra-class variations across samples. Chen et al. [3]
proposed the Image-Specific CAM (IS-CAM) using the
image-specific class prototypes constructed by applying the
masked-average pooling on the image feature maps, and im-
posed a consistency loss between the IS-CAM and the raw
CAM to enhance the feature learning for better localization.

In contrast to all these CAM-based methods, we propose
to explicitly construct multi-modal class representations for
dense object localization.
Vision-language models. Recent progress in vision-
language pre-training with large-scale datasets has provided
a rich source of transferable information. In particular, a
representative VL model, i.e., CLIP, brought a significant
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Figure 2. An overview of the proposed transformer framework. An input RGB image is first split and then embedded into patch tokens.
The proposed transformer additionally includes class-specific visual tokens (i.e., input class tokens) and class-specific textual tokens (i.e.,
input text tokens), in which the input text tokens are initialized by the pretrained CLIP text embeddings of the class-related prompts. The
output class tokens are averaged to predict class scores. We fuse the input and output class tokens to correlate the output patch tokens. This
generates the class-to-patch correlation maps, which are then globally pooled to produce class scores. Similarly for the text tokens. We
also apply a contrastive regularization loss (Figure 4) on the averaged output text tokens to transfer the rich VL context from CLIP.

insight that one can use natural language to connect the vi-
sual concept, thus allowing a flexible prediction space for a
wide knowledge transfer. The pre-trained CLIP model has
been used in a variety of open-world visual tasks. Gu et
al. [11] proposed to distill knowledge from the pre-trained
CLIP image and text encoders to learn open-vocabulary ob-
ject detectors. Li et al. [24] used the pre-trained text em-
beddings as semantic label representations to correlate vi-
sual features for semantic segmentation. Similar language-
driven segmentation methods have been proposed for 2D
images [29] and 3D point clouds [30]. In contrast to these
methods which have dense supervision, we investigate a
pixel-text matching problem in a weakly supervised setting.

Xie et al. [37] proposed a CLIP-based WSDOL method,
which constrains the CAM activated object regions and the
background image regions to match and dis-match the cor-
responding label prompt in the CLIP embedding space, re-
spectively. It also relies on the additionally pre-defined text
descriptions to suppress the co-occurring backgrounds. In
contrast, without introducing new visual concepts, we pro-
pose to directly use the CLIP label text embeddings to infer
dense object localization maps, and further refine them with
sample-specific contexts, achieving better results in both
WSDOL and WSSS (see Table 1 and Table 3).

3. Method

Overview. We propose a unified transformer framework
to construct multi-modal class-specific tokens for weakly
supervised dense object localization. As illustrated in Fig-
ure 2, an input RGB image is split into patches and then em-
bedded into a sequence of patch tokens. Additionally, the

proposed transformer has two sets of class-specific tokens,
i.e., class-specific visual and textual tokens. The class-
specific visual tokens are all initialized by the pre-trained
weights of the class token of ViT, and the class-specific tex-
tual tokens are initialized by the pre-trained CLIP text em-
beddings of the class-related prompts and kept constant dur-
ing training. With the added positional embeddings, these
three types of tokens are concatenated and serve as input to
the proposed transformer. The input tokens go through con-
secutive masked self-attention based transformer encoding
layers. The output class tokens are averaged along the chan-
nel dimension to predict class scores. The input and out-
put class/text tokens are fused and then correlated with the
output patch tokens, generating the class-to-patch and text-
to-patch correlation maps. These two correlation maps are
then globally pooled to produce class scores, respectively.

During training, the class predictions are supervised by
the image-level ground-truth labels via the classification
loss. In addition, a batch-softmax contrastive loss is used
to encourage the averaged output text token to match the
CLIP image embedding. This allows the image-language
context transfer, further enabling the class representations
to be more sample-adaptive for better localization. During
inference, a multi-modal correlation map is generated by
fusing the two correlation maps, which are further refined
by the transformer attention as suggested in [40], generat-
ing the final dense object localization maps.

3.1. Multi-modal class-specific token learning

In order to construct multi-modal class representations to
guide dense object localization, we propose a multi-modal
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Figure 3. The detailed structure of the proposed multi-modal token
transformer encoder.

token transformer framework. As illustrated in Figure 2, an
input RGB image is first split into N×N patches, which are
then embedded into a sequence of N2 patch tokens. We ad-
ditionally create C class-specific visual tokens and C class-
specific textual tokens, where C is the number of classes.
With the added learnable positional embeddings, these three
types of tokens are first concatenated and then fed into the
transformer encoder (Figure 3). In order to allow class to-
kens and text tokens to fully interact with patch tokens but
not competing with each other, we use the masked self-
attention as shown in Figure 3 (right). Finally, the trans-
former encoder outputs three types of tokens accordingly.
Class-specific visual token learning. Inspired by MCT-
former [40], we use C class tokens to learn class-specific
representations. The output class tokens Tout

cls ∈ RC×D

from the proposed multi-modal token transformer encoder
are processed by channel-wise averaging, producing C
class scores ycls ∈ RC . The class scores are supervised
by the image-level ground-truth labels y ∈ RC using the
multi-label soft margin loss (MLSM ):

Lcls = MLSM(ycls, y) = −

1

C

C∑
i=1

yi log σ(yi
cls) + (1− yi) log(1− σ(yi

cls)).
(1)

Class-specific textual token learning. CLIP presents a
novel way of representing visual concepts by using tex-
tual prompts, which provide highly complementary infor-
mation to the class representations learned from only visual
data. It thus exhibits a great potential to better facilitate the
dense object localization. This motivates us to construct C
class-specific textual tokens by leveraging the rich seman-
tics learned by the pre-trained CLIP language model. More
specifically, we create C text prompts using the template of
“a photo of [CLS]”, where [CLS] refers to each class name
in the label set of a given dataset. These text prompts are
then fed into the pre-trained CLIP text encoder, generating
C text embeddings. We use the C pre-trained label text em-
beddings to initialize the input text tokens, which are kept
constant during training to retain the powerful representa-
tion ability of the pre-trained CLIP.
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CLIP Image Encoder
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Figure 4. The regularization loss. The proposed multi-modal to-
ken transformer is encouraged to produce text tokens to match
the image embeddings of the pre-trained CLIP image encoder, en-
abling image-language context transfer.

3.2. Sample-specific local contexts

To construct class-specific tokens tailored for each sam-
ple, we propose to exploit sample-specific local contexts to
complement the global input class-specific tokens.
Visual context. Inspired by the context-aware prompt-
ing [29], we also use the visual context to refine the text
embeddings. In contrast to [29] which employs an addi-
tional cross-attention module to model the interaction be-
tween textual and visual features, the inherent self-attention
blocks of the proposed transformer encoder enables the text
tokens to aggregate information from patch tokens, captur-
ing the sample-specific visual context. Intuitively, the text
embeddings of simple prompts (i.e., “a photo of [CLS]”),
after being refined by the sample-specific visual context,
could represent more accurate image-related text. Given
that the input text tokens Tin

txt ∈ RC×D are global tex-
tual representations for each label while the output text to-
kens Tout

txt ∈ RC×D capture sample-specific representa-
tions, we can obtain the enhanced class-specific textual to-
kens by fusing the input and output text tokens: Ttxt =
Tin

txt + λ1 ·Tout
txt . Similarly, the enhanced class-specific vi-

sual tokens are obtained by Tcls = Tin
cls+λ2 ·Tout

cls , where
λ1 and λ2 are two learnable weights.
Image-language context. To further ensure that the output
text tokens can capture meaningful sample-specific context,
we propose to impose a contrastive loss on the output text
tokens by leveraging the pre-trained CLIP image model.
More specifically, as illustrated in Figure 4, given a batch
of B input image-text pairs (the input text for each image
is the same, i.e, C label prompts), the proposed transformer
encoder outputs B text tokens. These B text tokens are used
to compute the similarity matrix S ∈ RB×B with B visual
embeddings by feeding the input images to the pre-trained
CLIP image encoder. When the output text token and the
CLIP image embedding are from the same image, they form
a positive pair. Otherwise, they form a negative pair. Such
pair construction is reasonable in that: (i) The CLIP image
embedding of an image matches its corresponding text de-
scription which commonly contains richer information than
image-level labels. Thus, even two images with the same
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class label generally have distinct CLIP image embeddings.
(ii) Although the input text tokens are the same for each
image, they are progressively refined through interactions
with patch tokens at every layer of our model. This enables
the output text tokens to represent specific input image con-
tent, i.e., different images have different output text tokens.
Therefore, the B scores in the diagonal of the similarity ma-
trix are encouraged to be maximized and the other B2 −B
similarity scores are minimized. This is implemented by
computing the cross-entropy classification loss between the
similarity matrix S and the ground-truth labels, i.e., an iden-
tity matrix I ∈ RB×B :

Lcontrast = CrossEntropy(S, I). (2)

The benefit is two-fold: (i) encouraging the output text to-
kens to match the pre-trained CLIP image embeddings, al-
lows us to better adapt the pre-trained CLIP model to our
target datasets. This also implicitly transfers richer image-
related language contexts to the output text tokens, which
are more beneficial for guiding the dense object localiza-
tion, compared to the simple label prompts; (ii) through the
batch-softmax cross-entropy loss on the similarity matrix,
each text token is also constrained to be discriminative from
other text tokens in the same batch, thereby enhancing the
sample-specific characteristic of the text tokens.

3.3. Image-label supervised multi-modal class-to-
patch correlation learning

Given the multi-modal class-specific tokens, i.e., Ttxt

and Tcls, the class-specific dense localization can be in-
ferred by computing the correlation between the class-
specific tokens and the patch tokens. More specifically,
the output patch tokens from the proposed multi-modal to-
ken transformer encoder are first linearly projected and then
transposed to 2D feature maps F ∈ RN×N×D, where D is
the feature dimension. The text-to-patch correlation maps
Ct2p ∈ RN×N×C and the class-to-patch correlation maps
Cc2p ∈ RN×N×C can be computed as: Ct2p = FT⊤

txt and
Cc2p = FT⊤

cls, respectively.
In contrast to recent language-driven dense prediction

works [24, 29] where pixel-level ground-truth labels are
used to supervise the learning of the class-to-patch corre-
lations, only image-level labels are available in our case.
Based on the assumption that the weighted sum of a class-
to-patch correlation map can be regarded as the global cor-
relation between the class and the whole image, we relax
this class-to-patch correlation problem into a class-to-image
correlation problem, which can thus be formulated into a
classification task. Given that the commonly used global
average pooling (GAP) and global max pooling inevitably
either over-estimate or under-estimate the size of the ob-
ject regions when generating the global correlation scores,
respectively [16], we thus adopt the Global Weighted Rank-

ing Pooling (GWRP) method [16]. Compared to GAP
which assigns the same weight to each patch for aggrega-
tion, GWRP assigns different weights according to the rank-
ing of the correlation scores of all patches for each class:

Gc(X⋆) =
1

Z(d)

N2∑
j=1

dj−1X
rj ,c
⋆ , (3)

where X⋆ ∈ RN2×C are the flattened correlation maps;
y⋆ = G(X⋆) ∈ RC are the aggregated class correlation
scores; rj is the index of the ranking, i.e., for a class c,

Xr1,c
⋆ > Xr2,c

⋆ > · · · > X
rN2 ,c
⋆ ; Z(d) =

∑N2

j=1 d
j−1, d is

a decay parameter. Therefore, the aggregated class-to-patch
and text-to-patch correlation scores can be obtained as:

yc2p = G(Xc2p), (4)
yt2p = G(Xt2p). (5)

These class scores can then be supervised by the ground-
truth image-level labels y via the classification loss:

Lclass−patch = MLSM(yc2p, y), (6)
Ltext−patch = MLSM(yt2p, y). (7)

The total objective loss function for training the pro-
posed multi-modal token transformer is as follows:

Ltotal = Lcls+Lcontrast+Ltext−patch+Lclass−patch (8)

3.4. Class-specific dense localization inference

Once the training of the proposed multi-modal token
transformer is completed, the correlations between two
modalities of class-specific tokens and the patch tokens are
computed to produce two maps, i.e., text-to-patch correla-
tion maps Ct2p and class-to-patch correlation maps Cc2p,
respectively. We further combine these two maps via an
element-wise sum to obtain the multi-modal class-specific
dense localization maps Cmm ∈ RN×N×C :

Cmm = Ct2p +Cc2p. (9)

Moreover, similar to MCTformer [40], the multi-class to-
ken based transformer can produce class-specific attention
maps Ac2p and a patch-level pairwise affinity map Ap2p

from the transformer self-attention maps. Given their differ-
ent localization mechanisms, the transformer self-attention
maps can well complement the proposed multi-modal class-
specific localization maps. We thus perform an element-
wise multiplication (◦) on these two maps to produce the
fused maps M̂ ∈ RN×N×C , which are further refined by
the patch-level pairwise affinity map:

M̂ = Cmm ◦Ac2p, (10)

M(i, j, c) =

N∑
k=1

N∑
l=1

Ap2p(i, j, k, l) · M̂(k, l, c), (11)
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where M ∈ RN×N×C are the refined fused maps, which
are then up-sampled to the original size of the input image
before being normalized via the min-max normalization, to
generate the final dense object localization maps.

4. Experiments
4.1. Experimental settings

Datasets. We evaluated the proposed method on three
datasets including two multi-label datasets, i.e., PASCAL
VOC 2012 [9] and MS COCO 2014 [26], and one single-
label dataset, i.e., OpenImages [5]. PASCAL VOC 2012
has 20 foreground object classes and one background class.
It is split into three subsets, i.e., training (train), validation
(val) and test sets including 1,464, 1,449, and 1,456 images,
respectively. Following the common practice [18, 19], the
training set was augmented to 10,582 images by adding the
data from [13]. MS COCO 2014 has 80 foreground object
classes and one background class. It has around 80K train-
ing images and 40K images for evaluation. OpenImages
has 37,319 images in total and 100 object classes. It is split
into a training set with 29,819 images, a validation set with
2,500 images and a test set with 5,000 images.
Evaluation metrics. For the multi-label datasets, we fol-
lowed the common practice [18, 20, 21] to use the mean
Intersection-over-Union (mIoU) to evaluate the multi-label
dense localization maps on the train set, and used mIoU to
evaluate WSSS results on the val and test sets. Results on
the PASCAL VOC test set were obtained from the online
official evaluation server. For the single-label dataset, we
focused on the pixel-level evaluation and followed the prior
works [5, 52] which used the peak Intersection-over-Union
(pIoU) and the pixel average precision (PxAP) to evaluate
the single-label dense localization maps on the test set.
Implementation details. We built the proposed trans-
former using ViT-base as backbone. We used the Adam op-
timizer with the initial learning rate of 5e-4 and a batch size
of 32. We trained our network for 60 epochs on PASCAL
VOC and MS COCO and 10 epochs on OpenImages. For
the VL model, we used the publicly available pre-trained
CLIP model (ViT-B/16). To generate pseudo masks for
WSSS, we followed prior works [20, 21, 32, 44] to use IR-
Net [1] to post-process our dense localization maps. For se-
mantic segmentation, we use ResNet38-based Deeplab-V1.
More details can be found in the Supplementary Materials.

4.2. Comparison with State-of-the-art of WSDOL

Multi-label dense localization. Table 1 reports the eval-
uation results of the generated multi-label dense localiza-
tion maps, which are commonly used as seeds to gener-
ate pseudo masks in WSSS. The proposed method achieved
mIoUs of 66.3% and 40.9% on the train sets of PASCAL
VOC 2012 and MS COCO 2014, respectively, outperform-

Table 1. Evaluation of the generated multi-class multi-label dense
localization maps in terms of mIoU (%) on the PASCAL VOC
2012 and MS COCO 2014 train sets. Cls.: Classification. † de-
notes the reproduced result by [18], ‡ denotes the reproduced result
by [44], and ⋆ denotes our reproduced result.

Method Cls. Backbone VOC COCO

CAM (CVPR16) [48] ResNet50 48.8 33.5†

SEAM (CVPR20) [34] ResNet38 55.4 25.1‡

RIB (NeurIPS21) [18] ResNet50 56.5 36.5
AdvCAM (CVPR21) [19] ResNet38 55.6 37.2
CLIMS (CVPR22) [37] ResNet50 56.6 -
SIPE (CVPR22) [4] ResNet50 58.6 -
W-OoD (CVPR22) [21] ResNet50 59.1 -
Du et al. (CVPR22) [8] ResNet38 61.5 -
TS-CAM (ICCV21) [10] ViT-small 41.3 -
MCTformer (CVPR22) [40] ViT-small 61.7 -
MCTformer (CVPR22) [40] ViT-base 62.3⋆ -

Ours ViT-base 66.3 40.9

Table 2. Evaluation of multi-class single-label dense localization
on the OpenImages test set.

Method Cls. backbone pIoU PxAP

CAM (CVPR16) [48] ResNet50 43.0 58.2
HAS (ICCV17) [31] ResNet50 41.9 55.1
ACoL (CVPR18) [47] ResNet50 41.7 56.4
SPG (ECCV18) [46] ResNet50 41.8 55.8
ADL (CVPR19) [6] ResNet50 42.1 55.0
CutMix (ICCV19) [43] ResNet50 42.7 57.6
PAS (ECCV20) [2] ResNet50 - 60.9
IVR (ICCV21) [15] ResNet50 - 58.9
Zhu et al. (CVPR22) [52] ResNet50 49.7 65.4
CREAM (CVPR22) [38] ResNet50 - 64.7
Zhu et al. (ECCV22) [51] ResNet50 52.2 67.7

Ours ViT-base 57.6 73.3

ing the state-of-the-art methods by significant margins.
Single-label dense localization. We also evaluated the ef-
fectiveness of the proposed method for single-label dense
object localization. We used the recently proposed Open-
Images dataset [5], which has more challenging background
context than the commonly used ones for weakly super-
vised object localization. As shown in Table 2, the proposed
method attained a pIoU of 57.6% and a PxAP of 73.3%,
achieving better results than the state-of-the-art methods.

4.3. Comparison with State-of-the-art of WSSS

PASCAL VOC 2012. As shown in Table 3, the proposed
method achieved mIoUs of 72.2% and 72.2% on the val and
test sets of PASCAL VOC 2012, respectively, outperform-
ing other WSSS methods only using image-level labels.
MS COCO 2014. Table 4 also shows that, on a more chal-
lenging dataset, i.e., MS COCO 2014, the proposed method
attained the best mIoU of 45.9%, which is significantly bet-
ter than those relying on saliency maps, achieving the new
state-of-the-art result. These results clearly demonstrate the
effectiveness and the good generalization ability of the pro-
posed method for WSSS.
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Table 3. Performance comparison of the state-of-the-art WSSS
methods on the PASCAL VOC 2012 val and test sets. Seg.:
DeepLab version. Sup.: supervision; I: image-level ground-truth
labels; S: off-the-shelf saliency maps; L: pre-trained VL model.

Method Backbone Seg. Sup. Val Test

EDAM (CVPR21) [36] ResNet101 V2 I+S 70.9 70.6
EPS (CVPR21) [23] ResNet101 V1 I+S 71.0 71.8
Yao et al. (CVPR21) [41] ResNet101 V2 I+S 68.3 68.5
AuxSegNet (ICCV21) [39] ResNet38 V1 I+S 69.0 68.6
Li et al. (CVPR22) [25] ResNet101 V2 I+S 72.0 72.9
Du et al. (CVPR22) [8] ResNet101 V2 I+S 72.6 73.6
RCA (CVPR22) [50] ResNet38 V2 I+S 72.2 72.8
L2G (CVPR22) [14] ResNet38 V1 I+S 72.0 73.0

AdvCAM (CVPR21) [19] ResNet101 V2 I 68.1 68.0
ECS-Net (ICCV21) [33] ResNet38 V1 I 66.6 67.6
Kweon et al. (ICCV21) [17] ResNet38 V1 I 68.4 68.2
CDA (ICCV21) [32] ResNet38 V1 I 66.1 66.8
Zhang et al. (ICCV21) [45] ResNet38 V1 I 67.8 68.5
MCTformer (CVPR22) [40] ResNet38 V1 I 71.9 71.6
AMN (CVPR22) [22] ResNet101 V2 I 70.7 70.6
W-OoD (CVPR22) [21] ResNet38 V1 I 70.7 70.1
SIPE (CVPR22) [3] ResNet38 V1 I 68.2 69.7
Yoon et al. (ECCV22) [42] ResNet38 V1 I 70.9 71.7
CLIMS (CVPR22) [37] ResNet101 V2 I+L 69.3 68.7

Ours ResNet38 V1 I+L 72.2 72.2

Table 4. Performance comparison of state-of-the-art WSSS meth-
ods on the MS COCO 2014 val set in terms of mIoU (%).

Method Backbone Seg. Sup. Val

EPS (CVPR21) [23] VGG16 V2 I+S 35.7
RCA (CVPR22) [50] VGG16 V2 I+S 36.8
AuxSegNet (ICCV21) [39] ResNet38 V1 I+S 33.9
L2G (CVPR22) [14] ResNet101 V2 I+S 44.2

Kweon et al. (ICCV21) [17] ResNet38 V1 I 36.4
CDA (ICCV21) [32] ResNet38 V1 I 33.2
AdvCAM (CVPR21) [19] ResNet101 V2 I 44.4
MCTformer (CVPR22) [40] ResNet38 V1 I 42.0
Li et al. (CVPR22) [25] ResNet101 V2 I 44.7
AMN (CVPR22) [22] ResNet101 V2 I 44.7
SIPE (CVPR22) [3] ResNet38 V1 I 43.6
Yoon et al. (ECCV22) [42] ResNet38 V1 I 44.8

Ours ResNet38 V1 I+L 45.9

4.4. Ablation studies

Effect of learning multi-modal class-specific tokens. As
shown in Table 5, without text tokens, only relying on the
multi-class token transformer attention results in a dense lo-
calization mIoU of 57.5%; By learning the multi-class to-
kens to correlate patch tokens using image-level supervision
with GAP, a significant gain of 4.6% was achieved in mIoU.
GWRP outperforms GAP, improving the dense localiza-
tion result to 62.7%. By additionally learning class-specific
textual tokens, the resulting multi-modal correlation maps
driven by the global/input multi-modal class-specific to-
kens, attained an better mIoU of 64.1%, compared to that of
the multi-modal correlation maps driven by the local/output
multi-modal class-specific tokens. The fusion of the global
and local multi-modal class-specific tokens leads to the best
dense localization maps with an mIoU of 66.3%. These re-

Table 5. Evaluation of the class-specific dense localization maps
generated by learning correlations (cor.) between class-specific
tokens and patch tokens on the PASCAL VOC 2012 train set.

Configuration Pooling mIoU

Multi-class token attention - 57.5
+ class-to-patch correlation GAP 62.1
+ class-to-patch correlation (C2P cor.) GWRP 62.7
+ Multi-modal (C2P + text-to-patch) cor. (global) GWRP 64.1
+ Multi-modal cor. (local) GWRP 63.3
+ Multi-modal cor. (global + local) GWRP 66.3

Table 6. Evaluation of the class-specific dense localization by
different regularization methods for sample-specific local context
learning on the PASCAL VOC 2012 train set. CE: cross-entropy.

Visual Image-language context mIoU
context Prior knowledge Regularization loss

✗ - - 64.1
✓ - - 64.8
✓ CLIP caption embed. L1 63.7
✓ CLIP caption embed. Batch-contrast CE 65.1
✓ CLIP image embed. Batch-contrast CE 66.3

sults demonstrate the effectiveness of the proposed method
of learning multi-modal class-specific tokens in producing
accurate class-specific dense localization maps.

Figure 5 visualizes the generated dense object localiza-
tion maps in different configurations. The multi-class token
transformer attention only localizes partial object regions
and includes many noises, such as the dog and the back-
ground in the third and second rows of Figure 5 (b), respec-
tively. Learning the multi-class tokens to correlate patch
tokens leads to more complete object localization maps,
such as the sofa in the third row. This also results in sev-
eral falsely activated regions near the object, such as the
chair in the second rows of Figure 5 (c). Adding class-
specific textual tokens leads to improved localization maps
(Figure 5 (d)) with expanded true object regions and re-
duced falsely activated backgrounds. Further incorporat-
ing sample-specific context produces the best localization
maps (Figure 5 (e)) which are close to the ground-truth.
This demonstrates the advantage of the proposed method in
generating dense localization maps for objects of different
scales in various challenging scenarios.
Effect of sample-specific context learning. As shown
in Table 6, without sample-specific context learning, the
learned multi-modal class-specific tokens result in the class-
specific localization maps with an mIoU of 64.1%. Incorpo-
rating the visual context information aggregated by the out-
put text tokens leads to an improved mIoU of 64.8%. To fur-
ther learn image-language context to enhance the text token
learning, we investigated two regularization methods: (i)
Leveraging the pre-trained CLIP text embeddings of image
captions. More specifically, we used a pre-trained image
captioning model, ClipCap [27], to generate captions for
each image. By minimizing the distance between the text
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(a) (c)(b) (e)(d) (f)

Figure 5. Visualization of the multi-label dense object localization results using different configurations of the proposed method on the
PASCAL VOC 2012 train set. (a) Input; (b) MCTAttn (Multi-class token attention); (c) MCTAttn + C2P-CMap (class-to-patch correlation
maps); (d) MCTAttn + MM-CMap (multi-modal correlation maps, i.e., class-to-patch correlation maps + text-to-patch correlation maps);
(e) MCTAttn + MM-CMap + sample-specific context; (f) Ground-truth.

Table 7. Evaluation of the class-specific dense localization maps
by using different prompting methods for constructing class-
specific textual tokens on the PASCAL VOC 2012 train set.

Prompt mIoU

a photo of [class] 66.3
Prompt ensembling 65.5
CoOp (learning-based prompts) [49] 66.0

tokens and the pre-trained CLIP caption embeddings via L1
loss, the localization performance drops by 1.1%. Using
the batch-softmax cross-entropy loss yields a slightly im-
proved localization mIoU of 65.1%. L1 loss on the features
allows to transfer all information of the generated image
captions including useful and interfering contexts that could
reduce the discriminative ability of the class-specific tex-
tual tokens, thus degrading the localization performance. In
contrast, the batch-softmax cross-entropy loss on the feature
similarities explicitly separates each text token from other
text tokens in a same batch, which facilitates the sample-
specific token learning for better localization. (ii) Lever-
aging the pre-trained CLIP image embeddings. By apply-
ing the batch-softmax cross-entropy loss on the similarity
matrix of our text tokens and the pre-trained CLIP image
embeddings, the class-specific localization attains a perfor-
mance gain of 1.5% with the best mIoU of 66.3%. Com-
pared to learning from the generated image captions, the
batch-contrastive image-text matching loss enables the text
tokens to better align with the visual features, thus leading
to better dense localization results.
Effects of different prompts. We used different prompting
methods to construct the class-specific textual tokens and
evaluated their effects in the resulting class-specific dense
localization maps. More specifically, we investigated three
types of prompting methods including (i) the most com-
monly used prompt, i.e., “a photo of [class]”; (ii) Prompt
ensembling, which ensembles 8 best prompts over the em-

bedding space via averaging as suggested in [28]; (iii) A
learning-based prompting method, CoOp [49]. As shown
in Table 7, these three prompting methods lead to compa-
rable dense localization results. Among them, the general
prompt template “a photo of [class]” produces the best lo-
calization mIoU. We speculate this is due to the general
prompt template better preserving the class-discriminative
language priors from the pre-trained CLIP model, compared
to ensembling several prompts or learning extra parameters.

5. Conclusion
We proposed a new weakly supervised dense object lo-

calization method by explicitly constructing multi-modal
class representations via a transformer-based framework.
The proposed transformer includes class-specific visual and
textual tokens by learning visual information from the tar-
get image data and exploiting language information from
the pre-trained CLIP model, respectively. These diverse
supervisions enable the multi-modal class-specific tokens
to provide complementary information for more discrim-
inative dense localization. By further incorporating the
sample-specific contexts from visual context and image-
language context, more adaptive multi-modal class-specific
tokens can be learned to facilitate better dense localization.
Our superior WSDOL results on two multi-label datasets,
(i.e., PASCAL VOC and MS COCO) and one single-label
dataset, (i.e., OpenImages), demonstrate the effectiveness
of the proposed method. We also report state-of-the-art
WSSS results on PASCAL VOC and MS COCO.
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